首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
大麦钾高效基因型钾吸收和生理生化特性研究   总被引:1,自引:0,他引:1  
盆栽试验研究了大麦钾高效基因型的吸钾特性和生理生化特性。结果表明,在不同供钾水平下,大麦钾高效基因型(Sandrime)含钾量均小于低效基因型(AC Westech);但生物量显著大于低效基因型,在苗期和分蘖期,两基因型生物量最大差异分别为2.4和2.1倍。大麦钾高效基因型(Sandrime)根系活力小于钾低效基因型(AC West-ech),并随供钾水平的提高,其变化趋势不及低效基因型明显。两基因型叶绿素含量在正常供钾水平下达最大值,且高效基因型含量大于低效基因型;钾高效基因型的SOD活性大于低效基因型,基因型差异在苗期最大为2.74倍,分蘖期最大为3.26倍;而POD活性则为高效基因型小于低效基因型,基因型差异在苗期为2.94~4.98倍,分蘖期为2.12~2.76倍,在各供钾水平下均达显著差异水平。高效基因型的MDA和可溶性糖含量小于低效基因型,并随供钾水平的提高逐渐减少。  相似文献   

2.
嫁接对不同棉花基因型钾效率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用全生育期土培盆栽试验,在研究2个棉花基因型钾吸收效率和利用效率的基础上,对未嫁接和经嫁接的自根苗(接穗和砧木为同一基因型)处理的棉花干物质和钾的积累、分配进行比较。结果表明:自根苗植株与未嫁接植株相比,不同棉花基因型在不同钾水平下干物质和钾的积累及分配不同。高效基因型103经过嫁接后营养器官中的干物质和钾比例增加,生殖器官中的干物质和钾减少,产量和钾利用指数下降;低效基因型122经过嫁接后营养器官中的干物质和钾比例减少,生殖器官中的干物质和钾增加,产量和钾利用指数升高。吸收效率因钾水平而异,高效基因型103嫁接后施钾时吸收效率降低,缺钾时升高;而低效基因型122嫁接后施钾时吸收效率升高,缺钾时降低。嫁接对不同棉花基因型产生的效应不同,通过嫁接使不同棉花基因型物质分配趋于平衡。  相似文献   

3.
不同基因型小麦钾离子吸收动力学分析   总被引:14,自引:1,他引:14  
在日光温室营养液培养条件下,研究了经筛选的不同钾效率基因型小麦在不同钾营养状况下K+的吸收动力学。结果表明,采用不同钾营养状况小麦K+吸收动力学参数Km和Imax对不同基因型小麦钾效率分类,结果与经筛选的不同基因型小麦的钾效率特征相一致,Km和Imax可用来评价和筛选高效吸钾基因型小麦。但不同基因型小麦Km和Imax在不同钾营养状况下表现规律不相同,Km和Imax值的大小受到小麦本身钾营养状况反馈调节,植物钾营养状况越高,Km越大,Imax越小;有的基因型受本身钾营养状况影响较大,有的受其影响较小,但总体上还是相一致的。结果还看出,温6-986和周麦13是钾高效基因型,予农015是钾低效基因型;同一基因型小麦在不同钾营养状况下是以不同机制吸收钾的。  相似文献   

4.
【目的】钾是植物生长发育所必需的营养元素之一,缺钾影响棉花的生长。钠与钾有一些相同的生理功能,钠钾替代和协同作用是提高作物钾效率有效途径之一。研究钠钾替代对不同基因型棉花钾效率的影响,旨在为生产中科学高效利用钾肥提供依据。【方法】于2013~2014年在华中农业大学利用盆栽试验,筛选并获得了钾高效高增产潜力棉花基因型103和钾低效低增产潜力棉花基因型122为试验材料,采用营养液培养对不同K+、Na+浓度处理条件下棉花苗期农艺性状(株高、根长和叶片数)、干物质积累与分配、各部位(根、茎、叶和柄)钾钠含量和钾钠积累量等进行了研究,探讨了钠钾替代作用对其钾素利用效率的影响。【结果】缺钾的条件下,施钠增加了两个基因型的根长,且103增加的幅度大于122;增加了103和122各部位干重和根冠比,而减少了根和茎的钾含量,对各部位钾积累量影响不明显,施钠还能显著提高基因型棉花103的钾利用效率,其为不施钠时的1.37倍。另外,适钾的条件下施钠,两个基因型的根长都有所增加,且103增加的幅度大于122;103和122各部位干重和总干重都显著增加,但二者根和叶钾含量显著降低,除了叶和柄其他各个部位的钾积累量都不同程度的提高;同时,103和122的钾利用效率均增加,103增加了28%,大于122的19%。此外,钾钠交互作用对根长和株高的相对生长速率,各部位干物重和根、叶中钾、钠含量和积累量以及全株钾利用效率都有显著影响。【结论】无论是否施钾、施钠均能增加两个基因型棉花的根长,通过促进根系的伸长来提高棉花对钾的吸收和生物量的积累。缺钾时施钠显著增加了103的钾效率,且适钾时施钠高效基因型103的钾效率增加幅度大于低效基因型122,表明钠钾替代和协同效应对钾高效基因型103比低效基因型122更显著。  相似文献   

5.
籼稻不同基因型对钾、钠的反应   总被引:5,自引:2,他引:3  
本研究用微区试验研究了4种典型基因型在田间条件下对钾、钠反应的遗传差异。这4种基因型是经液培方法从近300种基因型中筛选得到的。结果表明,在低钾条件下,钾高效基因型的钾素利用效率、钾素经济利用效率、对胡麻斑病的抗性等都显著高于钾低效基因型;不同基因型对钠的反应差异明显;茎叶的钾钠含量互成显著的反相关。  相似文献   

6.
不同基因型棉花苗期钾效率差异及其机制的研究   总被引:13,自引:4,他引:13  
用营养液培养研究了103、138、163、1651、22和169等6个棉花基因型苗期钾效率差异及其初步机制。根据不同基因型钾效率系数和增长潜力的差异,区分为高效高潜(103、138)、高效低潜(163、165)、低效高潜(122)和低效低潜(169)基因型。在钾胁迫时,1031、38长势较好,单株干物重最大,而钾含量最低,它们能以较低钾含量构建较多的生物量,因此对钾的利用率大;由于其干物质冠根比大,因而能使较少的根系物质维持较多的地上部生长;与此相应,其单株钾积累量较大,且地上部钾积累量占较大比重,表明其吸收和转运钾素的能力较强;其叶绿素含量是上部叶高于下部叶,且二者差值较大,从而较好地促进上部叶的生理功能。而122、169则正好相反,缺钾时它们具有较高的钾含量,干物重却最小,其中169干物重仅为103的43.93%,因而钾积累量也最少,其吸收、积累和利用钾的能力弱。163、165的单株干物重、增长潜力以及地上部钾积累量比重均较低,其吸收和转运钾的能力属中低水平。  相似文献   

7.
烤烟钾素营养特性的基因型差异研究   总被引:22,自引:0,他引:22  
以10个烤烟基因型为材料,进行了离子耗竭溶液培养、土壤耗竭盆栽试验和田间小区试验,研究比较钾素营养特性的基因型差异。结果表明,不同基因型的吸钾速率和耐低钾能力差异显著。吸钾速率以红大和K358最大,耐低钾能力Nc27NF和K358最强,Nc729最弱。10个基因型全株含钾量在低钾水平下变幅为0.87%~1.25%,而在高钾水平下为1.40%~1.94%。高钾条件下,基因型G28、77089-12、Rg11和Nc82的叶片含钾量高于2%;K358、Coker319、K346和Nc27NF有较高的钾素利用效率,K346、Nc729、G28和K358的钾素收获指数大于50%。各烤烟基因型的钾素营养特性在不同供钾条件下无显著相关性。综合比较K346属于钾高效基因型。  相似文献   

8.
不同棉花品种钾素吸收利用差异的比较   总被引:2,自引:0,他引:2  
采用砂培方式,对苗期筛选出的钾高效的新陆早6号、新陆中15号、新海16号,钾低效的石K7、新陆早10号等5个棉花品种进行了钾吸收与利用效率差异比较。结果表明,在不施钾和施钾条件下,钾高效与钾低效棉花品种在各时期的含钾量、钾积累量和地上部分干物重存在显著差异性。其中,以不施钾条件下钾高效品种新陆中15号表现最为突出,其整个培育期的含钾量、钾积累量和地上部分干物重分别是钾低效品种石K7的1.17、1.47和1.25倍。不同棉花品种钾利用指数也存在差异,以施钾条件下差异明显;生长80、120和140 d,钾高效品种新路中15号钾利用指数分别是钾低效品种石K7的1.40、1.31和1.34倍。  相似文献   

9.
陈俊意  吕学高 《南方农业》2007,1(1):22-23,35
以2个磷高效玉米基因型6112、6060和2个磷低效玉米基因型6105、6128为材料进行试验,研究了低磷胁迫下不同磷效率玉米基因型生物学指数、根系分泌物指数、叶片活性氧清除酶活性(SOD、CAT)和叶片丙二醛LP/P的差异,其结果是:磷高效基因型的生物学指数、根系分泌物指数和叶片活性氧清除酶活性比磷低效基因型高,而叶片丙二醛LP/P比磷低效基因型低。表明磷高效基因型比磷低效基因型具有较强的低磷忍耐能力、分解吸收磷能力、活性氧清除能力和自我修复能力。  相似文献   

10.
施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响   总被引:6,自引:0,他引:6  
在土培盆栽条件下,以磷高效小麦(CD1158-7、省A3宜03-4)和磷低效小麦(渝02321)为材料,研究了不施磷、施磷(P)10、20和30mg/kg对小麦不同生育时期生物量、籽粒产量及氮、磷、钾的积累与分配的影响。结果表明:(1)随施磷量的减少,不同磷效率品种小麦籽粒产量和生物量均减少;同一施磷处理,磷高效品种籽粒产量和生物产量高于磷低效基因型。不施磷、施磷10mg/kg,高效品种CD1158-7、省A3宜03-4的籽粒产量为低效品种渝02321 的1.84 倍和1.74倍、1.64倍和1.27倍。(2)低磷处理,磷高效品种小麦植株能够积累较多的氮素;扬花期之前,磷高效品种氮素积累量占小麦全生育期积累量的比例高于低效品种。拔节期、孕穗期氮素分配比例为叶>茎>根,扬花期为叶>茎>穗>根,而成熟期为籽粒、颖壳>茎>叶>根。拔节期和孕穗期磷高效品种根的氮素分配比例高于低效品种,而扬花期和成熟期磷高效品种穗(籽粒)氮素分配比例较高。(3)小麦植株磷素积累量主要集中在拔节期以后的生育时期,占全生育期的82.32%~94.23%。低磷处理,高效品种在拔节期和孕穗期磷素积累量高于低效品种,孕穗期尤为突出。扬花期之前,不施磷处理下,磷高效品种根的磷素分配比例较高。(4)不同施磷处理下,拔节期、孕穗期及扬花期,磷高效品种小麦的钾积累量高于低效品种。不同器官钾素分配比例拔节期和孕穗期均为叶>茎>根,扬花期为茎>叶>穗>根,成熟期为茎>叶>籽粒、颖壳>根。磷高效品种在颖壳和籽粒的钾素分配比例高于低效品种。  相似文献   

11.
A pot experiment with two rice (Oriza sativa L.) genotypes differing in internal potassium use efficiency (IKUE) was conducted under different sodium (Na) and potassium (K) levels. Adding NaCl at a proper level enhanced rice vegetative growth and increased grain yield and IKUE under low potassium. Addition of higher rate of NaCl had a negative effect on the growth of the K-efficient rice genotype, but did not for the K-inefficient genotype. Under low-K stress, higher NaCl decreased IKUE of the K-efficient rice genotype but increased IKUE for the K-inefficient genotype. At tillering stage and under low-K stress, adding NaCl increased K and Na contents and decreased the ratio of K/Na for both genotypes. At harvesting stage under low-K stress, adding NaCl increased K and Na contents and K/Na ratio for the K-efficient genotype but decreased the K/Na ratio for the K-inefficient genotype. The accumulated Na was mostly deposited in the roots and sheaths. At tillering stage, the K and Na contents and the K/Na ratios in different parts for both genotypes decreased in the following sequence: K+ in sheaths > K+ in blades > K+ in roots; Na+ in roots > Na+ in sheaths > Na+ in blades; and K/Na in sheaths >> K/Na in roots. The K-efficient genotype had a lower K/Na ratio in roots and sheaths than the K-inefficient genotype under low-K stress. At harvesting stage, K and Na contents in grains were not affected, whereas K/Na ratio in the rice straws was increased for the K-efficient genotype but decreased for the K-inefficient genotype by Na addition. However, this was not the case under K sufficient condition.  相似文献   

12.
As a macroelement to plant, potassium (K) absorption mechanism has been widely studied. However, as for cotton genotypes with different K efficiency, how they related to the absorption patterns under K starvation is not fully understood. In this hydroponic experiment, plants were grown at different K levels: low (K1, 2 mg/L) and adequate K level (K2, 20 mg/L) for 2 weeks. K+ absorption kinetic parameters were got by Michaelis–Menten equation. By applying K channel-blocking agent, tetraethylammonium and protein modifying reagent N-ethylmaleimide, we evaluated the differences in K absorption mechanisms for two typical cotton genotypes (K-efficient genotype 103 and K-inefficient genotype 122). Results showed that higher affinity to K+ and better root formation of genotype 103 resulting in better adaptation in low-K+ condition, whether grown in low or adequate K+ environment. Further study with K+ absorption inhibitors suggested the two genotypes grown in low-K+ environment absorbed K+ mainly by high-affinity K+ absorption systems, and for seedlings grown in adequate K condition, genotype 103 absorbed K+ with both K channels and high-affinity proton and mainly by high-affinity K channels, while genotype 122 absorbed K+ by K channels. These results indicated that the low-K condition could induce higher affinity to absorb K+, and the two cottons with different K efficiency mainly due to different low-K adaptation and absorb K+ with different patterns. This could provide a possible theory for the selection of K-efficient varieties.  相似文献   

13.
Potassium (K) is an essential macronutrient for plant growth and development. Plant growth and development can be seriously affected by K deficiency. However, plants with different K efficiencies behave differently. It is still not fully understood how plants with higher K efficiency could maintain better growth in a low K environment and what is the relationship between K recycling and photosynthesis metabolism. The aim of this study was to investigate whether the difference in K re-translocation and photosynthesis transportation can explain genotype differences in K efficiency between K-efficient genotype 103 and K-inefficient genotype 122. Results of this study showed that the dry matter accumulation of genotype 122 decreased much more than that of genotype 103 affected by K deficiency environment. Root growth of the two genotypes was inhibited by K deficiency, but genotype 122 was affected more than genotype 103. Using the K utilization index as an evaluation factor for K efficiency, it was found that genotype 103 was significantly higher than genotype 122. Potassium affected the K distribution in plants for both the genotypes. Potassium was distributed more to the stem and leafstalk in a normal K environment whereas it was more to the leaf and root in a low K environment, especially for genotype 103. Potassium also affected photosynthetic products’ distribution. The leaf of genotype 122 accumulated most of its photosynthetic product while genotype 103 had better ability to transport it into the root to maintain better growth under a K-deficient environment. Results of this study indicated that more K recycling into the root and more efficient transport of the photosynthetic product into the root contribute to better root growth and therefore increased tolerance to K deficiency.  相似文献   

14.
Identification of cotton (Gossypium hirsutum L.) genotypes efficient in potassium (K) uptake and utilization, under K-deficient conditions represents a cost-effective and environmentally friendly approach for low-K-input agriculture. It would reduce the costly input of K-fertilizers and manage K resources in agro-ecosystems. We ranked 25 cotton genotypes for their K use efficiency under deficient and adequate K regimes in hydroponics, using two different methods. K deficiency generally reduced cotton growth; however, K-efficient genotypes accumulated more biomass due to higher K uptake. Genotype NIBGE-2 exhibited excellent adaptation potential in terms of high shoot dry weight under both K regimes and ranked as the only most desirable, “efficient-responsive” genotype. Genotype CIM-506 produced low shoot dry weight under low K condition and ranked as “non-efficient.” Genotype Desi okra produced low shoot dry weight at adequate K level and ranked as “non-responsive.” Genotype ranking using two different methods ensured the validity of results.  相似文献   

15.
【目的】高含钾量是优质烟叶的一项重要指标。比较不同烟草品种的含钾量及其对施用钾肥的反应,为筛选高钾基因型烟草品种提供基础。【方法】以 93 份烟草种质资源为研究对象,在凉山州进行连续两年的大田试验。设置常规钾 (K2O = 300 kg/hm2) 与低钾 (K2O = 150 kg/hm2) 两个水平,成熟期测定烟叶含钾量,以聚类分析将烟草分类,并分析其在不同叶位间的基因型差异。【结果】施钾量影响烟草上、中、下部叶片钾含量,常规钾水平下的烟叶含钾量高于低钾水平,常规施钾量下的上、中、下部烟叶含钾量分别为低钾水平下的 1.13、1.14、1.15 倍 (2014 年) 和 1.10、1.25、1.35 倍 (2015 年) 。将烟叶含钾量进行聚类分析,供试材料被划分为高钾型、普通型和低钾型 3 类,并筛选获得了典型材料。高钾型烟草的上、中、下部烟叶含钾量均显著高于普通型及低钾型烟草材料。常规施钾水平下,高钾型烟草的上、中、下部烟叶含钾量分别是低钾型的 1.50~1.92、1.54~2.52、1.31~2.36 倍;低钾水平下分别为 1.27~1.93、1.66~2.24、1.72~1.73 倍。【结论】高钾基因型烟草上、中、下部烟叶的含钾量均显著高于普通型和低钾型;普通型上部叶的含钾量与低钾型烟草之间无显著差异,中、下部烟叶含钾量普通型显著高于低钾基因型。通过两年田间试验筛选获得了 6 份高钾型烟草材料,包括嘎吉红大、长叶红大、达白 1 号、达白 2 号、MFZS、930032-7,可应用于烟叶生产,亦可为富钾基因型品种选育提供育种亲本材料。  相似文献   

16.
Potassium (K) deficiency is one of the main limiting factors in cotton (Gossypium hirsutum L.) production. To study the mechanism of high K‐use efficiency of cotton, a pot experiment was conducted. The experiment consisted of two cotton genotypes differing in K‐use efficiency (H103 and L122) and two K‐application levels (K0: 0 g (kg soil)–1; K1: 0.40 g (kg soil)–1). Root‐hair density and length, partitioning of biomass and K in various organs, as well as K‐use efficiency of the two cotton genotypes were examined. The results show that there was no significant difference in K uptake between the two genotypes at both treatments, although the genotype H103 (high K‐use efficiency) exhibited markedly higher root‐hair density than genotype L122 in the K1 treatment. Correlation analysis indicates that neither root‐hair density nor root‐hair length was correlated with plant K uptake. Furthermore, the boll biomass of genotype H103 was significantly higher than that of genotype L122 in both treatments, and the K accumulation in bolls of genotype H103 was 39%–48% higher than that of genotype L122. On the other hand, the litter index (LI) and the litter K‐partitioning index (LKPI) of genotype H103 were 14%–21% and 22%–27% lower than that of genotype L122. Lastly, the K‐use efficiency of total plant (KUE‐P) of genotype H103 was comparable with that of genotype L122 in both treatments, but the K‐use efficiency in boll yield (KUE‐B) of genotype H103 was 24% and 41% higher than that of genotype L122 in K0 and K1 treatments. Pearson correlation analysis indicated that KUE‐P was positively correlated with BKPI and negatively correlated with LKPI, while KUE‐B was positively correlated with BKPI and boll‐harvest index (HIB), and negatively correlated with LKPI. It is concluded that there were no pronounced effects of root‐hair traits on plant K uptake of the two genotypes. The difference in K‐use efficiency was attributed to different patterns of biomass and K partitioning rather than difference in K uptake of the two genotypes.  相似文献   

17.
《Journal of plant nutrition》2013,36(12):1937-1945
Potassium (K) is one of the most important nutrients limiting yield of common bean in South America. Use of K-efficient crop genotypes along with K fertilizer may be a viable strategy to improve yield and reduce cost of production. A greenhouse experiment was conducted to evaluate K-use efficiency of 10 promising genotypes of common bean (Phaseolus vulgaris L.). The genotypes were grown on an Oxisol at 0 mg K kg?1 (low K) and 200 mg K kg?1 (high K) of soil. Shoot dry weight, grain yield, number of pods, number of grains, 100-grain weight, grain harvest index, and K harvest index were significantly (P < 0.01) affected by level of K as well as genotype, except for the number of pods by genotype. Significant genotypic differences in K-use efficiency were found. On the basis of K-use efficiency (mg grain weight/mg K accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and non-efficient and non-responsive (NENR). Only genotype Diamante Negro was only classified as ER, and genotypes Carioca, Pérola, Rosinha G-2, and Xamego were classified as ENR. Genotypes LM93300166 and LM93300176 were in the group NER, and in the NENR group were genotypes Iraí, Jalo Precoce, and Novo Jalo. From a practical point of view, genotypes which produce high grain yield at a low level of K and respond well to added K are the most desirable because they are able to express their high yield potential in a wide range of K availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号