首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Two field experiments with drained plots on clay soils (60% and 25% clay) demonstrated a significant reduction in leaching of total phosphorus after application of structure lime. Aggregate stability was significantly improved. Phosphorus leaching in particulate form was significantly reduced following structure liming at the site with a very high clay content. Sites representing low (50 mg kg?1) and high (140 mg kg?1) levels of phosphorus extractable with acid ammonium lactate in topsoil displayed differing effects on leaching of dissolved reactive P (DRP). This form of phosphorus was only significantly reduced compared with the control at one site with high topsoil phosphorus status and relatively high (17–18%) degree of phosphorus saturation in the subsoil. Laboratory experiments with simulated rain events applied to topsoil lysimeters from the same site also demonstrated a significant reduction in leaching of DRP. These findings indicate that structure liming is an appropriate leaching mitigation measure on soils with both a high clay content and high soil phosphorus status.  相似文献   

2.
Liming materials are widely applied to alleviate soil acidification and increase rice yield in acidic soils, but their effects on nitrogen (N) use efficiency are still unclear. Here, we conducted a field-, pot-, and micro-plot experiment to investigate how the application of slaked lime (i.e., Ca(OH)2) affects the fate of chemical fertilizer-N and straw-N in a double rice cropping system. In the field experiment, liming increased grain yield and N uptake by an average of 9.0% and 10.6%, respectively. In contrast, CaCl2 application did not affect rice yield and N uptake, suggesting that the effects of lime application were not related to the addition of Ca2+. Results from a 15N tracer experiment (i.e., 15N-labeled urea and straw) indicated that liming reduced N uptake from fertilizer (−5.7%), but increased N uptake from straw (+31.3%). Liming also reduced soil retention of both urea- and straw-N and increased their loss rates. Taken together, our results indicate that although liming increases rice yield and N uptake, it lowers the use efficiency of fertilizer N and facilitates N losses. In addition, our results emphasize the need for long-term studies on the impact of liming on soil N dynamics in paddy soils.  相似文献   

3.
ABSTRACT

The aim of the study was to examine response of mature phosphorus (P) deficient apple (Malus domestica Borkh.) trees to phosphorus fertilization and liming. The experiment was carried out during 2003–2005 in a commercial orchard in Central Poland on ‘Jonagold’ apple trees/M.26 planted in 1996 on a coarse-textured soil with low both pH (4.6) and organic matter (1.2%). Calcium-lactate soluble phosphorus concentration in the soil was within an optimal range despite appearance of leaf phosphorus deficiency symptoms. Soil and foliar applications of phosphorus, and soil liming were applied. Soil phosphorus fertilization was made in the first year of the experimental at a rate of 100 kg P per ha as triple superphosphate. Foliar sprays of a soluble compound containing organic phosphorus were performed 5 times per season at 2-week intervals, starting 4 weeks after full bloom. Soil liming was applied in the fall 2002 at a rate of 1100 kg Ca ha?1 as hydrated lime. Additional combination as soil phosphorus fertilization plus liming was also applied. Plots unsupplied with phosphorus and lime served as a control. The results showed that liming and liming plus soil P application increased soil pH, and phosphatase activity in the soil, and improved phosphorus nutrition, tree vigor, yield, fruit color, and firmness after storage; effect of these treatments was not found only in the first year of the study. In all years foliar phosphorus sprays improved phosphorus nutrition of apple trees, and fruit color and firmness after storage. In 2 out of 3 years foliar phosphorus application increased yield. The vegetative and reproductive responses of ‘Jonagold’ apple trees did not depend on soil phosphorus fertilization. It was concluded that maintaining an optimal pH of soils for apple trees limits the incidence of orchard phosphorus deficiency and that foliar phosphorus sprays should be applied in phosphorus-deficient apple orchards to improve yield, and fruit appearance and storability.  相似文献   

4.
Abstract

A pot experiment was performed during the 1992 growing season on an acid, sandy topsoil taken from a Swedish liming experiment. A central composite experimental design was used in order to study the effects of supply of phosphorus (P) and micronutrients at different liming levels on yield of barley (Hordeum vulgare L. c.v. Golf), mineral content in plant, straw, and grain, and level of soil extractable nutrients. The results showed no increase of yield due to liming despite the fact that lime increased the yield significantly in the field experiment. The soil appeared initially to have a good balance between the nutrients included in the experimental design with the exception of P. An excessive supply of manganese (Mn) decreased the yield. The contents of calcium (Ca) and aluminum (Al) in the plant were hardly affected by the treatments, while the contents of P, Mn, copper (Cu), and zinc (Zn) more than doubled compared to no supply. The contents of P, Cu, and Zn were mainly influenced by the supply of the actual element, while the content of Mn was more closely related to the supply of lime. Soil pH(H20) and CaCl2‐extractable P, Mn, Cu, and Zn were highly related to the supplies of lime, P, Mn, Cu and Zn, respectively. Only a few interactions were observed.  相似文献   

5.
Abstract

A pot experiment was carried out in the greenhouse with two loamy sand Dystric Cambisols derived from schist to investigate the effect of liming and phosphorus (P) application on plant growth and P availability and its assessment by four soil test methods: 0.01M calcium chloride (CaCl2), cation anion exchange membrane (CAEM), Egnér‐Riehm, and Olsen procedures. Soils were first incubated for two weeks with lime at four levels, depending on their content of exchangeable aluminum (Al). Phosphorus was added at two rates (75 and 150 mg P kg‐1) and the incubation proceeded for an additional two‐week period. Sudangrass (Sorghum sudanenses cv. Tama) was then planted and harvested four weeks later. During incubation and plant growth, soils were maintained at 70% of field moisture capacity. Although pH value and soil extractable P in original soils were similar, the results showed a significant difference on the effect of liming and P application. Acidity was the major limitation for DM yield in the soil with the highest amount of exchangeable Al, while P availability was the main constraint in the other soil. Liming above pH (0.01M CaCl2) 5.3–5.5 did not increase DM yield in either soil and showed a negative effect on one soil (9.7 to 6.9 and 10.2 to 7.8 g pot‐1). Phosphorus content and uptake by sudangrass increased with liming, revealing a positive effect of lime on the availability of P to plants. Added P showed a lower efficiency in the soil with highest amounts of Al compounds. Soil tests performed after the execution of the pot experiment showed variable tendencies to predict P availability, according to the nature of the procedures and soils. Soluble‐P in 0.01M CaCl2 increased with the rise of soil pH. Extractable CAEM‐P and Egnér‐Riehm‐P also increased with liming, but reflected the soil depletion caused by plant uptake. Extractable Olsen‐P presented the most inconclusive results, suggesting the limitation of this method for acid soils which have been limed.  相似文献   

6.
Lime and phosphorus (P) applications are common agricultural management practices. Our aim was to quantify the effects of long-term application practices on root growth and abundance of arbuscular mycorrhizal fungi (AMF) under field conditions. We assessed the effects of lime and P fertilizer applications on barley yield, root growth and AMF abundance in 2016. Treatments were no, low, medium and high liming rate corresponding to application of 0, 4, 8 and 12 Mg lime ha−1 every 5–9 years since 1942 combined with no or yearly application of 15.6 kg P ha−1 since 1944. At harvest, grain yield, root intensity (core-break) and AMF abundance at different soil depths were estimated. Root development was monitored during early growth with minirhizotrons in treatments receiving low, medium and high liming rates and P fertilization. A quadratic model relating grain yield to liming rate estimated yields to peak at 6.4 Mg lime ha−1 with yields of 4.2 and 3.2 Mg grain ha−1 with and without P fertilization, respectively. Low and medium liming rates resulted in greater AMF abundance, especially in the no P treatments. During early growth in P-fertilized treatments, 77% and 65% more roots developed in the soil profile when treated with medium and high liming rate, respectively, compared to low liming rate. We conclude that long-term application of lime in soils receiving yearly P fertilization improved conditions for root growth in soil layers below 30 cm, but at the high liming rate, this did not translate into higher yield.  相似文献   

7.
Fertilizer recommendations are needed to increase organic vegetable yields. Thus, organic lettuce growth and nutrient uptake was investigated in a randomized block pot experiment with twelve treatments from the factorial structure of three factors: (i) Gafsa phosphate [0 and 200 kg phosphorus pentoxide (P2O5) ha?1], (ii) compost from source separated municipal organic waste (0, 15, and 30 t ha?1) and (iii) limestone [0 and 8 t ha?1 calcium carbonate (CaCO3) equivalent]. Lettuce yield increased with compost application and a first order interaction between lime and phosphate was clear because lime partially replaced the need for phosphate. This was explained by the effect of liming on P availability in acid soils. Nitrogen (N), phosphorus (P), and potassium (K) accumulation increased in lettuces produced with compost or phosphate but only the accumulation of N was increased with lime. This compost is recommended to increase nutrient availability for organic lettuce whereas the need for phosphate fertilization may decrease with liming.  相似文献   

8.
Li  Yuan  Cui  Song  Chang  Scott X.  Zhang  Qingping 《Journal of Soils and Sediments》2019,19(3):1393-1406
Purpose

The aim of this meta-analysis was to investigate the interactive effects of environmental and managerial factors on soil pH and crop yield related to liming across different cropping systems on a global scale.

Materials and methods

This study examined the effects of liming rate, lime application method, and liming material type on various soil chemical properties and crop yield based on data collected from 175 published studies worldwide since 1980.

Results and discussion

The most important variables that drive changes in soil pH and crop yield were liming rate and crop species, respectively. Soil conditions, such as initial soil organic matter and soil pH, were more important for increasing soil pH in field-based experiments, while lime material type and application method were more important for improving crop yield. To effectively neutralize soil acidity, the optimum liming duration, rate, and material type were?<?3 years, 3–6 Mg ha?1, and Ca (OH)2, respectively. Averaged across different crop species, the application of CaO, CaCO3, Ca (OH)2, and CaMg (CO3)2 increased yield by 13.2, 34.3, 29.2, and 66.5%, respectively.

Conclusions

This meta-analysis will help design liming management strategies to ameliorate soil acidity and thus improve crop yield in agroecosystems.

  相似文献   

9.
Abstract. Eight lysimeters, each with a surface area of 0.5 m2 and a length of 60 cm, were taken over mole drains from a Denchworth soil and divided into two groups with either a standard agricultural tilth or a finer, deeper topsoil tilth. They were variously instrumented to measure soil moisture content at three depths and losses of nitrate, a bromide tracer and radiolabelled isoproturon, all of which were followed over a year. Leaching of isoproturon was initiated by artificial irrigation either 1 or 39 days after application. The finer tilth seemed to increase the water-holding capacity of the topsoil, and this resulted in slower wetting of the subsoil, decreased flow volumes from the first events of the season and a delay of approximately four weeks in the time to the maximum concentration of the bromide tracer in leachate. The finer topsoil tilth also decreased maximum concentrations of isoproturon from 29 to 15 μg l−1 following irrigation 1 day after treatment and from 43 to 9 μg l−1 following irrigation 39 days after treatment. Total losses of isoproturon were three times larger with the standard agricultural tilth. Differences were attributed to a decrease in bypass flow through the topsoil with the finer tilth, particularly during events early in the season. There was a small decrease in total losses of nitrate in leachate from the finer tilth compared to that from the standard tilth.  相似文献   

10.
Liming an acid soil increased the yield and N content of subterranean clover in both field and glasshouse experiments. Application of Mo increased the N concentration of field-grown subterranean clover which corresponded with observed colour and growth differences, but did not change C2H2 reduction activity. Herbage Mo was not increased by liming, suggesting an absolute deficiency of Mo in these acid soils. In the glasshouse liming increased nodulation which increased the amount of N2 fixed but the lime had no direct effect on nitrogenase activity as measured by C2H2 reduction. In the field both inoculation and lime application increased soil populations of R. trifolii, but clover yield was greater with liming alone than with inoculation alone, indicating the sensitivity of the host plant to soil acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号