首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薛壮壮  冯童禹  王超  沈仁芳 《土壤》2022,54(4):733-739
为了研究土地利用方式对酸性红壤丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)群落的影响,调查了酸性红壤4种土地利用方式 (草地、玉米、花生和大豆) 下非根际和根际土壤AMF群落多样性和组成结构。结果表明:土地利用方式显著影响了AMF群落优势属球囊霉属(Glomus)和巨孢囊霉属(Paraglomus)的相对丰度,但是根际作用影响不明显。土地利用方式而非根际作用显著影响了AMF群落香农指数和物种丰富度,其中大豆地表现出最低的香农指数和物种丰富度。土地利用方式和根际作用都显著影响AMF群落组成结构,但是土地利用方式的作用强度明显高于根际作用。球囊霉属主要解释了不同土地利用方式之间的AMF群落组成差异。土壤pH是影响土壤AMF群落结构的最关键因子。因此,土地利用方式比根际作用表现出对酸性红壤AMF群落更大的影响,展现了土地利用变化在影响土壤AMF群落方面的重要作用。  相似文献   

2.
The diversity of arbuscular mycorrhizal fungi (AMF) colonizing the roots and rhizosphere soils of Heteropogon contortus and Dodonaea viscose growing in a valley-type savanna, southwest China, were analyzed by the large subunit ribosomal RNA genes (LSU). A total of 547 AMF sequences were screened for establishment of four clone libraries. Phylogenetic analysis revealed that the sequences clustered in at least 8 discrete sequence groups, all belonging to the genus Glomus. Among the Glomus spp., Glo 1 (GlGr A) and Glo 7 (GlGr B) were the most common in all root and soil samples of the two xerophytes, accounting for 42% and 33% of all screened clones, respectively. The ∫-LIBSHUFF analysis revealed that the composition of AMF communities associated with the two xerophytic hosts varied greatly both in roots and their rhizosphere soils.  相似文献   

3.
In this work we have determined the community composition of spore-forming arbuscular mycorrhizal fungi (AMF) in a maquis site on Pianosa island, a protected area within the Tuscan Islands UNESCO Biosphere Reserve, Italy. We have analysed rhizosphere soil of the dominant plant species Pistacia lentiscus, Smilax aspera, Rosmarinus officinalis and of the endemic plant Helichrysum litoreum. The AMF species recovered were: Scutellospora dipurpurescens, Glomus coronatum, Glomus mosseae, Glomus etunicatum, Glomus geosporum, Glomus viscosum, Entrophospora sp., Pacispora sp. and Glomus rubiforme. The identification of native S. dipurpurescens and G. coronatum was carried out on spores isolated from rhizosphere soil of H. litoreum, by combining morphological traits and 18S (SSU) and ITS rDNA sequences. Therefore, AMF species of Pianosa rhizosphere soils represent an important repository for the conservation and maintenance in their natural habitat of such beneficial symbionts, key microorganisms of soil fertility.  相似文献   

4.
Little is known about the characteristics of arbuscular mycorrhizal fungi (AMF) community in the roots of host plants growing on heavy metal contaminated sites. The objectives of this study were to examine the community structure of AMF associated with the roots of a copper (Cu) tolerant plant—Elsholtzia splendens in a Cu mining area in southeastern Anhui Province, China. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in E. splendens roots sampled from three Cu mine spoils and two adjacent reference areas. Results obtained showed that root colonization and AMF diversity were very low and negatively correlated with total and extractable Cu concentrations. All the DNA sequences recovered belonged to the genus of Glomus. The principal component analysis (PCA) revealed that the AMF community composition varied remarkably among different sites and was related closely to soil properties, especially Cu concentrations. The distribution pattern of AMF species in various sites suggested the degree of AMF tolerance to Cu contamination. The unique AMF species that presented exclusively in heavily contaminated sites need to be further examined for potential application in phytoremediation of metal contaminated soils.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of Lotus corniculatus L. Specifically, the role of rhizosphere fungal community in the growth of Lotus corniculatus L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with Chaetomium and Humicola showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.  相似文献   

6.
A comprehensive knowledge on the relationship between soil salinity and arbuscular mycorrhizal fungi (AMF) is vital for a deeper understanding of ecosystem functioning under salt stress conditions. The objective of this study was to determine the effects of soil salinity on AMF root colonization, spore count, glomalin related soil protein (GRSP) and community structure in Saemangeum reclaimed land, South Korea. Soil samples were collected and grouped into five distinct salt classes based on the electrical conductivity of soil saturation extracts (ECse). Mycorrhizal root colonization, spore count and GRSP were measured under different salinity levels. AMF community structure was studied through three complementary methods; spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Results revealed that root colonization (P < 0.01), spore count (P < 0.01) and GRSP (P < 0.01) were affected negatively by soil salinity. Spore morphology and T-RFLP data showed predominance of AMF genus Glomus in Saemangeum reclaimed land. T-RFLP and DGGE analysis revealed significant changes in diversity indices between non (ECse < 2 dS/m) and extremely (ECse > 16 dS/m) saline soil and confirmed dominance of Glomus caledonium only in soils with ECse < 8 dS/m. However, ribotypes of Glomus mosseae and Glomus proliferum were ubiquitous in all salt classes. Combining spore morphology, T-RFLP and DGGE analysis, we could show a pronounced effect in AMF community across salt classes. The result of this study improve our understanding on AMF activity and dominant species present in different salt classes and will substantially expand our knowledge on AMF diversity in reclaimed lands.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting metal-hyperaccumulating plants in the remediation of contaminated soils. However, little information is available about the symbiosis and community composition of AMF associated with manganese (Mn) hyperaccumulator, such as Phytolacca americana, growing on Mn-contaminated soils under natural conditions. Therefore, the objective of this study was to analyze AMF diversity and community composition in P. americana roots growing at an Mn mining site. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in P. americana roots sampled from three Mn mine spoils and one adjacent reference areas. Results obtained showed that mycorrhizal symbionts successfully established even in the most heavily Mn-polluted sites. Root colonization and AMF diversity were significantly negatively correlated with total and extractable Mn concentrations. Principal component analysis (PCA) revealed that Mn contamination impacted AMF diversity, and shaped AMF community structure. Phylogenetic analyses demonstrated that all species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. Some unique sequences that occurred exclusively in heavily polluted sites associated with P. americana may belong to symbiotic fungi with great potential for improving the phytoremediation efficiency of Mn-contaminated soils.  相似文献   

8.
The study reports diversity of arbuscular mycorrhizal fungal (AMF) species in the rhizosphere of an endangered anticancerous herb – Curculigo orchioides Gaertn. in its natural habitat. A total of 18 species of AMF, belonging to three genera (Acaulospora, Glomus and Gigaspora) were recorded, with Glomus microcarpum being the most abundant species type. The AMF species composition across the study sites appeared to be influenced by soil pH rather than soil P and vegetation. Acaulospora laevis spores were restricted to sites where the soil pH was acidic. The effectiveness of these native AMF species on growth performance of C. orchioides plants was compared under experimental conditions. In general, the mycorrhizal plants were superior in most of the evaluated parameters, but the extent to which the growth of mycorrhizal plants was influenced varied with the inocula used. The plants inoculated with mixed consortia containing maximum AMF species richness exhibited improved growth in comparison to consortia containing lower AMF diversity and monospecies cultures. The variable plant responses observed with any two consortia having same species richness in the present study could be due to variable component AMF species and their relative abundance. These results emphasize the need to protect the below-ground diversity of AMF and recommend their usage for restoration practices.  相似文献   

9.
An open question with regard to the community ecology of arbuscular mycorrhizal fungi (AMF) concerns how to best amplify AMF in the soil, which contains a large proportion of DNA from AM extra-radical mycelium and spores. However, to date, a direct comparison of AMF primers for soil samples, which would systematically assess their amplification efficiency, is still missing. In our present study, we compared and characterized four widely used primer sets targeting AMF 18S rDNA or SSU-ITS-LSU rDNA from three soil samples as follows: (1) SSUmAf/LSUmAr?+?SSUmCf/LSUmBr, (2) GeoA2/Geo11?+?NS31/AM1, (3) AML1/AML2?+?NS31/AM1 and (4) AMV4.5NF/AMDGR. These primer sets were compared in terms of the proportion of Glomeromycota detected, AMF diversity and community composition. Our data revealed that the newly combined primer set 3 was the most suitable one for amplifying AMF from soil samples. It yielded the highest AMF alpha diversity, and was very specific to Glomeromycota. Primer set 2 was unable to amplify Claroideoglomus from soil 1, which was the dominant AMF clade as proved by other three primer sets. Primer set 4 demonstrated its instability among different soil samples, since the proportion of AMF in total sequences varied from 5% to 83%. Although primer set 1 showed the highest proportion of AMF (95–100%) in the soil samples, it captured the lowest AMF diversity, and the operational taxonomic units obtained by this primer set were only 36.4% of that by primer set 4. Taken together, our data suggested that AMF diversity in soil samples could be underestimated by primer set 1, 2 and 4. Our result confirmed the important role of the choice of AMF primers for analyzing AMF communities in soil and explored the most suitable one for amplifying AMF from soil samples.  相似文献   

10.
Species composition of arbuscular mycorrhizal fungi (AMF) was analysed in two differently managed mountain grasslands in Thuringia (Germany). Arbuscular mycorrhizal fungi were studied in the roots of 18 dominant plant species from a total of 56 (32%). Additionally, spores of AMF were isolated from soil samples. Arbuscular mycorrhizal fungi species composition was analysed based on 96 sequences of the internal transcribed spacer of the nuclear ribosomal DNA, 72 originated from mycorrhizal roots, and 24 originated from AMF spores. Phylogenetic analyses revealed a total of 19 AMF species representing all genera of the Glomeromycota except Scutellospora and Pacispora. Despite a different farming intensity, resulting in remarkable differences concerning their plant species diversity (27 against 43 plant species), the diversity of AMF was found to be similar with 11 species on the intensively farmed meadow and ten species on the extensively farmed one. Nevertheless, species composition between both sites was clearly different. It thus seems likely that the AMF species composition, but not necessarily the species number, is related to above ground plant biodiversity in the system under study.  相似文献   

11.
ABSTRACT

Central Anatolia, which suffers from salinity, alkalinity, and drought stresses, is one of the most important cultivation regions of barley (Hordeum vulgare) in Turkey. Arbuscular mycorrhizal fungi (AMF) could promote barley production under several stresses; however, only a little information is available for AMF community composition in Turkish arable soils. In this study, barley root samples were collected from eight sites in the Central Anatolian region during the growing season (GS: April) and the harvest season (HS: July) in 2012, and the composition of AMF communities were elucidated based on the partial sequence of the AMF 18S rRNA gene using high-throughput sequencing technology. As a result, barley-AMF symbioses in this region were highly dominated by Glomeraceae (71.8% in GS and 59.2% in HS), followed by Claroideoglomeraceae (10.3% in GS and 15.9% in HS), Gigasporaceae (9.1% in GS and 13.1% in HS), and Acaulosporaceae (5.8% in GS and 7.7% in HS). Compared to Glomeraceae and Claroideoglomeraceae families, communities of Acaulosporaceae, Diversisporaceae, Paraglomeraceae, and Gigasporaceae consisted of fewer AMF species. The AMF evenness significantly increased from GS to HS. The most dominant AMF sequence, VTX00248 in the MaarjAM database, was closely related to Rhizophagus, which occupied 25.8% and 14.7% of the total AMF sequences in GS and HS, respectively. The relative abundance of AMF related to Rhizophagus tended to be reduced in HS, suggesting that the species could form mycorrhiza in the early stages of barley growth in this region. On the other hand, the relative abundance of Claroideoglomeraceae and Scutellosporaceae tended to increase in HS. Soil CaCO3 content significantly influenced AMF community compositions in GS, while soil pH and EC showed no significant impact on AMF community compositions. Based on discriminant analysis, 11 VTXs (related Acaulospora, Claroideoglomus, Funneliformis, Gigaspora, and Glomus) showed higher abundance in the barley roots grown in the soil with relatively high CaCO3 content, suggesting that these sequences might be adapted to such an environment.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

13.
Arbuscular mycorrhizal (AM) fungi (AMF) are important components of agro-ecosystems and are especially significant for productive low-input agriculture. Molecular techniques are used to investigate fungal community composition in uncultivated, disturbed, or contaminated soils, but this approach to community analysis of AMF in agricultural soils has not been reported. In this study, a polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) procedure for the detection of fungal 18S ribosomal RNA gene was developed with reference cultures of seven isolates (representing five AMF species). These reference cultures were chosen because isolates of their species were putatively identified in a previous survey of farm field soils in the province of Saskatchewan, Canada. A reference PCR-DGGE profile was generated using DNA extracted and amplified from the spores of these cultures. The effectiveness of the procedure was tested by its application to soil samples from 38 farms. Prominent bands from the PCR-DGGE profiles of these samples were excised for sequence analysis. The total number of species recovered was low in comparison to other AMF community surveys of temperate climate locations. The majority of the sequences recovered were Glomus species. Scutellospora calospora, a previously undetected AM fungus in Saskatchewan was found. Though not without its drawbacks, this approach to community composition analysis of AMF was faster than conventional trap cultivation methods.  相似文献   

14.
The Arbuscular mycorrhizal fungi (AMF) community in saline soils of Ningxia, China, was rarely reported. Soils in the rhizosphere of two important food plants, Lycium barbarum L. (Goji) and Elaeagnus angustifolia L. (Oleaster), were sampled from Ningxia (Goji from Huinong, HNGQ; Goji from Yinchuan, YCGQ; Oleaster from Yinchuan, YCSZ) to investigate the AMF community. Thirty-three AMF species from 11 genera were identified in total. The dominant family and genera were Glomeraceae, Acaulospora and Glomus, respectively. Septoglomus constrictum was the most abundant species. The AMF community composition of Goji was different from that of Oleaster (= 0.26, < 0.05), while the AMF community from Huinong differed from Yinchuan (= 1.0, = 0.01). These findings suggest a high AMF diversity in Ningxia saline soils and the effect of host plant identity on AMF community composition. Furthermore, the AMF diversity index positively correlated with available potassium (AK), available phosphorus (AP), available nitrogen (AN) and organic matter (OM), but negatively correlated with electric conductivity (EC). This result demonstrated that a high level of salinity might reduce soil fertility and AMF diversity. The saline area with high diversity of the AMF community in Ningxia is promising for screening AMF isolates for utilization in crop production.  相似文献   

15.
Crocus sativus L. cultivation is expanding to areas with low soil fertility, where mycorrhizal fungi are supposed to be essential for plants growth and ecosystems functioning. Agricultural practices applied under these conditions should lead to good saffron productivity and quality. Our objective was to study the density and diversity of mycorrhizal fungi populations associated with saffron grown in Taliouine (Morocco) under different agricultural management practices (fertilization type, age and plantation method). Morpho-anatomical studies identified rhizospheric mycorrhizal spores and assessed root colonization by arbuscular mycorrhizal fungi (AMF). Molecular identification of AMF was realized by sequencing the Large Subunit (LSU) rDNA gene region. Among the eleven species of AMF spores identified, Funneliformis and Rhizoglomus species were the most abundant (> 35%). Modern saffron plantation showed higher roots colonization rates (mycorrhization intensity (100%) and frequency (51.6%)), while in traditional plantations lower mycorrhization frequency values were found (17.4%). LSU sequencing identified five AMF genera and three unknown genomic groups, whereas Shannon diversity index indicated that AMF community composition changed significantly according to plantation age and fertilization type. Our results contribute to a better knowledge of saffron AMF communities and open new perspectives for a rational utilization of the agricultural practices for organic saffron production.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) are of great importance for the successful regeneration of degraded natural areas. The objective of this study was to examine how the time of environmental recuperation is affecting the occurrence and diversity of AMF species in riparian areas belonging to the Atlantic Forest biome in the State of São Paulo, Brazil. The study involved a native forest area (NT) and a gradient of environmental restoration: five (R05), ten (R10), and twenty (R20) years after reforestation. Soil samples were collected in the rainy (January) and dry season (June). Chemical, physical and microbiological analyses were performed including the amount of glomalin and quantification of AMF spores. The frequency of occurrence of genera and ecological indices, as richness (R), Shannon's diversity (H) and Simpson's dominance index (Is) were calculated. The largest spore number was found in R05 and the highest richness and diversity indices of AMF species in NT. Considering the two sampling periods and the four areas studied, we found 22 AMF species, and the genera Glomus and Acaulospora were the most frequent. A Canonical Discriminant Analysis showed that Glomus viscosum, Acaulospora scrobiculata, Acaulospora mellea and Scutellospora heterogama were the species that contributed the most to distinguishing the areas. Moisture, density and glomalin were positively correlated with the number of spores, however, soil nitrate showed a negative correlation. This work gives a better understanding of the interactions between AMF and forest soils and allows to know the distribution of AMF species according to environmental recovery time.  相似文献   

17.
不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响   总被引:18,自引:1,他引:18  
苏友波  林春  张福锁  李晓林 《土壤》2003,35(4):334-338,343
以三叶草为材料,利用3室隔网培养方法,研究了4种AM菌根菌侵染三叶草后对根际土壤酸性和碱性磷酸酶活性以及菌丝酶活性对土壤有机P的影响。结果表明,接种AM菌根菌 (9周) 对根际土壤酸性和碱性磷酸酶活性均有增强作用,但作用强度主要取决于菌丝在土壤中的生长状况,Glomus属菌根菌在整个菌丝室 (0~6cm) 都影响土壤磷酸酶的活性,其活性在整个菌丝室中都比Gigaspora的高。同一属不同种的根际土壤磷酸酶活性差异不大。AM菌根根际土壤磷酸酶对土壤有机P的降解有很强的促进作用。  相似文献   

18.
为了研究紫茎泽兰(Ageratina adenophora)入侵对土壤菌根真菌(mycorrhizal fungi, MF)群落的影响,采用嵌套PCR 技术分析了外来植物紫茎泽兰入侵生境内土著植物群落、土著植物与紫茎泽兰混生群落、紫茎泽兰单优群落中, 侵染紫茎泽兰及土著植物的MF 群落结构, 及紫茎泽兰与土著植物根围土壤中MF 群落结构。结果表明, 紫茎泽兰不同入侵进程MF 群落结构存在差异, 其中, 从土著植物群落的植物根内检测到内养球囊霉(Glomus intraradices)型克隆; 从土著植物与紫茎泽兰混生群落的紫茎泽兰根内也检测到内养球囊霉型克隆, 而在土著植物根内检测到1 个球囊霉属(Glomus sp 2)型克隆; 从紫茎泽兰单优群落的紫茎泽兰根内未检测到MF, 但从其根围土壤中检测到2 个球囊霉属(Glomus sp 1 和Glomus sp 2)型克隆。在土著植物与紫茎泽兰混生群落中, 从紫茎泽兰根围土壤中检测到4 个克隆型, 分别为毛舌菌阔孢(Trichoglossum hirsutum)、皂味口磨(Tricholoma saponaceum)、亚盖趋本菌(Xylobolus subpileatus)和翘鳞肉齿菌(Sarcodon imbricatus), 从土著植物根围土壤中也检测到4 个克隆型, 分别为小皮伞(Camarophyllopsis hymenocephala)、肉色香蘑(Lepista irina)、皂味口磨及亚侧耳(Panellus serotinus)型克隆; 在土著植物群落中, 从根围土壤只检测到皂味口磨型克隆。紫茎泽兰入侵改变了土著MF 群落结构, 其中在土著植物占据的土壤中以外生菌根真菌为主, 而外来植物紫茎泽兰则更多地积累了丛枝菌根真菌。文中讨论了紫茎泽兰改变入侵地土壤菌根菌群落及其可能对紫茎泽兰入侵的反馈。  相似文献   

19.
We investigated the Collembola community at an arable field where mineral and organic fertilizers have been applied at low and high rates for 27 years. As food resources for Collembola, the soil microbial community was analyzed using phospholipid fatty acids (PLFAs). A special focus was put on AM fungi, which were estimated by the marker 16:1ω5 in PLFA (viable hyphae) and neutral lipid fatty acid (NLFA – storage fat in spores) fractions. Additionally, whole cellular lipids in crop plant tissues and manure were assessed. Greater Collembola species richness occurred in plots where mineral fertilizer was added. In contrast, soil microbial biomass including AM fungal hyphae increased with addition of organic fertilizer, while the amount of AM fungal spores and biomass of saprotrophic fungi were not affected by fertilizer type. The lipid pattern in wheat roots was altered by fertilizer type, application rate and their interaction, indicating different rhizosphere communities. In sum, the availability and composition of food resources for Collembola changed considerably due to farm management practice. The major diet of three dominant Collembola species, Isotoma viridis, Willemia anophthalma and Polyacanthella schäffer was determined by lipid profiling. Multivariate analysis demonstrated species specific lipid patterns, suggesting greater importance of species than management practice on the diet choice. Nevertheless, feeding strategy was affected by fertilizer type and availability of resources, as trophic biomarker fatty acids indicated feeding on wheat roots (and to some extent saprotrophic fungi) with mineral and a shift to soil organic matter (litter, detritus) with organic fertilization. Although AM fungi dominated the soil fungal community, the AMF marker 16:1ω5 was not detected in Collembola lipids, indicating that these were not consumed. The very low amount of saprotrophic fungi in the soil and the fact that Collembola as major fungal grazers did not feed on AM fungi indicates that the fungal energy channel in the investigated arable field is of little importance to the faunal food web.  相似文献   

20.
Crop rotation adoption in no‐tillage systems (NTS) has been recommended to increase the biological activity and soil aggregation, suppress soil and plant pathogens, and increase the productivity aiming at the sustainability of agricultural areas. In this context, this study aimed to assess the effect of crop rotation on the arbuscular mycorrhizal fungi (AMF) community and soil aggregation in a soil cultivated for nine years under NTS. Treatments consisted of combinations of three summer crop sequences and seven winter crops. Summer crop sequences consisted of corn (Zea mays L.) monoculture, soybean (Glycine max L. Merrill) monoculture, and soybean–corn rotation. Winter crops consisted of corn, sorghum (Sorghum bicolor (L.) Moench), sunflower (Helianthus annuus L.), sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp.), oilseed radish (Raphanus sativus L.), and millet (Pennisetum americanum (L.) Leeke). Soil samples were collected at a depth of 0–0.10 m for analyses of soil chemical, physical, and biological attributes. Spore abundance, total glomalin, and soil aggregate stability index were higher in the soil under corn monoculture. The highest values of aggregate mean weight diameter were observed in the soybean–corn rotation (3.78 mm) and corn monoculture (3.70 mm), both differing from soybean monoculture (3.15 mm), while winter crops showed significant differences only between sorghum (3.96 mm) and pigeon pea (3.25 mm). Two processes were identified in the soil under summer crop sequences. The first process was observed in PC1 (spore abundance, total glomalin, easily extractable glomalin, pH, P, and Mg2+) and was related to AMF; the second process occurred in PC2 (aggregate mean weight diameter, soil aggregate stability index, K+, and organic matter) and was related to soil aggregation. The nine‐year no‐tillage system under the same crop rotation adoption influenced AMF abundance in the soil, especially with corn cultivation in the summer crop sequence, which promoted an increased total external mycelium length and number of spores of AMF. In addition, it favored an increased soil organic matter content, which is directly related to the formation and stability of soil aggregates in these managements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号