首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 147 毫秒
1.
紫色土坡耕地耕层质量影响因素及其敏感性分析   总被引:2,自引:2,他引:0  
坡耕地耕层质量变化特征由降雨侵蚀、耕作活动交互作用影响。该文以紫色土坡耕地为研究对象,结合主成分分析与评价模型对耕层质量特征进行分析,并解析了海拔、坡度、有效土层厚度和坡位4个地形因子对坡耕地耕层质量的影响及敏感性。结果表明:1)小流域坡耕地耕层厚度、土壤有机质、土壤容重均处于适宜性区间内,各土壤养分指标总体处于中低水平;土壤容重(变异系数CV为7.97%)和总孔隙度(CV为8.36%)变异系数相对较低,处于弱分异(CV<10%)水平,其余土壤指标均属中等分异水平。2)紫色土坡耕地耕层质量评价最小数据集由容重、贯入阻力、有机质、土壤黏粒含量、耕层厚度、抗剪强度、饱和导水率和有效磷8个指标组成。基于MDS评价表明,紫色土坡耕地不同坡位耕层质量指数为下坡(0.458)>中坡(0.443)>上坡(0.417),下坡较中坡和上坡分别提升3.39%和9.83%。3)紫色土坡耕地耕层质量影响因素可分为4类,Ⅰ类坡度限制型、Ⅱ类坡位限制型、Ⅲ类有效土层厚度限制型、Ⅳ类海拔限制型,4种耕层类型的样本数分占坡耕地耕层样本总数的38.89%、22.22%、14.81%和24.08%,主要影响因素是坡度。4)坡耕地耕层质量与有效土层厚度、坡位为正相关,与海拔、坡度表现为负相关,地形因子对耕层质量敏感程度为海拔(-0.399)>坡位(0.192)>坡度(-0.112)>有效土层厚度(0.110),海拔敏感程度为有效土层厚度的3.56倍。研究结果可为紫色土坡耕地耕层质量评价及有效调控提供理论依据,有利于紫色土坡耕地资源可持续利用。  相似文献   

2.
紫色土坡耕地是我国西南地区重要的耕地类型,为了探讨土壤管理措施对紫色土坡耕地侵蚀耕层质量的影响,以紫色土坡耕地耕层土壤为研究对象,采用铲土侵蚀模拟试验小区,建立不同侵蚀程度(侵蚀年限)的坡耕地定位试验,以不施肥为对照(CK),设置了化肥管理措施(F)、生物炭+化肥管理措施(B+F),对比分析土壤管理措施对土壤理化性质及力学性能影响,采用土壤质量指数法分析紫色土坡耕地侵蚀耕层质量变化特征。对3种土壤管理条件下坡耕地耕层质量及恢复作用进行评价。结果表明:(1)土壤管理措施对紫色土坡耕地侵蚀耕层土壤理化性质影响差异显著。F管理措施不能改善土壤结构,但能提高土壤养分,B+F管理措施耕层土壤容重最小,土壤总孔隙、毛管孔隙及饱和含水量增加,有机质含量最高,为12.45 g/kg,土壤养分状况最好。(2)F和B+F 2种管理措施均能提高0—10 cm土层抗剪强度,使得表层土壤抵抗剪切破坏能力增强,有利于水土流失调控,2种管理措施下土壤贯入阻力下降,能有效促进作物根系生长发育。(3)2种管理措施对紫色土坡耕地耕层土壤质量均有恢复作用,土壤质量指数依次为B+F(0.686)、F(0.625)、CK(0.595),B+F管理措施土壤质量较对照CK(0.595)提升15.3%,较F(0.625)提升9.8%,B+F管理措施对坡耕地侵蚀耕层土壤质量恢复效果最好,能有效提高紫色土坡耕地侵蚀耕层作物产量。B+F管理措施能有效改善土壤结构,增加土壤养分含量,更适合紫色坡耕地侵蚀耕层质量恢复及土壤侵蚀防治,研究结果可为紫色土坡耕地侵蚀性耕层质量恢复提供适宜管理措施,对紫色土坡耕地持续利用具有重要意义。  相似文献   

3.
[目的]揭示三峡库区紫色土坡耕地表土可蚀性特征,为水土保持措施空间配置优化设计提供依据。[方法]以无措施坡耕地为对照,选取紫色土区埂坎、水平沟坡耕地为研究对象,采集表土测试机械组成和有机质含量,利用EPIC(environmental policy-integrated climate)模型计算可蚀性指标,比较3种坡耕地表土的颗粒组成、有机质含量和可蚀性指标。[结果]①紫色土坡耕地表土粉粒含量较高,黏粒含量较低,分别为45.78%~76.29%和6.05%~10.58%。坡面尺度内,埂坎坡耕地上地块下坡位表土粉粒含量明显高于紧邻的下地块上坡位,砂粒含量则相反。地块尺度内,上坡位砂粒含量较高,中下坡位粉粒含量和黏粒含量较高。②紫色土坡耕地表土有机质含量为0.61%~1.48%。坡面尺度内,埂坎坡耕地上地块下坡位表土有机质含量明显高于紧邻的下地块上坡位。地块尺度内,有机质主要在中下坡位富集。③紫色土坡耕地表土可蚀性K值介于0.043 8~0.059 2之间。坡面尺度内,埂坎和水平沟坡耕地下地块上坡位表土可蚀性K值分别比紧邻的上地块下坡位低16.55%和6.30%。地块尺度内,中下坡位的表土可蚀性K值较大,且最高值出现在坡面的3/4处。表土可蚀性K值与粉粒含量呈极显著正相关(p0.01),与砂粒含量呈极显著负相关(p0.01)。[结论]三峡库区紫色土坡耕地表土抗蚀能力较弱,埂坎和水平沟均具有较好的水土保持效果,对提高坡耕地抗蚀性具有一定作用。  相似文献   

4.
紫色土坡耕地耕层蓄水保土及耕性特征研究   总被引:2,自引:1,他引:1  
通过对重庆合川和云南楚雄紫色土坡耕地野外调查和土壤物理力学性质分析,对比研究了紫色土坡耕地耕层土壤的蓄水、稳定性及耕性特征。结果表明:(1)紫色土坡耕地耕层土壤入渗速率随土层深度而降低,0—20,20—40,40—60cm耕层土壤稳定入渗率分别为5.80~9.58,2.81~4.35,0.98~1.96 mm/min;而相应深度土壤最大有效库容分别介于49.93~66.26,46.04~59.05,37.42~43.55mm范围,0—20cm土壤兴利库容高产耕层大于低产耕层;(2)不同类型紫色土坡耕地耕层土壤稳定性差异明显,土壤团聚体结构均以5,5~3,3~0.5mm 3个粒级为主,且0.25 mm水稳性大团聚体含量随耕层深度显著降低;0—20cm耕层土壤稳定性指数依次为烟草高产耕层(2.96)玉米高产耕层(2.55)烟草低产耕层(2.45)玉米低产耕层(2.38);20—40,40—60cm土层的玉米和烟草稳定性指数分别较0—20cm耕层降低0.44,0.64和0.66,0.71;(3)不同坡耕地耕层土壤抗剪强度和贯入阻力差异显著(p0.05),土壤抗剪强度依次为玉米低产耕层(36kPa)玉米高产耕层(29kPa)烟草低产耕层(25kPa)烟草高产耕层(21kPa),峰值出现在20—40cm;高产耕层的土壤贯入阻力在0.3~1.9 MPa,低产耕层则在0.5~2.5MPa变化,其峰值出现在40—50cm。紫色土坡耕地高产耕层具有稳定入渗率高、有效库容大、土壤持水性能较强、土壤结构稳定性高、表层土壤抗剪强度和贯入阻力较低的特征。  相似文献   

5.
通过设置侵蚀模拟小区,研究紫色土坡耕地耕层质量退化过程中土壤养分的变化特征。以三峡库区紫色土坡耕地侵蚀耕层土壤为研究对象,基于铲土侵蚀模拟法建立5种侵蚀程度(0,5,10,15,20 cm)和2种管理措施[不施肥(CK)、常规耕作(F)]的原位试验,采用田间原位检测、土壤化学性质分析等手段,对常规耕作侵蚀耕层土壤养分的恢复效应和土壤养分的年际变化趋势进行研究。结果表明:(1)耕层土壤养分各项指标均表现为F>CK,表明F较CK改善土壤养分效果较好,且对有机质、全氮和有效磷改善效果明显。(2)紫色土坡耕地耕层土壤养分主要富集在0—20 cm表土层,整体随侵蚀程度加剧,随剖面呈下降的趋势,F下0—30 cm土层土壤养分含量增加明显,对10—20 cm土层有机质含量增幅效果最优。(3)经过连续4年的定位试验,CK下有机质、全钾、碱解氮、有效磷、速效钾含量较背景值增长4.33%~15.89%,全氮含量较背景值无明显变化,全磷含量较背景值降低11.78%;F土壤养分含量较背景值增长4.51%~49.46%。研究成果可为坡耕地合理耕层调控途径、提高土地生产力提供基础参数。  相似文献   

6.
土壤侵蚀是导致坡耕地耕层质量退化和土壤生产力不稳定的关键驱动因素。该文从水蚀区坡耕地侵蚀控制和生产功能角度,在解析地块尺度土壤侵蚀、水土保持、农业活动对坡耕地耕层生态过程作用特征的基础上,系统分析了土壤侵蚀对坡耕地耕层质量退化作用、影响效应及作用途径。认为:1)坡耕地耕层质量变化由降雨侵蚀、耕作活动交互作用的生态过程决定,2种作用的时间、空间尺度不同;耕层土壤参数在坡耕地农业生产中作用分为保水、保土、保肥和增产潜力,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。2)土壤侵蚀对坡耕地耕层质量退化作用表现为土壤性质恶化、土壤质量劣化、土地生产力衰退3个方面,耕层土壤物理性质变异程度大于化学性质变异,径流作用导致的土地生产力衰退大于土壤流失作用。3)坡耕地耕层质量评价指标体系应兼顾侵蚀下降、产量提升2个目标,地块尺度诊断指标有效土层厚度、耕层厚度、土壤容重、土壤抗剪强度、土壤有机质、土壤渗透性可作为合理耕层评价最小数据集;坡耕地合理耕层适宜性分为5级,其诊断指标分级标准宜与土壤侵蚀分级和耕地地力分级衔接。4)坡耕地合理耕层评价未来应密切关注耕层质量诊断指标最小数据集、坡耕地合理耕层阈值/适宜值分级标准、坡耕地水土流失阻控标准拟定3个主要方向。研究可为深入认识坡耕地侵蚀性退化机制,辨识坡耕地合理耕层调控途径以及坡耕地合理耕层构建技术参数提供依据。  相似文献   

7.
红壤坡耕地耕层土壤质量特征及障碍因素研究   总被引:3,自引:2,他引:1  
为探究红壤坡耕地耕层质量特征及其障碍因素,通过野外调查、资料查阅及室内土壤理化性质分析等综合性研究手段,对江西红壤坡耕地耕层土壤质量统计特征、演变特征及主要障碍因素进行分析。结果表明:(1)红壤坡耕地田面坡度主要分布在2~16°之间,耕层平均厚度13.40 cm,有效土层厚度平均88.30 cm,土壤容重平均为1.17 g/cm~3;耕层土壤有机质平均含量19.37 g/kg,土壤pH值平均5.36。(2)红壤坡耕地耕层质量近20年有明显提高,田面坡度从6°降至4°,耕层厚度从13.68 cm增至16.42 cm;耕层土壤有机质含量24.63 g/kg,提高33.93%,全氮、有效磷和速效钾含量分别增加10.53%、230.98%、44.18%。(3)红壤坡耕地低产耕层土壤质量的主要障碍因素是土壤养分贫瘠化、粘重化和酸化;花生和木薯低产耕层的土壤容重和粘粒含量均大于高产耕层,而土壤孔隙度、田间持水量、有机质含量及pH值均小于高产耕层,表明高产坡耕地耕层土壤质量优于低产坡耕地。研究结果可为江西红壤坡耕地耕层质量改善和合理耕层构建提供科学参考。  相似文献   

8.
土壤容重和含水率对紫色土坡耕地耕层抗剪强度的影响   总被引:5,自引:1,他引:4  
土壤抗剪强度既可评价土壤侵蚀敏感性,也是反映耕层土壤耕作性能的重要参数。不同剪切方式下土壤抗剪强度指标存在一定差异,以紫色土坡耕地耕层土壤为研究对象,采用室内重塑土三轴及直剪试验方法,研究容重和含水率对紫色土坡耕地耕层土壤抗剪强度的影响,并分析了2种试验方法的差异性。结果表明:(1)紫色土坡耕地耕层土壤黏聚力(c)总体随容重(ρd)增大而增加,随含水率(w)增加而减小,三轴及直剪试验条件下黏聚力最大值均出现在容重1.4 g/cm^3、含水率10%水平下,分别为32.33,21.78 kPa。耕层土壤内摩擦角(φ)随容重增加而增大,随含水率增大而减小,三轴及直剪试验条件下内摩擦角最大值均出现在容重1.4 g/cm^3、含水率10%水平下,分别为22.67°,29.11°。(2)在同一围压下,耕层土壤最大主应力差随容重增加而增大,随含水率增加而减小;在同一容重和含水率水平下,耕层土壤的最大主应力差随着围压升高而增大。(3)耕层土壤容重、含水率的交互作用对黏聚力和内摩擦角影响显著(P<0.05),对坡耕地耕层土壤抗剪强度抵抗侵蚀作用的最优土壤容重-含水率条件为1.4 g/cm^3—10%。(4)不同剪切方式影响了土体抗剪强度指标,耕层土壤黏聚力在三轴试验条件下大于或接近直剪试验结果,而土壤内摩擦角则明显小于直剪试验结果,这主要与两种剪切试验原理差异有关。  相似文献   

9.
为探明坡耕地土壤有机碳空间分布特征,对紫色土丘陵区坡耕地不同部位土壤有机碳及活性有机碳顺坡和深度分布进行分析。结果表明:坡耕地上坡土层深度仅为22.3cm,中坡和下坡土层深度约为上坡的2.09倍和3.30倍;与上坡比较,中坡和下坡土壤容重下降了0.2和0.04,土壤孔隙度增加了19.82%与3.83%。沿坡从上向下土壤有机碳及活性有机碳储量显著增加,下坡土壤有机碳及活性有机碳储量比上坡和中坡分别增加了674.74%,104.09%和958.51%,267.75%;不同部位土壤有机碳及活性有机碳含量随土层深度增加呈降低趋势,中坡和下坡土壤有机碳及活性有机碳含量的深度分布满足Y=alnX+b对数方程,上坡不符合该方程。坡耕地土壤有机碳与其活性有机碳含量呈极显著正相关。土壤沿坡耕地重新分配影响有机碳空间分布格局。  相似文献   

10.
土壤侵蚀对紫色土坡耕地耕层障碍因素的影响   总被引:2,自引:0,他引:2  
紫色土坡耕地是长江上游重要的耕地资源,明确不同侵蚀程度下紫色土坡耕地耕层土壤的主要障碍因素及障碍因素变化特征,对紫色土坡耕地耕层土壤质量调控和持续利用具有重要价值。以紫色土坡耕地耕层土壤为研究对象,设置5个侵蚀程度(0、5、10、15、20 cm)的原位控制试验。从土壤属性角度出发,选取容重、总孔隙度、饱和导水率、土壤紧实度、土壤抗剪强度、有机质、全氮、全磷、pH、阳离子交换量等10个耕层质量指标,计算耕层质量指数(Cultivated-layer quality index,CLQI)及障碍度(Obstacle degree,Mij),定量评价不同侵蚀程度下耕层质量和障碍度变化特征。结果表明:(1)土壤侵蚀导致紫色土坡耕地耕层土壤质量指标恶化。总孔隙度、饱和导水率、抗剪强度、阳离子交换量、全氮、全磷随着侵蚀程度增加而减小,容重、土壤紧实度则随着侵蚀程度增加而增大。(2)紫色土坡耕地耕层质量指标障碍度排序依次为土壤紧实度(17.04%)>饱和导水率(15.83%)>全氮(11.49%)>有机质(11.47%)>全磷(10.73%),耕层质量主要障碍因素为土壤紧实...  相似文献   

11.
长江上游紫色土坡耕地水土流失特征及其防治对策   总被引:4,自引:0,他引:4  
 紫色土是长江上游最重要的土地资源之一,严重的水土流失引发了一系列问题。在对紫色土坡面产流特征进行分析的基础上,研究紫色土坡面产流特征对水土流失的作用机制以及紫色土坡耕地水土流失防治对策。结果表明:紫色土坡耕地产流模式以蓄满产流为主,壤中流在坡面径流总量中所占比例较大;紫色土坡耕地土壤侵蚀导致土壤粗骨沙化,土壤养分流失途径与营养元素的溶解性有关,易溶的N、K主要以溶解态流失,易被土壤固定的P主要随土壤颗粒流失;壤中流是紫色土坡耕地水土流失的重要外营力之一,进行水土流失治理必须对其加以干预。提出长江上游紫色土坡耕地水土流失治理策略与"增渗防冲、排水保土,先排后蓄、蓄以为用"的治理措施。  相似文献   

12.
定量评估区域坡耕地土壤侵蚀分布规律,是科学制定坡耕地水土流失综合治理规划、开展坡耕地质量建设的基础,然而目前针对省域尺度坡耕地土壤侵蚀和养分流失规律的研究较少。该研究基于GIS空间分析技术和通用土壤流失方程(Universal Soil Loss Equation,USLE),在模型参数率定与计算精度验证基础上,定量评价云南省坡耕地土壤侵蚀和养分流失特征。结果表明:1)云南省坡耕地土壤侵蚀面积为421.38万hm2,侵蚀总量为376.58×106 t/a,占全省侵蚀总量的63.02%,坡耕地是区域侵蚀产沙的主要策源地;坡耕地平均侵蚀模数为7 986.31 t/(km2.a),总体处于强烈侵蚀等级,剧烈侵蚀、极强烈侵蚀和强烈侵蚀是坡耕地侵蚀产沙的主要来源;不同分区坡耕地侵蚀模数和侵蚀量差异显著,滇西南区侵蚀强度最大,滇东南区侵蚀强度最小。2)随着坡度增加,坡耕地侵蚀面积比例、侵蚀强度、侵蚀量均呈较快增加趋势,土壤侵蚀主要来源于15~25°、>25°、>8~15°3个坡度级坡耕地。3)坡耕地流失土层厚度集中分布在0~12 mm/a之间,平均流失土层厚度为7.31 mm/a;耕层更新周期集中分布在20~200 a之间,均值为175.6 a,耕层更新周期-面积分布曲线呈先快速递增,并在某一峰值之后出现快速递减趋势。4)坡耕地养分流失空间分布存在差异性,土壤有机碳、全氮、速效钾、有效磷流失模数分别为223.60、23.94、1.59、0.15 t/(km2·a),坡耕地养分流失是区域养分流失量的主要来源。研究可为区域坡耕地水土流失治理和坡耕地质量建设提供科学依据。  相似文献   

13.
Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. 137Cs and 210Pbex (excess 210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The 137Cs and 210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both 137Cs and 210Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3100 t km-2 year-1, which was significantly less than 6930 t km-2 year-1 reported for runoff plots on a 10°cultivated slope at the Suining Station of soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.  相似文献   

14.
紫色土坡耕地生物埂土壤抗剪强度对干湿作用的响应   总被引:3,自引:2,他引:1  
生物埂土壤水分在次降雨中存在"干-湿-干"变化过程,这对生物埂土壤抗剪强度具有削弱作用。该文以紫色丘陵区花椒埂(HJ)和桑树埂(SS)为研究对象,通过根系现场挖掘法和土壤物理、力学性质测定等综合方法,研究生物埂土壤水分及抗剪强度在天然降雨干湿作用下的衰减-恢复效应。结果表明:1)生物埂土壤含水率随干湿作用表现出"急剧增加-急剧降低-稳定波动"趋势,小雨条件下生物埂0~20 cm土壤含水率变化明显;而在大雨和暴雨条件下,生物埂0~30 cm土壤含水率均变化明显,且分别在3种降雨发生后第5、7、9天土壤含水率趋于稳定;2)生物埂土壤黏聚力和内摩擦角均呈现"急剧衰减—相对稳定—逐渐恢复"趋势,小雨条件下生物埂对土壤黏聚力和内摩擦角具有增强效应且随垂直深度呈降低趋势;3)花椒埂、桑树埂在暴雨条件下能显著削弱干湿作用对土壤抗剪强度的劣化效应,2种生物埂的土壤黏聚力劣化率较对照埂分别降低44.03%、65.05%,而内摩擦角劣化率分别降低42.47%、45.70%。研究结果可为紫色丘陵区坡耕地生物埂措施设计和坡耕地耕层水土资源保护利用提供技术支持。  相似文献   

15.
不同耕作措施对红壤坡耕地耕层质量的影响   总被引:2,自引:0,他引:2  
为探明不同耕作措施对云南红壤坡耕地耕层土壤抗侵蚀性能和生产性能的影响,以常规耕作为对照,设置免耕、翻耕20 cm、翻耕20 cm+压实、翻耕20 cm+深松30 cm四种耕作措施,采用土壤质量指数法对不同耕作措施下耕层质量变化特征进行分析评价。结果表明:(1)不同耕作措施对红壤坡耕地耕层土壤抗侵蚀性能影响显著。翻耕20 cm+深松30 cm处理下土壤饱和导水率最大(1.19mm·min^-1);与常规耕作相比,翻耕20 cm+深松30 cm处理下水稳性团聚体平均质量直径增加28.13%;免耕处理下土壤抗剪强度最高(12.12kg·cm^-2),耕层土壤饱和导水率最大(1.27mm·min^-1);翻耕20 cm处理下大于0.25 mm水稳性团聚体含量、水稳性团聚体平均质量直径、几何平均直径均显著高于其他措施,分别为69.64 g·kg^-1、1.74 mm、0.77 mm。(2)不同耕作措施对红壤坡耕地耕层生产性能影响具有差异性表现,免耕处理下土壤容重显著增大,土壤有机质、有效磷在表层富集;翻耕20 cm、翻耕20 cm+深松30 cm处理下,耕层增厚效果显著,土壤有机质、有效磷含量显著增加。(3)红壤坡耕地耕层土壤质量及诊断指标的适宜性对耕作措施响应有差异,翻耕20 cm+深松30 cm处理耕层土壤质量指数最大(0.58);翻耕20 cm、翻耕20 cm+深松30 cm处理的耕层厚度、容重及有效磷指标均在适宜性阈值范围。上述研究结论可为红壤坡耕地适宜耕作措施选择以及坡耕地合理耕层的构建与评价提供参考。  相似文献   

16.
湖北省坡耕地现状分析及宜耕性评价   总被引:1,自引:0,他引:1  
陈芳  高宝林  李杰  刘琨  徐昕 《水土保持研究》2023,30(1):418-422,429
坡耕地是耕地资源的重要组成部分,也是土壤侵蚀的策源地和水土保持的重点区域。为探究湖北省坡耕地资源现状及其宜耕性,利用GIS技术,构建了湖北省坡耕地的坡度、土壤侵蚀、土壤剖面构型和理化特性等数据库,筛选耕地坡度、土层厚度、土壤质地、土壤pH值和土壤侵蚀程度5个代表性指标,采用“限制因子法”对湖北省全域坡耕地进行了宜耕性评价。结果表明:湖北省坡耕地总面积为9 438.64 km2,占总耕地面积的18.87%,不宜耕坡耕地总面积为2 178.36 km2,占现有坡耕地面积的23.08%;砾石含量和坡度过高是造成坡耕地不宜耕的主要因素,其中砾石含量>15%的坡耕地总面积为1 205.72 km2,坡度≥25°的坡耕地总面积为1 097.32 km2;其次不宜耕主导因素是土壤过酸,pH值≤4.5造成坡耕地不宜耕的面积为669.60 km2,土壤侵蚀严重(极强烈以上侵蚀强度)和土层浅薄(土层厚度<30 cm)造成的不宜耕坡耕地面积分别为336.48 km2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号