首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study was conducted on the toxicity of Cd to alkaline phosphatase activity (ALP) and dehydrogenase activity (DHA) in 18 top soils with contrasting soil properties representative of 14 major soil types in China. Soil pH and carbonate content, soil organic matter, and cation exchange capacity (CEC) largely affected the Cd toxicity on two enzyme activities; with the soil pH having only minor effect on the median ecological dose values based on total Cd concentrations (ED50 T). The values of ED50 T/ED50 W (based on water-soluble Cd content) of alkaline phosphatase and dehydrogenase were strongly influenced by pH and CEC contents, which explained up to 71% of the variation for alkaline phosphatase, 82% of the variation for dehydrogenase, and also were significantly correlated with the parameter KF derived from Freundlich adsorption isotherms. This study suggests that the values of ED50 T/ED50 W could be useful to evaluate the buffer capacity of soils which protects soil enzymes from harmful effects of heavy metal.  相似文献   

2.
Summary The aim of this study was to provide manageable data to help establish permissible limits for the pollution of soil by heavy metals. Therefore the short-and long-term effects of heavy metal pollution on phosphatase activity was studied in five different soil types. The results are presented graphically as logistic dose-response curves. It was possible to construct a curve for sand and silty loam soil but it was more difficult to establish a curve for sandy loam and clay soil and nearly impossible (except for Cu) for peat. The toxicity of the various metals can be compared on the basis of mmol values. In clay soils, for Cd, Cr, Cu, and Zn, the 50% effective ecological dose (ED50) values were comparable (approximately 45 mmol kg–1), but the ED10 values were very different, at 7.4, 41.4, 15.1, and 0.55, respectively. At the ED50 value, toxicity did not decrease with time and, in sandy soils, was approximately 2.6 mmol kg –1 dry soil for Cd, Cu, and Zn. In four out of five soils, the Cd toxicity was higher 1.5 years after the addition of heavy metal salts than after 6 weeks. Toxicity was least in the sandy loam, silty loam, and clay soil, and varied in general between 12 and 88 mmol kg–1. In setting limits, the criteria selected (no-effect level, ED10 or ED50) determine the concentration and also the toxicity of the sequence. It is suggested that the data presented here could be very useful in helping to set permissible limits for heavy metal soil pollution.  相似文献   

3.
《Soil biology & biochemistry》2001,33(4-5):483-489
Two soils of contrasting texture, organic matter content and pH were treated with CdSO4 solutions to give a Cd concentration range of 0–4000 mg kg−1 soil. The content of ATP and dehydrogenase and urease activities of soils were assayed after 3 h, and 7 and 28 days of Cd contamination. The relative ED50 values were calculated by two kinetic models (model 1 and model 2) used by Speir et al. (1995) and by the sigmoidal dose–response model (model 3) employed by Haanstra et al. (1985). Model 1 was the most successful in calculating the ED50 values for the ATP content, urease and dehydrogenase activities when both soils were contaminated by Cd. Similar ED50 values were predicted by model 1 (describing the full inhibition) and model 3 only when the correlation coefficients r2 were higher than 0.9. The ED50 values of ATP calculated by model 1 were markedly higher than those calculated by model 2 (describing partial inhibition) when both models gave correlation coefficients higher than 0.9. This behavior was due to the high asymptote values obtained using model 2. According to model 2, some of the enzyme activities responsible for the ATP synthesis were probably not inhibited at the highest Cd concentrations. The inhibitory effect of Cd on the ATP content and both enzymatic activities was lower in the Castelporziano soil, which had the highest total organic carbon content.  相似文献   

4.
The aim of this study was to provide data to assess the additive effects of soil salinity on the toxicity of Cd to soil alkaline phosphatase (EC 3.1.3.1). Two soils (Langroud acid soil and Shervedan calcareous soil) were artificially salinized with NaCl. The natural and salinized soils were treated with CdSO4 solutions to give a Cd concentration in the range 3–5000 mg kg?1. Soil alkaline phosphatase activity was measured after 3 days of incubation. Salinity enhanced the extractable Cd concentration in both Langroud and Shervedan soils. The percentage of soil alkaline phosphatase activity inhibited by Cd was significantly increased from 27.8 to 45 in the Langroud acid soil as salinity increased from natural levels to 28 dS m?1. An increase in the inhibition percentage was not observed in the Shervedan soil. Lower values for the ecological dose causing 50% inhibition (ED50) under saline conditions in the Shervedan soil supported the hypothesis that Cd may be more toxic to soil alkaline phosphatase when the soil is more saline. We conclude that Cd toxicity to soil alkaline phosphatase is salinity dependent and that higher Cd concentrations under saline conditions are probably responsible for the enhanced Cd toxicity to soil alkaline phosphatase.  相似文献   

5.
Phytoextraction of soil Cd and Zn may require reduction in soil pH in order to achieve high metal uptake. Reducing the pH of high metal soil, however, could negatively affect soil ecosystem function and health. The objectives of this study were to characterize the quantitative causal relationship between pH and soil biological activities in two Zn and Cd contaminated soils and to investigate the relationship between metals and soil biological activities under low pH. Soils were adjusted to five or six different pH levels by sulfur addition, followed by salt leaching. Thlaspi caerulescens was grown for 6 months, and both the rhizosphere and non-rhizosphere soil biological activities were tested after harvest. Reducing pH significantly lowered soil alkaline phosphatase activity, arylsulphatase activity, nitrification potential, and respiration. However, acid phosphatase activity was increased with decreasing pH. The relationship between soil biological activities and pH was well characterized by linear or quadratic regression models with R2 values ranging from 0.57 to 0.99. In general, the three enzyme activities, nitrification potential, and the ratio of alkaline phosphatase to acid phosphatase activity were very sensitive indicators of soil pH status while soil respiration was not sensitive to pH change. The rhizosphere soil had higher biological activities than non-rhizosphere soil. The negative effects observed in the non-rhizosphere soil were alleviated by the rhizosphere influence. However, rhizosphere soil after 6 months phytoextraction showed lower nitrification potential than non-rhizosphere soil, probably due to substrate limitation in our study.  相似文献   

6.
Traditionally, three threshold levels have been accepted for heavy metal concentrations in agricultural soils, depending on soil pH. The aim of this work was to ascertain how the three threshold values proposed for Cd (3, 6.5, and 12.5 mg kg?1) and Zn (300, 650, and 1300 mg kg?1) really affect soil microbial activity. Two soils, a scrubland soil and a forest soil, differing widely in their organic C content, were used in this study. Despite the different soil characteristics, the fractions of Cd and Zn extracted with a solution of diethylenetriaminepentaacetic acid (DTPA) showed little difference between soils. Parameters, such as microbial biomass C (Cmic), soil basal respiration (BR), adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), urease activity (UA), alkaline phosphatase activity (APA), and β-glucosidase (β-GA), were less affected by heavy metals in the forest soil than in the scrubland soil. In general, the simultaneous addition of both metals had a synergistic effect on microbial activity, and this treatment produced a significant decrease of microbial activity of both soils with respect to control. The highest level (L3) of Cd, Zn and Cd + Zn treatments produced significant decrease of microbial and biochemical parameters in both soils.  相似文献   

7.
This study evaluated cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) sorption characteristics of three tropical soils. Data obtained conformed to Freundlich sorption model and the S-shaped isotherm curve. Sorption efficiency of Zn and Pb were highest in alkaline soil while slightly acid soil had the highest Cd and Cu sorption efficiency for monometal sorption. In competitive sorption, metals were more sorbed in slightly acid soil while the least efficiency was recorded in acid soil. Distribution coefficient; Kd (average across soil types) in monometal sorption followed the order: Pb > Zn > Cd > Cu. For competitive sorption, the order was Zn > Pb > Cu > Cd. When in competition, Cd was preferentially sorbed in slightly acid and alkaline soils and Zn for acid soil. Conclusively, lead is more in equilibrium solution when in competition with Cd, Zn and Cu making it potential agent of soil and groundwater pollution.  相似文献   

8.
The influence of a humic deposit (Gyttja, G) alone (applied at 25 kg ha−1) and in combination with mineral fertilizer (G + NP) on soil organic matter content, pH, electrical conductivity, total N content, calcium carbonate content, enzyme activities (urease, β-glucosidase, arylsulphatase, and alkaline phosphatase), microbial biomass C, soil respiration, and availability of Cd, Pb, Ni, and Zn was examined through a 180-day incubation period and compared with the behavior of no treatment (control) and NP treatment. A significant increase in organic matter content was observed in soils treated with G + NP. Compared with G and NP alone, the G + NP-amended soils showed higher values of the selected microbiological properties.Diethylenetriaminepentaacetic-acid-extractable Cd, Pb, Ni, Cu, and Zn increased significantly with increasing rates of NP, but the addition of G + NP resulted in a considerable decrease in the amount of extractable metals during the incubation period (P<0.05). Based on these results, it can be concluded that the organic matter applied in the gyttja led to an increase in the metal adsorption capacity of the amended soils. This material can be used to reduce the availability and mobility of heavy metals in the soils intensively amended with mineral fertilizers. A combination of G with NP can, therefore, be considered as an alternative approach in the applications of organomineral fertilization.  相似文献   

9.
Ethylendiamintetraacetic acid (EDTA) is persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd and Ni were added to Vertisol and Alluvial soil at rates of 50, 2 and 5 mg kg-1, respectively. Both natural and metal amended soils were treated with Na2EDTA at rates of 0; 0.2 and 0.5 mg kg-1. After five months of incubation soil samples were extracted with 0.1 N HCl, 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA (0.005 M Diethylenetriaminepentaacetic acid + 0.01 M Calcium cloride + 0.1 M Triethanolamine) and 1 M Mg(NO3)2, the latter of which extracts the exchangeable from of metald (Zn, Cd and Ni).

According to experiment results, Zn, Cd and Ni in all extraction increased with increasing rates of EDTA in the natural and metal amended soils.  相似文献   

10.
The success of risk assessment of metal contaminated soils depends on how precisely one can predict the bio-availability of metals in soil and transfer to the human food chain. In the present investigation, we tested several formulations of the ‘free-ion activity model (FIAM)’ to predict uptake of Cd, Zn and Cu by perpetual spinach (Beta vulgaris, Cicla) grown on a range of soils amended with sewage sludge. The model was parameterised using data measured on samples of pore water extracted by centrifugation and with porous Rhizon samplers installed within the rhizosphere of the growing plants. Free ion activities (M2+) were estimated following speciation of solution data using version 6 of the ‘Windermere Humic Aqueous Model (WHAM-VI). For all three metals, the best formulation of the FIAM appeared to require only one hypothetical root sorption site without competition from protons. Values of (M2+) could also be predicted satisfactorily from a pH-dependent Freundlich relation. Thus, from a combined FIAM–Freundlich relation and population dietary information, it was possible to estimate risk (hazard quotients) to consumers from very simple soil measurements: extractable metal content (0.05 M EDTA (Zn and Cu) or 1 M CaCl2 (Cd)), soil humus content and pH. The role of increased soil organic matter content and soil pH, in reducing risk to consumers, is illustrated for Cd in a hypothetical soil at the current UK statutory Cd limit for sludge application to agricultural land.  相似文献   

11.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

12.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

13.
Summary The aim of this study was to provide data to evaluate the short- and long-term effects of heavy metals on arylsulphatase activity in five soils. The effects are fitted on a logistic dose-response model and are presented graphically as the ecological dose (heavy metal concentration corresponding to 50% inhibition; ED50) and ecological dose range (heavy metal concentration range corresponding to 10–90% inhibition; EDR). In 7 out of 22 comparable soil-metal combinations the ED50 decreased significantly over 6 weeks to 18 months of incubation and in two cases the ED50 increased. Toxicity (defined as ED50) was highest in sand and sandy loam and lowest in sandy peat. Cd toxicity in sand, silty loam, and clay varied from 1.08 to 9.04 mmol kg-1. Both Cr and Ni toxicity varied strongly and decreased with time in some soils while increasing in others. The Cu toxicity ranged from 4.51 to 2 mmol kg-1 in sand and silty loam, respectively, but remained fairly constant over time. Pb was the least toxic element (14.5 to 59.9 mmol kg-1). The toxicity of Zn ranged from 5.73 to 148 mmol kg-1 in sand and sandy peat, respectively. At critical concentrations set by the Dutch Soil Protection Act, Cr, Cu, Ni, and Zn inhibited arylsulphatase by 53, 35, 48 and 97%, respectively.  相似文献   

14.
The threat of heavy metal contamination to food and human health in south and east China has become a public concern as industrial development continues. The aims of this study were to investigate the influence of repeated phytoextraction over a two-year period by successive crops of the Zn and Cd hyperaccumulator Sedum plumbizincicola on multiple metal contaminated soils and to assess recovery of soil quality. Total and NH4OAc-extractable Zn and Cd concentrations were significantly reduced in planted soils compared to unplanted soils. Microbial biomass C (Cmic), basal respiration and microbial quotient (qM) were significantly and positively correlated and soil metabolic quotient (qCO2) was negatively correlated with heavy metal concentrations in unplanted soils (P < 0.05). However, Cmic, basal respiration and qM values increased significantly after phytoremediation by five crops over two years compared to unplanted soil. Urease, β-glucosidase, neutral phosphatase and arylsulfatase activities also increased significantly with decreasing heavy metal contents and hydrolase activity was enhanced in planted soil (P < 0.05) compared to the unplanted control. The data indicate the capacity of S. plumbizincicola to extract Zn and Cd from contaminated soil and also that phytoremediation had beneficial effects on soil microbial and hydrolase activities, with the metal phytoextraction procedure restoring soil quality.  相似文献   

15.
Abstract

The simultaneous incorporation of heavy metals into the soil is still a matter of great concern. Interaction (competitive sorption) between these metals and the soil solid phase may result in a deterioration of soil quality which relies basically on amounts of alkaline cations saturating soils sorptive complex. Results of this study indicate that Pb, Cu, C d, and Zn have induced solution pH decreases which were more intensive at highest metal loading rates. Partition parameters (Kd)-based sequences showed that Pb and Cu were more competitive than Cd and Zn and the overall selectivity sequence followed: Pb > Cu > Cd > Zn. Metal loadings and their competitive sorption have led to a strengthened displacement of alkaline cations (i.e. Ca2+, Mg2+, K+, Na+), especially of Ca2+ as a factor “stabilizing” soil sorptive complex. Such metals impact jointly with soils acidification are of great environmental concern since tremendous amounts of alkaline cations (especially Ca2+) may be potentially leached out, irrespective of the degree of soil contamination, as evidenced in the current study. High and positive ΔG values implied that the studied soils were characterized by generally low concentrations of exchangeable potassium which required high energy to get displaced (desorbed). Further studies on heavy metal uncontaminated or contaminated areas should be undertaken to provide with data which should be used for predictions on changes related to soil buffering capacity as impacted by heavy metal inputs.  相似文献   

16.
Influence of carbonate on the reaction of heavy metals in soils   总被引:3,自引:0,他引:3  
The reaction of Cu, Zn and Cd with soils with carbonate contents ranging from 0 to 75 mg g−1 was studied before and after removal of soil carbonates with acetate buffer at pH 5. Treatment with acetate buffer caused a strong decrease in metal retention by those soils containing carbonates, although if no carbonate was originally present, the treatment caused little effect or even an increase in the amounts sorbed. Before the treatment, adsorption of increasing amounts of Cu and Zn was accompanied by a continuous increase in Ca + Mg released, and those soils containing carbonate released Ca + Mg in excess of their exchangeable amounts, due to dissolution of carbonates and/or penetration of the heavy metal into the carbonate structure. It is suggested that Cu was preferentially retained by the treated soils through precipitation of Cu oxide, and by adsorption on the soil carbonates in the case of the original samples. Zn was removed from the solution by the original carbonate soils through formation of ZnCO3. Treated soils were likely to retain Zn by cation exchange and/or adsorption. Adsorption was probably the main process involved in retention of Cd. In all cases pH was the master variable in controlling the extent and probably the nature of the reaction.  相似文献   

17.
Alkaline and acid phosphomonoesterase, β-glucosidase, arylsulfatase, protease and urease activities, CO2-C evolution and ATP content were monitored in long-term Cd-contaminated (0-40 mg Cd kg−1 dry weight soil) sandy soils, kept under maize or ‘set aside’ regimes, amended with plant residues. The organic matter input increased soil respiration, ATP contents and hydrolase activities in all soils. However, the Cd-contaminated soils had significantly higher metabolic quotients (qCO2), as calculated by the CO2-to-ATP ratio, and significantly lower hydrolase activities and hydrolase activity-to-ATP ratios for alkaline phosphomonoesterase, arylsulfatase and protease activities, compared with the respective uncontaminated soils. The ratios between acid phosphomonoesterase, β-glucosidase and urease activities and ATP were unaffected. A significantly higher qCO2/μ ratio, an expression of maintenance energy, was observed in most of the contaminated soils, indicating that more energy was required for microbial synthesis in the presence of high Cd concentrations. It was concluded that exposure to high Cd concentrations led to a less efficient metabolism, which was responsible for lower enzyme activity and synthesis and lower hydrolase activity-to-ATP ratios observed in these Cd-contaminated soils.  相似文献   

18.
This study focused on the potential of using soil enzyme activities and general microbiological rates (respiration, N-mineralisation, nitrification) to evaluate the quality of soils affected by a pyrite mud spill which contained high concentrations of heavy metals. The quality of soils after restoration was estimated by comparing enzyme activities and general microbiological rates in three different types of experimental field plots: (i) non-polluted, (ii) polluted but restored, and (iii) polluted but un-restored soils. Non-polluted soils showed the highest levels of enzyme activity. Significant differences were detected for acid phosphatase, β-glucosidase and urease activities between all types of plots. However, arylsulfatase and alkaline phosphatase activities showed no significant differences between the restored plots and polluted but un-restored plots. Geometric mean statistics were used as an index of soil quality in terms of overall: (i) bioavailable heavy metal concentrations, (ii) assayed enzyme activities, and (iii) general microbiological rates, in order to compare plots differing in the degree of pyritic mud pollution. The results indicate that it is important to consider these three criteria in to estimate the soil quality of heavy-metal contaminated soils. Typically, enzyme activities were negatively correlated with bioavailable Cd, Cu and Zn concentrations, but positively with soil pH values. In contrast, pH values were negatively correlated with bioavailable concentrations of Cd, Cu and Zn. It is unclear if the generalised lower enzyme activities found in restored soils, compared to non-polluted soils, is promoted by pH or bioavailable heavy metals concentrations, or a combination of both.  相似文献   

19.
Assessing the accumulation and transport of trace metals in soils and the associated toxicological risks on a national scale requires generally applicable sorption equations. Therefore Freundlich equations were derived for Cd, Zn and Cu using multiple linear regression on batch sorption data from the literature with a wide variety of soil and experimental characteristics, and metal concentrations ranging over five orders of magnitude. Equations were derived based on both total dissolved metal concentrations and free metal activities in solution. Free metal activities were calculated from total metal concentrations taking into account ionic activity, and inorganic (all metals) and organic complexation (Cu only). Cadmium and Zn were present in solution predominantly as free ions, while Cu was present as organic complexes. Since actual dissolved organic carbon (DOC) concentrations were not available they were estimated using an empirical field relation between DOC and organic matter content. The logarithmic transformation of the Freundlich constant for Cd was regressed on the logarithmic transformations of cation exchange capacity (CEC) (H+) and dissolved Ca, and for Zn with CEC and (H+). For Cu the log–log regression model of the Freundlich constant included the solid:solution ratio of the batch to account for dilution of DOC in the batch as compared with the field. The explained variance for the fitted Freundlich equations was 79% for Cd, 65% for Cu and 83% for Zn, using log-transformed adsorbed concentrations and soil solution activities. The Freundlich adsorption models underestimated metal contents determined from 1 m HNO3 digestion on field samples, up to a factor of 6 (Cd and Cu) or 10 (Zn).  相似文献   

20.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号