首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

2.
The natural 15N abundance (δ15N) of different ecosystem compartments is considered to be an integrator of nitrogen (N) cycle processes. Here we investigate the extent to which patterns of δ15N in grassland plants and soils reflect the effect of different management practices on N cycling processes and N balance. Investigations were conducted in long-term experimental plots of permanent montane meadows with treatments differing in the amount and type of applied fertilizer (0-200 kg N ha−1 yr−1; mineral fertilizer, cattle slurry, stable manure) and/or the cutting frequency (1-6 cuts per season). The higher δ15N values of organic fertilizers compared to mineral fertilizer were reflected by higher δ15N values in soils and harvested plant material. Furthermore, δ15N of top soils and plant material increased with the amount of applied fertilizer N. N balances were calculated from N input (fertilization, atmospheric N deposition and symbiotic N2 fixation) and N output in harvest. ‘Excess N’—the fraction of N input not harvested—was assumed to be lost to the environment or accumulated in soil. Taking fertilizer type into account, strong positive correlations between δ15N of top soils and the N input-output balance were found. In plots receiving mineral N fertilizer this indicates that soil processes which discriminate against 15N (e.g. nitrification, denitrification, ammonia volatilization) were stimulated by the increased supply of readily available N, leading to loss of the 15N depleted compounds and subsequent 15N enrichment of the soils. By contrast, in plots with organic fertilization this correlation was partly due to accumulation of 15N-enriched fertilizer N in top soils and partly due to the occurrence of significant N losses. Cutting frequency appeared to have no direct effect on δ15N patterns. This study for the first time shows that the natural abundance of 15N of agricultural systems does not only reflect the type (organic or mineral fertilizer) or amount of annual fertilizer amendment (0-200 kg ha−1 yr−1) but that plant and soil δ15N is better described by N input-output balances.  相似文献   

3.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

4.
Fixation of N by biological soil crusts and free-living heterotrophic soil microbes provides a significant proportion of ecosystem N in arid lands. To gain a better understanding of how elevated CO2 may affect N2-fixation in aridland ecosystems, we measured C2H2 reduction as a proxy for nitrogenase activity in biological soil crusts for 2 yr, and in soils either with or without dextrose-C additions for 1 yr, in an intact Mojave Desert ecosystem exposed to elevated CO2. We also measured crust and soil δ15N and total N to assess changes in N sources, and δ13C of crusts to determine a functional shift in crust species, with elevated CO2. The mean rate of C2H2 reduction by biological soil crusts was 76.9±5.6 μmol C2H4 m−2 h−1. There was no significant CO2 effect, but crusts from plant interspaces showed high variability in nitrogenase activity with elevated CO2. Additions of dextrose-C had a positive effect on rates of C2H2 reduction in soil. There was no elevated CO2 effect on soil nitrogenase activity. Plant cover affected soil response to C addition, with the largest response in plant interspaces. The mean rate of C2H2 reduction in soils either with or without C additions were 8.5±3.6 μmol C2H4 m−2 h−1 and 4.8±2.1 μmol m−2 h−1, respectively. Crust and soil δ15N and δ13C values were not affected by CO2 treatment, but did show an effect of cover type. Crust and soil samples in plant interspaces had the lowest values for both measurements. Analysis of soil and crust [N] and δ15N data with the Rayleigh distillation model suggests that any plant community changes with elevated CO2 and concomitant changes in litter composition likely will overwhelm any physiological changes in N2-fixation.  相似文献   

5.
Soils and vegetation were analyzed in 20 lodgepole pine (Pinus contorta) forest stands, varying in age from 50 to 350 years, that had initiated following stand-replacing fire. Our goal was to determine how nitrogen availability (NH4+-N) and microbial community composition varied with stand age-class and to determine whether differences could be explained by canopy, soil, or understory characteristics. Gross NH4+ mineralization was measured using laboratory isotopic pool dilution, and microbial community composition was evaluated using microbial membrane lipids. The microbial community composition of stands in the 300-350 age class was distinct from stands in younger age classes. Microbial community composition among sites varied with pH, % organic matter, and phosphorus. Gross NH4+ mineralization rates averaged 1.45±0.07 mg NH4+ kg soil−1 d−1 while consumption averaged 1.37±0.20 mg NH4+ kg soil−1 d−1, resulting in low net NH4+ mineralization rates (0.08±0.18 mg NH4+ kg soil−1 d−1), but rates were not significantly different with stand age-class at p<0.05. At p<0.10, net NH4+ mineralization was significantly higher in the 300-350 age class compared to the 125-175 age class. None of the measured variables significantly explained NH4+ consumption and net mineralization patterns. However, gross NH4+ mineralization rates were best explained by information on microbial community structure (i.e. lipids). Variation among stands within a given age-classes was high, indicating that patterns of N cycling across landscapes reflect substantial heterogeneity among mature stands.  相似文献   

6.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

7.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

8.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

9.
Sustainable agriculture requires the formation of new humus from the crops. We utilized 13C and 15N signatures of soil organic matter to assess how rapidly wheat/maize cropping contributed to the humus formation in coarse-textured savanna soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) cropped for lengths of time varying from 0 to 98 years, after conversion from native grassland savanna (C4). We performed natural 13C and 15N abundance measurements on bulk and particle-size fractions. The bulk soil δ13C values steadily decreased from −14.6 in (C4 dominated) grassland to −16.5‰ after 90 years of arable cropping. This δ13C shift was attributable to increasing replacement of savanna-derived C by wheat crop (C3) C which dominated over maize (C4) inputs. After calculating the annual C input from the crop yields and the output from literature data, by using a stepwise C replacement model, we were able to correct the soil δ13C data for the irregular maize inputs for a period of about one century. Within 90 years of cropping 41-89% of the remaining soil organic matter was crop-derived in the three studied agroecosystems. The surface soil C stocks after 90 years of the wheat/maize crop rotation could accurately be described with the Rothamsted Carbon Model, but modelled C inputs to the soil were very low. The coarse sand fraction reflected temporal fluctuations in 13C of the last C3 or C4 cropping and the silt fraction evidenced selective erosion loss of old savanna-derived C. Bulk soil 15N did not change with increasing cropping length. Decreasing δ15N values caused by fertilizer N inputs with prolonged arable cropping were only detected for the coarse sand fraction. This indicated that the present N fertilization was not retained in stable soil C pool. Clearly, conventional cropping practices on the South African highlands neither contribute to the preservation of old savanna C and N, nor the effective humus reformation by the crops.  相似文献   

10.
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3-N was similar when initial NO3 in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application.  相似文献   

11.
Forest ecosystems on the Loess Plateau are receiving increasing attention for their special importance in carbon fixation and conservation of soil and water in the region. Soil respiration was investigated in two typical forest stands of the forest-grassland transition zone in the region, an exotic black locust (Robinia pseudoacacia) plantation and an indigenous oak (Quercus liaotungensis) forest, in response to rain events (27.7 mm in May 2009 and 19 mm in May 2010) during the early summer dry season. In both ecosystems, precipitation significantly increased soil moisture, decreased soil temperature, and accelerated soil respiration. The peak values of soil respiration were 4.8 and 4.4 μmol CO2 m−2 s−1 in the oak plot and the black locust plot, respectively. In the dry period after rainfall, the soil moisture and respiration rate gradually decreased and the soil temperature increased. Soil respiration rate in black locust stand was consistently less than that in oak stand, being consistent with the differences in C, N contents and fine root mass on the forest floor and in soil between the two stands. However, root respiration (Rr) per unit fine root mass and microbial respiration (Rm) per unit the amount of soil organic matter were higher in black locust stand than in oak stand. Respiration by root rhizosphere in black locust stand was the dominant component resulting in total respiration changes, whereas respiration by roots and soil microbes contributed equally in oak stand. Soil respiration in the black locust plantation showed higher sensitivity to precipitation than that in the oak forest.  相似文献   

12.
We report the first simultaneous measurements of δ15N and δ13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The δ13C and δ15N of DNA was correlated with δ13C and δ15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between δ15N of DNA and δ15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between δ15N of DNA and δ15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4‰. Our results show that accurate and precise isotopic measurements of C and N in DNA extracted from the soil are feasible, and that these analyses may provide powerful tools for elucidating C and N cycling processes through soil microorganisms.  相似文献   

13.
Patchy distribution of vegetation within semi-arid shrublands is normally mirrored in the soil beneath perennial shrubs (macrophytic patches), compared to inter-shrub areas (microphytic patches). To determine impacts of (1) litterfall inputs within vegetation patches and (2) rainfall distribution on soil C and N, we investigated soil C and N pools and associated soil properties in two semi-arid shrublands, in the Negev Desert of Israel (Lehavim), which receives >90% of annual rainfall during winter and in the Chihuahuan Desert, USA (FHMR) that experiences a bimodal (Summer-Winter) annual rainfall pattern. We also evaluated grazing effects on soil C and N pools at Lehavim. More distinct differences in soil properties existed between patch types at the Negev site, where the soils contained higher soil organic C and N, amino acids and sugars, asparaginase activity and plant-available N than those at FHMR. Soil organic C (0-5 cm) in macrophytic patches was 39 g/kg at Lehavim and 13 g/kg at FHMR, and asparaginase activity was as high as 70 μg N/g 2 h in macrophytic patches at Lehavim, two times higher than at FHMR. The soil (0-5 cm) δ13C was −15 to −18‰ at Lehavim and −18 to −19‰ at FHMR, with significantly lower δ13C in macrophytic patches at both sites. The δ13C suggested that considerable macrophytic patch soil C was derived from cyanobacteria at Lehavim and C4 grasses at FHMR. Plant litter δ15N was 0.9‰ at Lehavim and 0.6‰ at FHMR, suggesting that much plant N was derived from N fixation. Concentrations of inorganic soil N (NH4++NO3) were up to 37 mg N/kg at Lehavim and <9 mg N/kg at FHMR. Grazing at Lehavim resulted in lower soil CH, AA, and AS. We conclude that differences between the sites are due largely to (i) higher amounts of litterfall C and N inputs within macrophytic patches at Lehavim and (ii) the different precipitation patterns, with summer precipitation at FHMR promoting increased organic matter mineralization compared to Lehavim, which experiences Winter precipitation only. Furthermore, greater differences in soil properties between patch types at Lehavim compared to FHMR can likely be attributed to the increasing importance of physical processes of resource dispersion at the more humid site in Arizona.  相似文献   

14.
This study focuses on spatial heterogeneity in the soil microbial biomass (SMB) of typical climax beech (Fagus crenata) at the stand scale in forest ecosystems of the cold-temperate mountain zones of Japan. Three beech-dominated sites were selected along an altitudinal gradient and grid sampling was used to collect soil samples at each site. The highest average SMB density was observed at the site 1500 m a.s.l. (44.9 gC m−2), the lowest was recorded at the site 700 m a.s.l. (18.9 gC m−2); the average SMB density at the 550 m site (36.5 gC m−2) was close to the overall median of all three sites. Geostatistics, which is specifically designed to take spatial autocorrelation into account, was then used to analyze the data collected. All sites generally exhibited stand-scale spatial autocorrelation at a lag distance of 10-18 m in addition to the small-scale spatial dependence noted at <3.5 m at the 550 m site. Correlation analysis with an emphasis on spatial dependency showed SMB to be significantly correlated with bulk density at the 550 and 1500 m sites, dissolved organic carbon (DOC) at the 700 and 1500 m sites, and nitrogen (N) at the 550 and 700 m sites. However, no soil parameter showed a significant correlation with SMB at every site, and some variables were also differently correlated (negative or positive) with SMB at different sites. This suggests that the factors controlling the spatial distribution of SMB are very complex and responsive to local in situ conditions. SMB regression models were generated from both the ordinary least-squares (OLS) and generalized least-squares (GLS) models. GLS performance was only superior to OLS when cross-variograms were accurately fitted. Geostatistics is preferable, however, since these techniques take the spatial non-stationarity of samples into account. In addition, the sampling numbers for given minimum detectable differences (MDDs) are provided for each site for future SMB monitoring.  相似文献   

15.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

16.
We examined denitrifying bacteria from wet soils and creek sediment in an agroecosystem in Oregon, USA that received inputs of nitrogen (N) fertilizer. Our objective was to determine the variation in denitrifying community composition and activities across three adjacent habitats: a fertilized agricultural field planted to perennial ryegrass, a naturally vegetated riparian area, and creek sediment. Using C2H2 inhibition, denitrifying enzyme and N2O-reductase activities were determined in short-term incubations of anaerobic slurries. A key gene in the denitrification pathway, N2O reductase (nosZ), served as a marker for denitrifiers. Mean denitrifying enzyme activity (DEA) was similar among habitats, ranging from 0.5 to 1.8 μg N g−1 dry soil h−1. However, the ratio of N2O production, without C2H2, to DEA was substantially higher in riparian soil (0.64±0.02; mean±standard error, n=12) than in agricultural soil (0.19±0.02) or creek sediment (0.32±0.03). Mean N2O-reductase activity ranged from 0.5 to 3.2 μg N g−1 dry soil h−1, with greater activity in agricultural soil than in riparian soil. Denitrifying community composition differed significantly among habitats based on nosZ terminal-restriction fragment length polymorphisms. The creek sediment community was unique. Communities in the agricultural and riparian soil were more closely related but distinct. A number of unique nosZ genotypes were detected in creek sediment. Sequences of nosZ obtained from riparian soil were closely related to nosZ from Bradyrhizobium japonicum. Although nosZ distribution and N2O-reductase activity differed among habitats, relationships between activity and community composition appeared uncoupled across the agroecosystem.  相似文献   

17.
Plant-plant and plant-soil interactions play a key role in determining plant community structure and ecosystem function. However, the effects of global change on the interplay between co-occurring plants and soil microbes in successional communities are poorly understood. In this study, we investigated competition for nitrogen (N) between soil microorganisms, grass plants and establishing tree seedlings under factorial carbon dioxide (CO2) and N treatments. Fraxinus excelsior seedlings were germinated in the presence or absence of grass competition (Dactylis glomerata) at low (380 μmol mol−1) or high (645 μmol mol−1) CO2 and at two levels of N nutrition in a mesocosm experiment. Pulse 15N labelling was used to examine N partitioning among plant and soil compartments. Dactylis exerted a strong negative effect on Fraxinus biomass, N capture and 15N recovery irrespective of N and CO2 treatment. In contrast, the presence of Dactylis had a positive effect on the microbial N pool. Plant and soil responses to N treatment were of a greater magnitude compared with responses to elevated CO2, but the pattern of Fraxinus- and microbial-N pool response to N and CO2 varied depending on grass competition treatment. Within the Dactylis competition treatment, decreases in Fraxinus biomass in response to N were not mirrored by decreases in tree seedling N content, suggesting a shift from below- to above-ground competition. In the Dactylis-sown pots, 15N recovery could be ranked Dactylis > microbial pool > Fraxinus in all N and CO2 treatment combinations. Inequalities between Fraxinus and soil microorganisms in terms of 15N recovery were exacerbated by N addition. Contrary to expectations, elevated CO2 did not increase plant-microbe competition. Nevertheless, microbial 15N recovery showed a small positive increase in the high CO2 treatment. Overall, elevated CO2 and N supply did not interact on plant/soil N partitioning. Our data suggest that the competitive balance between establishing tree seedlings and grass plants in an undisturbed sward is relatively insensitive to CO2 or N-induced modifications in N competition between plant and soil compartments.  相似文献   

18.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

19.
Nitrous oxide (N2O) is a greenhouse gas produced during microbial transformation of soil N that has been implicated in global climate warming. Nitrous oxide efflux from N fertilized soils has been modeled using NO3 content with a limited success, but predicting N2O production in non-fertilized soils has proven to be much more complex. The present study investigates the contribution of soil amino acid (AA) mineralization to N2O flux from semi-arid soils. In laboratory incubations (−34 kPa moisture potential), soil mineralization of eleven AAs (100 μg AA-N g−1 soil) promoted a wide range in the production of N2O (156.0±79.3 ng N2O-N g−1 soil) during 12 d incubations. Comparison of the δ13C content (‰) of the individual AAs and the δ13C signature of the respired AA-CO2-C determined that, with the exception of TYR, all of the AAs were completely mineralized during incubations, allowing for the calculation of a N2O-N conversion rate from each AA. Next, soils from three different semi-arid vegetation ecosystems with a wide range in total N content were incubated and monitored for CO2 and N2O efflux. A model utilizing CO2 respired from the three soils as a measure of organic matter C mineralization, a preincubation soil AA composition of each soil, and the N2O-N conversion rate from the AA incubations effectively predicted the range of N2O production by all three soils. Nitrous oxide flux did not correspond to factors shown to influence anaerobic denitrification, including soil NO3 contents, soil moisture, oxygen consumption, and CO2 respiration, suggesting that nitrification and aerobic nitrifier denitrification could be contributing to N2O production in these soils. Results indicate that quantification of AA mineralization may be useful for predicting N2O production in soils.  相似文献   

20.
Spartina alterniflora is an invasive C4 perennial grass, native to North America, and has spread rapidly along the east coast of China since its introduction in 1979. Since its intentional introduction to the Jiuduansha Island in the Yangtze River estuary, Spartina alterniflora community has become one of the dominant vegetation types. We investigated the soil carbon in the Spartina alterniflora community and compared it with that of the native C3Scirpus mariqueter community by measuring total soil carbon (TC), soil organic carbon (SOC), total soil nitrogen (TN), and the stable carbon isotope composition (δ13C) of various fractions. TC and SOC were significantly higher in Spartina alterniflora in the top 60 cm of soil. However, there was no significant difference in soil inorganic carbon (IC) between the two communities. Stable carbon isotopic analysis suggests that the fraction of SOC pool contributed by Spartina alterniflora varied from 0.90% to 10.64% at a soil depth of 0-100 cm with a greater percentage between 20 and 40 cm deep soils. The δ13C decreased with increasing soil depth in both communities, but the difference in δ13C among layers of the top 60 cm soil was significant (p<0.05), while that for the deeper soil layers (>60 cm) was not detected statistically. The changes in δ13C with depth appeared to be associated with the small contribution of residues from Spartina alterniflora at greater soil depth that was directly related to the vertical root distribution of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号