首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

2.
There have been few long-term field studies on greenhouse gases measurement in organic crop rotations under temperate climatic conditions. Little is known about the extent to which the share of legumes in a crop rotation of organic farming affects the potentials for CO2 emission and soil organic carbon sequestration. The current study was aimed to investigate soil physicochemical state and soil net CO2 exchange rate in diverse organic crop rotations with different crop species and proportions of legumes. Four 5-year duration crop rotations were investigated. The best soil sustainability of the arable layer was found in a crop rotation enriched with red clover (Trifolium pratense L.). This rotation resulted in the highest soil mesoporosity and the lowest microporosity, ensured the best supply of plant-available water and revealed high soil resistance to dry conditions. Red clover secured the highest soil organic C sequestration, caused the increase in reserves of total N and available K, and slackened the decrease of soil-available P sources. Red clover-based cropping system exhibited the highest soil net CO2 exchange rate during five experimental years. The effect of crop rotation, consisting of phacelia (Phacelia tanacetifolia Benth.), peas (Pisum sativum L.) and yellow lupin (Lupinus luteus L.), on soil sustainability was weaker than the effect of rotation with red clover. Non-legume rotations, i.e. binary (two-crop) rotation and the crop rotation involving four spring and one winter species, can be regarded as miners of soil nutrient resources rather than contributors. These rotations did not promote soil sustainability because the soil lost large amounts of macronutrients and caused 26–33% lower soil net CO2 exchange rate, compared with leguminous rotations. For future, it could be recommended for ecological farming to rely more on crop rotations with red clover to improve ecosystems functioning.  相似文献   

3.
Information is needed on the ability of different crop management factors to maintain or increase soil C and N pools, especially in intensively tilled short crop rotations. Soil samples from field experiments in Maine were used to assess the effect of cover crop, green manure (GM) crop, and intermittent or annual amendment on soil C and N pools. These field experiments, of 6–13 years duration, were all characterized by a 2-year rotation with either sweet corn ( Zea mays L.) or potato ( Solanum tuberosum L.), and primary tillage each year. Total, particulate organic matter (POM), and soil microbial biomass (SMB)-C and -N pools were assessed for each experiment. Total C and N stocks were not affected by red clover ( Trifolium pratense L.) cover crop or legume GM, but were increased by 25–53% via a single application of papermill sludge or an annual manure and/or compost amendment. With the exception of continuous potato production which dramatically reduced the SMB-C and SMB-N concentration, SMB-C and -N were minimally affected by changes in cropping sequence, but were quite sensitive to amendments, even those that were primarily C. POM-C and -N, associated with the coarse mineral fraction (53–2,000 µm), were more responsive to management factors compared to total C and N in soil. The change in soil C fractions was a linear function of increasing C supply, across all experiments and treatments. Within these intensively tilled, 2-year crop rotations, substantial C and N inputs from amendments are needed to significantly alter soil C and N pools, although cropping sequence changes can influence more labile pools responsible for nutrient cycling.  相似文献   

4.
Soil temperature is a very easily measured parameter that influences nutrient availability in vineyards. We monitored soil temperature and plant-available nitrogen (N) in a study evaluating the potential of legumes as an interrow cover crop to supply N to Concord grape (Vitis labruscana Baily). Nitrogen sources used were hairy vetch (Vicia villosa subsp. villosa L.) and yellow sweet clover [Melilotus officinalis (L.) Lam] as green manure sources and either blood meal (in a certified organic vineyard) or urea (in a conventional vineyard) as soluble sources. Plant-available N was measured both continuously using ion exchange membranes (PRSTM) and point in time by soil sampling at regular intervals; both were analyzed for nitrate (NO3) N and ammonium (NH4) N, although negligible concentrations of NH4-N were detected. PRS NO3-N concentration varied by treatments because of differences in the chemical composition of the N source. Soil NO3-N concentration reached a peak between 520 and 550 degree-days with no significant differences by treatment or site. These findings are similar to results from incubation and field mineralization studies of organic amendments and suggest that N availability from organic sources in vineyards can be predicted using a degree-day-type model.  相似文献   

5.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

6.
Soil organic matter (SOM) is an important index of soil quality because of its relationship with crop yield. The application of organic matter to soil is a significant method for increasing SOM. Different organic materials have varying effects in increasing SOM. This study investigates the effects of combining different sources of organic matter (i.e., compost, leguminous green manure, and peat) with a chemical nitrogen (N) fertilizer on the growth and N accumulation in corn and rice plants. This study examines seven treatments, including a no-fertilization check and a conventional chemical fertilizer treatment. Shoots of corn and rice were sampled at the tasseling (panicle initiation for rice) and maturity stages. The biomass yield was measured and the total N was analyzed. At the maturity stage, the soil samples were collected to determine the chemical properties. The results showed that a small percentage of the N in the compost and peat, after their application, was available to the crop during the growth season; the production of biomass and N absorption among rice and corn plants was minimal compared to that treated with chemical N fertilizer. The application of compost and peat resulted in SOM accumulation, particularly with peat. However, the application of compost combined with chemical fertilizer not only produced sufficient nutrients for crop growth but also resulted in an accumulation of SOM, which is vital for enhancing the soil quality. Most of the N in green manure (GM) was mineralized shortly after application, causing excessive growth of rice and corn plants during the early stage, but reducing their reproductive growth and grain yield.  相似文献   

7.
The capability to determine nitrogen availability of composts is necessary to ensure that such materials will provide sufficient fertilization to the growing crop and cause minimal environmental degradation. A greenhouse study using tall fescue as a bioindicator was used to evaluate nitrogen availability of two biosolids composts, two mixed yard waste-poultry manure composts, and one commercially-processed poultry litter. Five inorganic nitrogen (as NH4NO3-N) treatments applied at 0, 22.5, 45, 67.7, and 90 mg N/kg soil were employed to establish an N calibration curve. Yield, fescue biomass total nitrogen (as total Kjeldahl N (TKN)), and soil TKN and KCl extractable NO3?-N and NH4+-N concentrations of the organically amended treatments were compared to the inorganically fertilized treatments to determine amendment N mineralization rates and N fertilizer equivalent values (NFEV). Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (5%) amended pots. The NFEV of these amendments were 49% and 10%, respectively. Wolf Creek biosolids compost and Huck's Hen Blend yard waste compost immobilized N (?5% and 0.18%, respectively), and had percent NFEV of ?0.66% and 0.19%, respectively. Rivanna biosolids compost immobilized N (?15%), but the NFEV was 30% due to the relatively high inorganic N content in the amendment. Nitrogen mineralization and NFEV were generally greater in amendments with greater total N concentrations and lower C:N values. The total N concentration and C:N values were less reliable variables in predicting N mineralization and percent NFEV when a significant portion of the total N was in the inorganic form. Nitrogen equivalency value and N mineralization for each amendment increased with time of sampling, indicating the potential for early season N insufficiency to plants fertilized with compost due to lack of synchrony between N mineralization and plant N needs.  相似文献   

8.
The mineralization and nutrient evolution of an organic fertilizer compost of flour, meat, and crop residues was evaluated in two vineyard soils. A lysimetric testing, using 2.2-L Büchner funnels, was carried out to study the evolution of pH, electrical conductivity, and nutrients during the 400-day experiment. The net mineralization for two different doses of the fertilizer mixed with the soils was compared with an unfertilized control. The pH value of the acidic soil decreased to values less than 4.5 because of the yield of hydrogen (H+) in the organic fertilizer mineralization, whereas the soluble aluminium (Al3+) increased quickly in the leachates. The mineralization process was quicker in the alkaline soil (with a maximum mineralization rate of 0.83 mg nitrogen (N) kg?1 day?1 for the 8 Mg ha?1 dose and 0.43 mg N kg?1 day?1 for the 4 Mg ha?1 dose) in comparison with the acidic soil, which reduced these rates up to 50%. The N-nitrate (NO3) amounts yielded in a year were 150 and 79 kg N ha?1 for the 8 and 4 Mg ha?1 doses respectively in the alkaline soil, enough to cover the vineyard N demand. These values were reduced to 50% and 60% of N-NO3 for the acidic soil, indicating the important effect of pH in the mineralization.  相似文献   

9.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

10.
The mineralization and availability of cover crop N to the succeeding crop are critical components in the management of soil N to reduce N leaching. The effects of several leguminous and non-leguminous cover crops on soil N availability, N mineralization potential, and corn (Zea mays L.) yield were examined. The cover crops had variable effects on soil N availability and corn yield and N uptake. Because of the rapid mineralization of the cover crops following incorporation, the inorganic N levels in the soil sampled in mid-May 1992 (4 weeks after incorporation of cover crops), rather than the potentially mineralizable N, rate constants, initial potential mineralization rate, or cumulative N mineralized over 14 weeks, correlated well with N concentrations, C:N ratios, or the N added in the cover crops. However, the inclusion of potentially mineralizable N with inorganic N in a multiple regression improved the variability in the corn yield and the N uptake accounted for. Since extensive mineralization had occurred before the 21 May sampling, the potentially mineralizable N was affected more by the soil organic N and C than by the N concentrations of the cover crops. The presidedress NO3 --N test levels were well predicted by the inorganic and potentially mineralizable N (R 2=0.89, P<0.01), although the test levels were better in predicting corn yield and N uptake. If the available soil N test needs to be made earlier than recommended by the presidedress NO3 --N test, both inorganic and potentially mineralizable N are needed to better predict the corn yield and N uptake in the soils.  相似文献   

11.
Abstract

Wheel‐traffic induced soil compaction has been shown to limit crop productivity, and its interaction with tillage method could affect soil nutrient transformations. A study was conducted during 1993–1994 to determine interactive effects of tillage method (conventional tillage and no‐tillage) and wheel‐traffic (traffic and no traffic) on soil carbon (C) and nitrogen (N) at a long‐term (initiated 1987) research site at Shorter, Alabama. The cropping system at this study site is a corn (Zea mays L.) ‐ soybean [Glycine max (L.) Merr] rotation with crimson clover (Trifolium incarnatum L.) as a winter cover crop. Soil organic C, total N, and microbial biomass carbon (MBC) were not significantly affected by six years of traffic and tillage treatments. However, conventional tillage compared to no‐tillage almost doubled the amount of CO2‐C respired over the entire observation period and during April 1994 field operations. Soil respiration was stimulated immediately after application of wheel‐ traffic, but nontrafficked soils produced greater amounts of CO2‐C compared to trafficked soils during other periods of observation. Nitrogen mineralization was significantly lower from no‐tillage‐trafficked soils compared to conventional tillage‐trafficked and no‐tillage‐nontrafficked soils for the 1993 growing season. A laboratory incubation indicated the presence of relatively easily mineralizable N substrates from conventional tillage‐trafficked soil compared to conventional tillage‐nontrafficked and no‐till‐trafficked soils. For the coarse textured soil used in this study it appears that conventional tillage in combination with wheel‐traffic may promote the highest levels of soil microbial activity.  相似文献   

12.
Abstract. In organic farming systems, fertilizing materials can be used when potassium (K) deficiency is shown, but such systems are dominantly nitrogen (N) limited and this is likely to affect crop utilization of K. The supply of K to grass/clover from a range of mineral and organically based K fertilizers and its interaction with N supply were studied in a greenhouse experiment. Sequential plant cuts were taken for yield and nutrient content determinations in crop and soil. Crop yields were limited by N: where N supply was increased either through the mineralization of N from organic materials (rapemeal, farmyard manure) or inorganic fertilizer, plant yields increased significantly. Grass/clover responded better to additional K where sufficient N was available. However, yield responses to K were generally small, even in the presence of adequate N. Of the different fertilizers, kali and MSL-K increased yields above those of the control by less than 5%, sylvinite, DKSI and farmyard manure by 10–20%, and rapemeal and potassium sulphate by more than 25%. In all treatments, K offtakes in the grass/clover were considerably greater than fertilizer K inputs. The grass/clover showed an increased uptake of Na where insufficient K was available. However, the Mg content of the grass/clover was not adversely affected by K fertilizer application. Organic farmers need to consider the soil K status, the rotational nutrient budget, the supply of all nutrients in fertilizing materials and nutrient interactions to achieve effective K management in organic farming systems.  相似文献   

13.
To calculate the correct nitrogen fertilizer rate for crops and the possibility of using municipal solid waste (MSW) compost as an organic amendment, nitrogen mineralization rates were studied by laboratory incubation and field measurements in a soil in central Spain. Nitrogen mineralization rates were studied in a 250-day laboratory soil incubation with two treatments: with and without compost, incubated at 28°C and a moisture content of 70% of field capacity. Three phases are described: (1) no increase in the mineral nitrogen content, (2) a linear increase in the mineral N fraction and, finally, (3) a linear, parallel increase in both mineral N and easily mineralizable organic N fractions. Incubation data were fitted to three different equations. The exponential model proposed by Stanford and Smith (1972) was selected to predict field N mineralization rates. The field experiment was performed using a crop of maize with three treatments: compost applied in February (before sowing), compost applied during sowing and a control (without compost application): sampling was carried out over 14 months. Soil water content was measured periodically. Soil with compost applied in February showed 1.9 and 1.4 times more available nitrogen than soil without compost and compost at sowing, respectively, for the month of maximum accumulation. These results suggest that compost amendments must be applied before sowing. Compost applications were shown to supply the available nitrogen for spring crops. A simulation model showed satisfactory agreement with field data, after correction for soil temperature and water content. Received: 22 July 1996  相似文献   

14.
Abstract

Changing conventional tillage to conservation tillage systems affects nitrogen (N) cycling in agroecosystems. Our objective was to evaluate the role of soil organic pools, specially plant residues, as sources‐sinks of nitrogen in an humid and warm temperate environment cropped to wheat, under plow‐ and no‐tillage. The experimental site was in the Argentine Pampa on a Typic Hapludoll. A balance‐sheet method was used: Nupt+Nres=Nsow+Nmin, where Nupt=N uptake by the crop at harvest; Nsow=soil mineral N as NH4 and NO3 at 0–90 cm depth, one month before sowing, plus N added as fertilizer; Nres=residual soil mineral N as NH4 and NO3 at 0–90 cm depth, at harvest; Nmin=N mineralized from humus and plant residues during wheat growing period. Nupt did not differ between tillage systems. Nitrogen supply by the mineral N pool, estimated by the difference Nsow‐Nres, was ca. 150 kg N ha‐1 in both tillage systems. Plant residues decomposed and released N under both treatments. This organic N pool decreased 77% along the crop cycle. Nmin, calculated using the balance equation was 83 kg N ha‐1, and did not differ between tillage managements, representing 35% of Nupt. This results highlight the importance of the organic pools as sources of N for wheat in the Humid Pampa. They also brink our attention on the importance for evaluate residue decomposition and humus mineralization in warm‐temperate regions when fertilizer requirements are determined, in order to minimize environmental hazard and economic losses by overfertilization.  相似文献   

15.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

16.
While many ecosystem processes depend on biodiversity, the relationships between agricultural plant diversity and soil carbon (C) and nitrogen (N) dynamics remains controversial. Our objective was to examine how temporal plant diversity (i.e. crop rotation) influences residue decomposition, a key ecosystem function that regulates nutrient cycling, greenhouse gas emissions, and soil organic matter formation. We incubated soils from five long-term crop rotations, located at W.K. Kellogg Biological Station LTER in southwestern Michigan, USA, with and without four chemically diverse crop residues. Increasing crop biodiversity increased soil potentially mineralizable C by 125%, increased hydrolytic enzyme activity by 46%, but decreased oxidative enzyme activity by 20% in soils before residue was added. After residue additions, soils from more diverse cropping systems decomposed all residues more rapidly (0.2–8.3% greater mass loss) compared to monoculture corn. The fast-cycling, ‘Active C’ pool and microbial biomass N increased with higher cropping diversity, but the differences among rotations in Active C pools was higher for the most recalcitrant residues. Further, the ratio of the cellulose degrading enzyme (β-glucosidase) to the lignin degrading enzyme (phenol oxidase) was highest in the two most diverse crop rotations regardless of residue additions, providing additional evidence of enhanced microbial activity and substrate acquisition in more diverse rotations. Our study shows that crop diversity over time influences the processing of newly-added residues, microbial dynamics, and nutrient cycling. Diversifying crop rotations has the potential to enhance soil ecosystem functions and is critical to maintaining soil services in agricultural systems.  相似文献   

17.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

18.
The capability of organic wastes to release available N in soil varies largely, depending on their source and form of production, or rather on their composition and biodegradability. Our purpose was to predict mineralization rates of different materials using their analyses joined with a simulation model, and to evaluate the influence of soil type and application rate of the organic materials on N and C transformations in soil. Four organic materials, sewage sludge (SS), sewage sludge compost (SSC), cattle manure compost (CMC), hen and cattle manure compost (HCMC), were applied to two soils at rates of 2 and/or 4%. The soils were incubated aerobically for 168 days at 30°C, during which CO2 evolution rates and mineral-N concentrations were measured periodically. Hot water extractable C and N of all organic amendments correlated well with short term C and N mineralization, except HCMC that immobilized N although its soluble N content was large. NCSOIL, a computer model that simulates C and N cycling in soil with organic amendments, predicted well C and N mineralization of SS, SSC and CMC when considered as three-pool materials that decomposed at specific rates of 0.4, 0.024 and 10?4 d?1, using hot water soluble C and N as the labile pool. N immobilization by HCMC could be simulated only if the distribution of N between the labile and resistant pools was derived by optimization of NCSOIL, while hot water soluble C was labile. Laboratory methods to determine an intermediate pool or components that contribute to immobilization are required for improving the predictions of C and N mineralization from organic amendments.  相似文献   

19.
The combination of inorganic fertilizers and compost is a technique aimed at improving crop growth and maintaining soil health. Understanding the rate of nutrient release from enriched compost is important for effective nutrient management. A laboratory incubation study was conducted for 112 days to study the nutrient mineralization pattern of poultry manure compost enriched with inorganic nitrogen (N) and phosphorus (P) fertilizer nutrients in an Ultisol. Compost applied at the rate of either 5 or 10 g kg?1 was blended with N (50 kg N ha?1) and P (30 kg P ha?1). Carbon dioxide evolution and N and P mineralization were measured fortnightly. The bacterial and fungal populations were determined at the mid and end of the experiment. The combination of compost and inorganic N and P increased carbon (C) and P mineralization by 4?8% and 56?289%, respectively, over the application of either compost or inorganic N and P. However, P addition influenced the amount of C mineralized. Inorganic N and P, on the other hand, were better at increasing N mineralization than compost blended with inorganic N and P over a short time. The addition of compost stimulated bacterial and actinomycete populations, while fungal populations were unaffected. Actinomycetes and bacteria had similar and higher relationship trend with C (R2 = 0.24) and P (R2 = 0.47) mineralization and were key determinants in nutrient mineralization from compost in this Ultisol. Integrating compost with inorganic fertilizers improves nutrient availability through the growth and activities of beneficial microorganisms.  相似文献   

20.
Understanding of dynamics of N derived from organic N sources in soil is required for the development of sustainable agricultural systems. The aim of this paper is to compare, using pot experiments, the fate of N from urea (UF) and organic N sources such as rice straw compost (RC) and cattle compost (CC) using 15N labeled materials in paddy soil planted with rice. Two soils with a history of long-term applications of chemical fertilizers (LTCN) and organic N sources, i.e. straw compost +soybean cake, (LTON), were also compared. Nitrous oxide emissions were monitored during the growing period. Yield and N uptake of rice were higher in LTON soil than LTCN soil with no significant interaction with N applications. Chemical fertilizer increased yield and N uptake with a recovery rate by rice of 36 to 45%. Nitrogen recovery from RC and CC by rice was less than 10%. When recovery of N in soil was included with that recovered in the plant, 70% and 61% of applied N in the UF treatment was recovered from the LTCN and LTON soils, respectively. In comparison, more than 95% of applied N was recovered in the plant and soil for the RC and CC treatments. There was a sharp increase in N2O emission during the aerated period in nonplanted pots regardless of whether supplemental N was added, and this was associated with the increase in NO3- in soil solution at 0.5 cm depth. There was a much lower N2O emission in planted pots than nonplanted pots with no significant difference among the LTCN and LTON soils or the N treatments. The results indicated that the application of organic N source provided lower N supply to the plant than urea, but also could reduce N loss because of higher retention in the soil. Long-term continuous application of organic N sources enlarged the labile N pool without increasing N2O emission. Nitrous oxide emission was important during the mid-season aerated period from pot experiments and was partly related to the concentration of NO3- and the rate of nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号