首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bio-based additives are desirable commodities due to their eco-friendly nature. These additives can demonstrate physical and chemical properties comparable to those of conventional mineral oil-based products. Sulfur incorporated triacylglycerol can function as an antiwear/antifriction additive for lubricants. The synthesis of four useful hydroxy thio-ether derivatives of vegetable oils, from commercially available epoxidized soybean oil and common organic thiols, is reported in this paper. The common thiols used herein were 1-butanethiol, 1-decanethiol, 1-octadecanethiol, and cyclohexyl mercaptan. Currently, there is no reported literature describing the synthesis of hydroxy thio-ether derivatives of vegetable oil. The reaction was monitored, and products were confirmed by NMR and FTIR spectroscopies. Experimental conditions involving various thiols, solvent, catalyst amount, time, and temperature were optimized for research quantity and laboratory scale-up. The synthetic process retains the vegetable oil structure, eliminates polyunsaturation in the molecule, and adds polar functional groups on triacylglycerol. These products can be used as agriculturally-based antiwear additives for lubricant applications.  相似文献   

2.
A method for the quantitative determination of epoxidized soybean oil (ESBO) in foods is described. The procedure involves addition of a diepoxidized fatty acid ester internal standard, followed by lipid extraction from the food and transmethylation under basic conditions. Without further cleanup, the methylated fatty acid epoxides are derivatized to form 1,3-dioxolanes, which are then determined by capillary gas chromatography-mass spectrometry with selected ion monitoring. A detection limit of 2.0 mg/kg of epoxidized soybean oil in foods and a relative standard deviation of 7% have been achieved routinely. The method has been applied successfully to the analysis of cheeses, sandwiches, cakes, and microwave-cooked meals which have been contaminated with ESBO by migration from PVC film.  相似文献   

3.
(13)C NMR spectra of oil fractions obtained chromatographically from 66 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in predicting oil stabilities and to compare those results with oil stability prediction by using chemical determinations. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; "lampante" olive, refined olive, refined olive pomace, low-erucic rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils. Oils were analyzed for fatty acid and triacylglycerol composition, as well as for phenol and tocopherol contents. By using stepwise linear regression analysis (SLRA), the chemical determinations and the (13)C NMR data that better explained the oil stability determined by the Rancimat were selected. These selected variables were related to both the susceptibility of the oil to be oxidized and the content of minor components that most contributed to oil stability. Because (13)C NMR considered many more variables than those determined by chemical analysis, the predicted stabilities calculated by using NMR data were always better than those obtained by using chemical determinations. All these results suggest that (13)C NMR may be a powerful tool to predict oil stabilities when applied to chromatographically enriched oil fractions.  相似文献   

4.
Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.  相似文献   

5.
The presence of the oxidized and reduced forms of ubiquinones Q(9) and Q(10) was determined in commercial extra virgin olive and seed oils, where the amounts of alpha- and gamma-tocopherols and beta-carotene were also quantitated. Very high concentrations of ubiquinones were found in soybean and corn oils. Furthermore, the total antioxidant capability of each oil was evaluated by measuring total radical-trapping antioxidant parameters (TRAP) in tert-butyl alcohol and using egg lecithin as the oxidizable substrate. These values decreased in the order sunflower > corn > peanut > olive; the highest TRAP, which was found in sunflower oil, was related to the very high amount of alpha-tocopherol. Olive oil, because of the low content of alpha-tocopherol, exhibited a TRAP value approximately one-third that of sunflower oil. TRAP values of corn and soybean oils, in which low amounts of alpha-tocopherol but very high contents of gamma-tocopherol and reduced ubiquinones were present, were intermediate. gamma-Tocopherol exhibited a poor ability of trapping peroxyl radicals in tert-butyl alcohol. This behavior was probably due to the effects of the solvent on the rate of hydrogen abstraction from this phenol.  相似文献   

6.
Whole berries, seeds, and pulp/peel of goldenberry (Physalis peruviana L.) were compared in terms of fatty acids, lipid classes, triacylglyerols, phytosterols, fat-soluble vitamins, and beta-carotene. The total lipid contents in the whole berries, seeds, and seedless parts were 2.0, 1.8, and 0.2% (on a fresh weight basis), respectively. Linoleic acid was the dominating fatty acid followed by oleic acid as the second major fatty acid. Palmitic and stearic acids were the major saturates. In pulp/peel oil, the fatty acid profile was characterized by higher amounts of saturates, monoenes, and trienes than in whole berry and seed oils. Neutral lipids comprised >95% of total lipids in whole berry oil and seed oil, while neutral lipids separated in lower level in pulp/peel oil. Triacylglycerols were the predominant neutral lipid subclass and constituted ca. 81.6, 86.6, and 65.1% of total neutral lipids in whole berry, seed, and pulp/peel oils, respectively. Nine triacylglycerol molecular species were detected, wherein three species, C54:3, C52:2, and C54:6, were presented to the extent of approximately 91% or above. The highest level of phytosterols was estimated in pulp/peel oil that contained the highest level of unsaponifiables. In both whole berry and seed oils, campesterol and beta-sitosterol were the sterol markers, whereas Delta5-avenasterol and campesterol were the main 4-desmethylsterols in pulp/peel oil. The tocopherols level was much higher in pulp/peel oil than in whole berry and seed oils. beta- and gamma-tocopherols were the major components in whole berry and seed oils, whereas gamma- and alpha-tocopherols were the main constituents in pulp/peel oil. beta-Carotene and vitamin K(1) were also measured in markedly high levels in pulp/peel oil followed by whole berry oil and seed oil, respectively. Information provided by the present work is of importance for further chemical investigation of goldenberry oil and industrial utilization of the berries as a raw material of oils and functional foods.  相似文献   

7.
Many epidemiological studies suggest that vegetable oils and especially olive oil present a protective effect against atherosclerosis. In this study, total lipids (TL) of Greek olive oils and seed oils of four kinds, namely, soybean, corn, sunflower, and sesame oil, were separated into total polar lipids (TPL) and total neutral lipids (TNL) via a novel extraction procedure. TPL and TNL of olive oil were fractionated by HPLC for further study. Each lipid fraction from HPLC separation along with TL, TPL, and TNL lipid samples from oils were tested in vitro for their capacity to induce or to inhibit washed rabbit platelet aggregation. Comparison between olive and seed oils supports the superiority of olive oil as high levels of platelet activating factor (PAF) antagonists have been detected, mainly in TPL. In addition, the structure of the most active fraction from olive oil was elucidated, as a glycerol-glycolipid. Because it has already been reported that PAF plays a pivotal role in atherogenesis, the existence of PAF agonists and antagonists in vegetable oils may explain their protective role against atherosclerosis.  相似文献   

8.
The contents of triacylglycerols and diacylglycerols in three kinds of olive fruit oils (pulp, seed, and whole fruit) were determined. The fatty acid composition and the quality ratios 1,2-diacylglycerols/1,3-diacylglycerols and 1,2-diacylglycerols/total diacylglycerols were also assessed. Seven major Italian olive varieties were considered. Results of univariate statistical analyses indicated that the above analytical parameters (glyceridic ratios excepted) were effective in discriminating between pulp and seed oils. The seed oil fraction did not determine any change in the glyceridic indices and the acylglycerol or fatty acid composition concerning the whole fruit oil (mixture of pulp and seed oil fractions), the weight (%) of seed ( approximately 2%) being by far lower than the weight (%) of pulp ( approximately 85%) (fruit weight basis). Based on the data of triacylglycerol or fatty acid composition, and using appropriate parametric or nonparametric multivariate statistics, the genetic origins (olive variety) of the three fruit oil kinds were characterized.  相似文献   

9.
Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.  相似文献   

10.
Although poppy seed oil is an expensive article of trade, no literature about identification methods for adulteration with cheaper vegetable oils, like sunflower oil, has been published. This kind of adulteration is a challenge for routine analytical methods, such as the determination of fatty acid composition, because of almost similar fatty acid ratios. The detection of adulteration of poppy seed oils with sunflower oils at different levels (5-40%, w/w) by using SPME-GC-MS and MALDI-ToF-MS is the subject of our investigation. With the mentioned SPME-GC-MS method, it was possible to detect an admixture of sunflower oils in all relevant (5-40%) amounts by using alpha-pinene as a marker compound. Admixture of sunflower oil with high levels of triolein (high-oleic acid type) could be undoubtedly detected by MALDI-MS down to the 5-10% level. In contrast, adulteration of pure poppy seed oil by "standard" sunflower oils remained indistinguishable using this MALDI-MS.  相似文献   

11.
Adulteration of vegetable oil is of concern for both commercial and health reasons. Compositional based fingerprints can potentially reveal both the oil source and its possible adulteration. Here, electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) resolves and identifies literally thousands of distinct chemical components of commercial canola, olive, and soybean oils, without extraction or other wet chemical separation pretreatment. In negative-ion ESI FT-ICR MS, the acidic components of soybean oil are easily distinguished from those of canola and olive oil based on relative abundances of C(18) fatty acids, whereas olive oil differs from canola and soybean oil based on relative abundances of tocopherols. In positive-ion ESI FT-ICR MS, the three oils are readily distinguished according to the relative abundances of di- and triacylglycerols with various numbers of double bonds in the fatty acid chains. We demonstrate the detection of soybean oil as an adulterant of olive oil, based on relative abundances of members of each of several chemical families. We suggest that the detailed chemical compositions of vegetable oils can be used to characterize them and to detect and identify adulterants.  相似文献   

12.
13C nuclear magnetic resonance spectroscopy was used to classify olive oils from the three production areas of the Puglia region labeled with the "denomination of protected origin" (DPO) Terra di Bari, Colline di Brindisi, and Dauno. High resolution (13)C spectra of 173 olive oil samples were measured, and the intensity data of triacylglycerol resonances were processed by using linear discriminant analysis, which was carried out stepwise for variable selection. The olive oil samples from the DPOs Colline di Brindisi and Terra di Bari were 90% correctly classified, whereas only 74% of "Dauno" DPO oils were classified in the true group. The performance of the discriminant model was verified by applying the cross-validation procedure based on the "leave one out" formalism. The discriminant model was evaluated against a blind test set of olive oils from the three DPO areas. All the oils used for the purpose were correctly assigned to their respective groups, with the exception of the Dauno oil samples based on the Coratina cv. They were misclassified as Terra di Bari oils because of a common monovarietal composition.  相似文献   

13.
Virgin argan oil possesses high antioxidant capacity (AC), which may be partially explained by its high content in antioxidant molecules such as polyphenols and tocopherols. However, the content in other antioxidant molecules, for example, coenzyme Q10 (CoQ(10)), coenzyme Q9 (CoQ(9)), and melatonin (Mel), which have been identified in other edible vegetable oils, have not been evaluated in virgin argan oil. Consequently, it was decided to evaluate the contents of CoQ(10), CoQ(9), and Mel in virgin argan oils and compare the results to those obtained in extra virgin olive oils and some varieties of seed oils. By the use of sensitive HPLC-EC/F methods, the results showed that virgin argan oil is a rich source of CoQ(10) and Mel, but no CoQ(9) was detected. Extra virgin olive oil showed higher levels of CoQ(10) and lower levels of Mel than virgin argan oil. Between the seed oil samples, only virgin soybean oil showed higher CoQ(10) and Mel levels than virgin argan oil. The results may be relevant for the contribution of CoQ(10) and Mel to the biological activities of virgin argan oil.  相似文献   

14.
Vegetable oils are promising candidates as substitutes for petroleum base oils in lubricant applications, such as total loss lubrication, military applications, and outdoor activities. Although vegetable oils have some advantages, they also have poor oxidation and low temperature stability. One of the ways to address these issues is chemical modification of fatty acid chain of triglyceride. We report a one-pot synthesis of a novel class of chemically modified vegetable oils from epoxidized triacylglycerols and various anhydrides. In an anhydrous solvent, boron trifluoride etherate is used as catalyst to simultaneously open the oxirane ring and activate the anhydride. The reaction was monitored and products confirmed by NMR, FTIR, GPC, and TGA analysis. Experimental conditions were optimized for research quantity and laboratory scale-up (up to 4 lbs). The resultant acyl derivatives of vegetable oil, having diester substitution at the sites of unsaturation, have potential in formulation of industrial fluids such as hydraulic fluids, lubricants, and metal working fluids.  相似文献   

15.
Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.  相似文献   

16.
Extra virgin olive oils from drupes of three Sicilian varieties (Biancolilla, Cerasuola, and Nocellara del Belice) collected at three different harvesting periods were analyzed upon heating by means of DSC, and thermal properties were related to the chemical composition of the samples. All thermograms exhibited multiple transitions with a minor exothermic peak, followed by a major endothermic event. Cerasuola samples showed higher overall enthalpy and narrower range of transition at all harvesting periods, as compared to the other oils. A more ordered crystal structure originating from a more uniform chemical composition, with higher triolein content, in Cerasuola may be hypothesized. At different harvesting periods, thermal transitions started at lower temperatures and developed over a narrower range in all cultivars, probably due to the insertion of molecules derived from triacylglycerol lysis (diacylglycerols and free fatty acids) and lipid oxidation products into the triacylglycerol crystal lattice. All heating thermograms were deconvoluted into one exothermic and five endothermic constituent peaks, and the effect of chemical components on thermal properties of the peaks was evaluated. DSC application upon heating appears to be very promising in discriminating among oil samples from olives of different cultivars and/or harvesting periods.  相似文献   

17.
Effects of tocopherols on the oxidative stability of stripped vegetable oils were studied by adding pure tocopherols--alpha, beta, gamma, and delta--in their naturally occurring proportions in soybean and sunflower oils to the triacylglycerols (TAG) of soybean and sunflower oils. Soybean and sunflower oils were purified by stripping all minor constituents, leaving the triacylglycerols. Pure tocopherols in the proportion typical of sunflower oil--high alpha, low gamma, and low delta--were added to purified sunflower oil and to purified soybean oil. Pure tocopherols in the proportion typical of soybean oil--low alpha, high gamma, and high delta--were added to the purified oils. Oils were subjected to accelerated autoxidation using oven storage at 60 degrees C in the dark and accelerated photooxidation at 7500 lx light intensity at 30 degrees C. Oxidation levels of aged oils were measured by the formation of both peroxides and volatile compounds and by flavor analysis. Results from substituting the tocopherol profile from one oil type to another varied on the basis of whether they were oxidized in the dark or in the light. For example, during autoxidation in the dark, soybean oil with the typical soybean tocopherol profile had the lowest levels of peroxides and total volatile compounds, whereas sunflower oil with the sunflower tocopherol profile had the highest levels. In flavor analyses of the same oils, sunflower oil with the soybean tocopherol profile was the most stable. Soybean oil with the profile of sunflower tocopherols was the least stable in dark oxidation. In contrast to the data from autoxidation in the dark, addition of tocopherols typical of sunflower oil significantly improved light stability of both oil types compared to the addition of soybean tocopherols to sunflower oil. The tocopherol profile typical of soybean oil was significantly more effective in inhibiting autoxidation in the dark; however, the tocopherol profile typical of sunflower oil inhibited light oxidation significantly more than the soybean tocopherol profile.  相似文献   

18.
Cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils were evaluated for their fatty acid composition, carotenoid content, tocopherol profile, total phenolic content (TPC), oxidative stability index (OSI), peroxide value, and antioxidant properties. All tested seed oils contained significant levels of alpha-linolenic acid ranging from 19.6 to 32.4 g per 100 g of oil, along with a low ratio of n-6/n-3 fatty acids (1.64-3.99). The total carotenoid content ranged from 12.5 to 30.0 micromoles per kg oil. Zeaxanthin was the major carotenoid compound in all tested berry seed oils, along with beta-carotene, lutein, and cryptoxanthin. Total tocopherol was 260.6-2276.9 mumoles per kg oil, including alpha-, gamma-, and delta-tocopherols. OSI values were 20.07, 20.30, and 44.76 h for the marionberry, red raspberry, and boysenberry seed oils, respectively. The highest TPC of 2.0 mg gallic acid equivalents per gram of oil was observed in the red raspberry seed oil, while the strongest oxygen radical absorbance capacity was in boysenberry seed oil extract (77.9 micromol trolox equivalents per g oil). All tested berry seed oils directly reacted with and quenched DPPH radicals in a dose- and time-dependent manner. These data suggest that the cold-pressed berry seed oils may serve as potential dietary sources of tocopherols, carotenoids, and natural antioxidants.  相似文献   

19.
A thin layer chromatographic cleanup development with benzene-hexane (3+1) effectively removed lipids and some contaminants from mixtures of mycotoxins in corn oil, olive oil, peanut oil, soybean oil, and seed extracts. A second development in the same direction as the first, using toluene-ethyl acetate-formic acid (6+3+1) or benzene-acetic acid (9+1), separated the mycotoxins. Satisfactory separation was achieved for commercial oils spiked with sterigmatocystin, zearalenone, ochratoxins A, B, and C, and aflatoxins B1, B2, G1, and G2. This technique permits detection of 5 ppb aflatoxin B1 in corn.  相似文献   

20.
Soybean oil with an iodine value of 136 was hydrogenated to have iodine values of 126 and 117. The soybean oils with iodine values of 136, 126, and 117 were randomly interesterified using sodium methoxide. The oxidative stabilities of the hydrogenated and/or interesterified soybean oils were evaluated by measuring the headspace oxygen content by gas chromatography, and the induction time was measured using Rancimat. The melting points of the oils were evaluated by differential scanning calorimetry. Duncan's multiple range test of the headspace oxygen and induction time showed that hydrogenation increased the headspace oxygen content and induction time at alpha = 0.05. Interesterification decreased the headspace oxygen and the induction time for the soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. Hydrogenation increased the melting points as the iodine value decreased from 136 and 126 to 117 at alpha = 0.05. The random interesterification increased the melting points of soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. The combined effects of hydrogenation and interesterification increased the oxidative stability of soybean oil at alpha = 0.05 and the melting point at alpha = 0.01. The optimum combination of hydrogenation and random interesterification can improve the oxidative stability and increase the melting point to expand the application of soybean oil in foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号