首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
黄土丘陵区不同土地利用方式土壤水分变化特征   总被引:5,自引:2,他引:3  
为了探讨黄土丘陵区不同土地利用方式土壤水分的时空变化特征,合理规划土地利用方式与土壤水资源。选择陕西省延安市安塞县墩山上梯田、草地、刺槐林、沙棘灌丛4种土地利用方式,采用土钻法在2019年5月、7月、8月和10月监测了土壤水分。结果表明:4种土地利用方式的土壤含水量表现为明显的时间特征,存在滞后效应;0—300 cm深度平均土壤含水量大小表现为梯田草地沙棘灌丛刺槐林;随土层深度的增加土壤含水量的季节变异系数均逐渐减小,季节变异系数在100 cm以下的土壤深层趋于稳定;土壤含水量由表土层到深土层上为"S"形,含水量先增大后减小,垂直变化特征明显;土壤水分变化相似性表现为梯田沙棘灌丛草地刺槐林。刺槐林和沙棘灌丛需要消耗更多深层土壤水分,容易出现土壤干燥化;梯田和草地的土壤水分条件较好,梯田对土壤水分的调控作用较好,土壤水分在垂直方向上的变化较为平缓。  相似文献   

2.
晋西黄土区林草复合界面土壤水分养分分布规律研究   总被引:2,自引:0,他引:2  
通过对晋西黄土区刺槐林与天然草带的复合界面及其对照(林地、草地)生长季土壤水分和养分(有机质、全氮、速效氮和速效钾)的测定,分析比较了其水分和养分的空间分布特征及其变化规律。结果表明,不同土壤层次的土壤含水量在水平方向上存在差异,在浅层土壤(0-20cm),土壤含水量从大到小依次为:草地、林地、林草界面,在深层土壤(20-100cm),土壤含水量从大到小依次为:草地、林草界面、林地;在垂直方向上,随着土层深度的增加,研究区林地、草地、林草界面的土壤含水量表现为逐渐降低的趋势,刺槐林地在60-100cm土层中土壤含水量有少许回升。研究区复合类型内土壤养分分布不均衡,水平方向上有机质平均含量为林草界面<草地<林地;全氮平均含量为林草界面最小,草地与林地相差不大;速效磷平均含量为林地<草地<林草界面;速效钾平均含量为草地<林草界面<林地;垂直方向上,各个生态类型的有机质含量、全氮含量、速效钾含量随着土壤层次的加深逐渐减少,而速效磷含量在土壤的不同层次呈现不同的变化。  相似文献   

3.
不同植被覆盖类型黑土水分动态变化特征   总被引:2,自引:1,他引:1  
采用中子水分仪定位监测方法,研究黑土区平水年大豆地、草地和裸地3种覆盖类型土壤水分变化特征.结果表明:土壤水分空间垂直动态变化随深度增加而降低,基于变异系数(CV)将土壤水分垂直变化分为4层,即水分速变层、活跃层、次活跃层和相对稳定层.不同覆盖类型下,土壤水循环深度依次为大豆地>草地>裸地,土壤水循环强度依次为草地>大豆地>裸地;3种覆盖类型的土壤剖面含水量在作物生长季节内呈增长型变化特征,裸地0~20 cm土层各时段土壤含水量均高于草地和大豆地;30 cm土层以下土壤水分含量依次为草地>裸地>大豆地.该区土壤储水量主要受降雨调控,3种植被覆盖类型下,土壤水分的总蒸散量依次为草地>大豆地>裸地.  相似文献   

4.
陕西省延川县孙家塬经济林土壤水分和水分平衡   总被引:3,自引:0,他引:3  
对陕西省延川县孙家塬枣树林和苹果林4m深度土层水分的变化进行了研究,并对土壤水分有效性、土壤干层及其水循环等方面进行了分析。结果表明,枣树林地含水量平均为10.6%,还有4.5%的土壤水资源可以利用。苹果林地4m深度范围内平均含水量为7.4%,2.0—4.0m深度范围内土壤水资源基本耗尽。苹果林地土壤含水量自上向下呈现高—低—高分层变化特点,枣树林地土壤水分剖面垂向分层不明显。枣树林地和苹果林地土壤水分基本都呈难效水状态,但枣树林土壤水分接近中效水,土壤水分对苹果林生长具有严重的抑制作用,对枣树林的生长基本没有抑制作用。枣树林地2.0—4.0m深度范围仅有轻度干层发育,苹果林地土层2.0—4.0m深度范围有轻度干层、中度干层和重度干层发育。苹果林地和枣树林地土壤干层切断了深层水分与上层的联系。水循环主要表现为地表水循环,基本不存在地下水循环,形成了土壤—植物—大气的水分循环模式,属于异常水分循环类型。干层长期发展会导致该区地下水位的持续下降和地下水资源减少。该区土壤水分条件更适于发展枣树经济林。  相似文献   

5.
为有效认识黄土高原淤地坝坝地土壤水分时空分布特征,通过对王茂沟小流域2号坝坝地土壤水分长期监测,分析了坝地土壤水分的统计特征。结果表明:(1)坝地各层土壤水分均表现为中等变异,表层土壤含水量的极差较大,0~2.40m土层土壤平均含水量变化范围为9.92%~23.70%,随深度的增加,土壤平均含水量表现为先减小后增大的趋势;(2)坝地土壤水分具有明显的分层现象,多数监测点的土壤水分在时间上属于中等变异,表层土壤水分变化剧烈,随着深度的增加变异系数开始变小,水分变化程度减弱;根据变异系数的大小,坝地土壤水分可以划分为4个层次:水分剧变层(0~0.20m),水分活跃层(0.20~0.60m),水分次活跃层(0.60~1.40 m),水分相对稳定层(1.40 m以下);(3)坝前各层土壤含水量均明显高于坝中和坝后,在0~0.40 m坝地的含水量明显高于坡地,0.40~1.40 m坡地含水量高于坝地,1.40m以下坝地含水量高于坡地,且坝地各层土壤含水量随时间的变异系数均小于坡地。  相似文献   

6.
晋西黄土区典型林地土壤水分变化特征   总被引:7,自引:6,他引:1  
选择晋西黄土区蔡家川流域5种典型林地(山杨×辽东栎天然次生林、人工油松×刺槐混交林、人工油松林、人工刺槐林、人工侧柏林)作为研究对象,在每块样地中心布设1个土壤水分观测点,采用TRIME-TDR土壤水分测定仪定位观测2016—2018年1—12月的土壤体积含水量,测定深度为200 cm,每20 cm为1个测层,每月分上、中、下旬进行土壤水分含量观测,分析不同林地类型土壤水分年内变化规律和土壤水分垂直变化规律。结果表明:(1)研究区不同林地土壤水分年内变化可以划分为稳定期(1—3月)、波动期(4—6月)、增长期(7—9月)和消耗期(10—12月)4个时期,5种林分类型的年平均土壤储水量按照从大到小的排序为天然次生林地(338.68 mm)>人工油松林地(319.74 mm)>人工侧柏林地(314.15 mm)>人工油松×刺槐混交林地(303.37 mm)>人工刺槐林地(292.03 mm),刺槐林地耗水量最大。(2)在雨季末,研究区5种林分类型林地土壤水分均得到了正向补充,且土壤水分的恢复能力大小排序为次生林地>针叶林地>混交林地>刺槐纯林。(3)研究区土壤水分垂直变化可划分为土壤水分含量速变层和土壤水分含量相对稳定层2个层次;随着土层深度增加,不同林地类型剖面平均含水量总体上先增大后减小。不同林地类型表层土壤水分含量为侧柏林地>次生林地>油松林地>油松×刺槐混交林地>刺槐林地;土壤水分的补充深度为天然林地>针叶林地>油松×刺槐混交林地>刺槐纯林。  相似文献   

7.
在一个生长季内通过对毛乌素沙地不同植被下的土壤水分的连续观测,研究毛乌素沙地不同植被下的土壤水分时空动态变化规律。结果表明:各样地土壤含水量生长期末低于生长期初,按时间变化可划分为三个时期,土壤水分积累期(4~6月)、土壤水分消耗期(7~9月)、土壤水分稳定期(10月至次年3月)。在空间上,各样地土壤含水量均随深度的增加而有所增加,整个土壤剖面自上而下按水分变化规律可划分为四层:土壤水分速变层、活跃层、过渡层和稳定层。土壤水分活跃层的深度与根系分布层密切相关,深根系的植物其水分活跃层分布较深。固定沙丘不同部位的土壤含水量及其变化规律不同,土壤含水量从大到小依次为:坡脚〉坡腰〉坡顶。  相似文献   

8.
乔灌草植被条件下土壤水分动态特征   总被引:4,自引:1,他引:4  
以16年的定位土壤水分实测资料为基础,对乔灌草植被条件下土壤含水量的年度、季节及垂直动态特征进行了研究,结果显示:在0~100cm和0~500cm深度上,草地土壤水分含量大于乔木和灌木;生长盛期乔木和灌林土壤含水量较低,草地变化不大。土壤垂直动态分析表明:乔木、灌木和草地土壤水分按照速变层、活跃层、次活跃层和相对稳定层划分,其位置和排列顺序都不尽相同,荒草地0~60cm为速变层,依次再往下60~280,280~400,400~500cm分别是活跃层、次活跃层和相对稳定层;山桃林0~40,40~240,240~400,400~500cm分别是速变层、相对稳定层、次活跃层和活跃层;柠条林0~80,80~220,220~320,320~500cm分别是速变层、活跃层、相对稳定层和次活跃层;土壤干层在3种植被条件下都有存在,但以乔木垂直范围最广,历时最长,灌木次之,草地再次之,草地植被随深度下降,其水分波动越来越小;乔木土壤表层水分变化剧烈,但到100cm左右水分变化程度较小,再往下,变化又趋剧烈;灌木与乔木相似,但变化程度不及乔木强烈。  相似文献   

9.
在一个生长季内通过对毛乌素沙地不同植被下土壤水分的连续观测,研究毛乌素沙地不同植被下的土壤水分时空动态变化规律。结果表明:各样地土壤含水量生长期末低于生长期初,按时间变化可划分为3个时期,土壤水分积累期(4-6月)、土壤水分消耗期(7-9月)、土壤水分稳定期(10月至次年3月)。在空间上,各样地土壤含水量均随深度的增加而增加,整个土壤剖面自上而下按水分变化规律可划分为4层:土壤水分速变层、活跃层、过渡层和稳定层。土壤水分活跃层的深度与根系分布层密切相关,深根系的植物其水分活跃层分布较深。固定沙丘不同部位的土壤含水量及其变化规律不同,土壤含水量从大到小依次为坡脚>坡腰>坡顶。  相似文献   

10.
黄土高原沟壑区剌槐林水分动态与生产力的研究   总被引:17,自引:2,他引:17  
刘康  陈一鹗 《水土保持通报》1990,10(6):66-70.65
本文通过研究表明,中龄刺槐蒸腾强度日变化随环境条件变化呈单峰和双峰曲线两种类型。蒸腾耗水量占同期降水量的44.1%~53.3%。刺槐林地300cm土壤剖面水分分布可划分为土壤水分活跃层,土壤水分利用层和土壤水分补充调节层三个层次。土壤水分季节动态特征是湿润年干、湿季明显;而欠水年土壤水分干、湿季不明显。同时作者认为,阳坡、半阳坡中龄刺槐林生产力与水分生产率均不同,在林业生产中应区别对待。  相似文献   

11.
干热河谷不同土地利用类型坡面土壤水分时空变异   总被引:6,自引:2,他引:4  
为探究干热河谷区不同土地利用类型坡面土壤水分的时空变化规律,以元谋干热河谷老城小流域水土保持综合治理示范区内的银合欢人工林地、扭黄茅草丛地和坡耕地为研究对象,采用经典统计学和地统计学克里格插值相结合的分析方法,对3种土地类型坡面土壤水分的时间和空间异质性进行研究。结果表明:元谋干热河谷区土壤含水量较低(林地旱季7.56%,雨季12.80%;草地旱季8.05%,雨季12.66%;坡耕地旱季19.37%,雨季22.95%),雨季显著大于旱季。旱、雨季均表现为坡耕地草地林地,呈中等至强度变异(0.14~0.72之间);不同土地利用类型下各层土壤水分的自相关系数均由正向负转化的相同趋势,但拐点有所不同,且雨季大于旱季;不同土地利用类型下旱、雨季土壤水分的最佳拟合模型林地与草地相同(林地与草地旱雨季均为球状模型,坡耕地旱雨季为指数模型),均呈中等或强等空间相关性(0.05~0.39之间),且旱季大于雨季;同一土地类型下旱、雨季不同土层的土壤水分空间分布相似,不同土地利用类型下相同土层分布格局则不同。  相似文献   

12.
黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征   总被引:9,自引:4,他引:5  
张敏  刘爽  刘勇  张红 《水土保持学报》2019,33(3):115-120,128
为研究黄土丘陵缓坡风沙区不同土地利用类型下的土壤水分变化规律,采用时域反射仪TDR在山西省五寨县分别对玉米农地、柠条林地、苜蓿草地0-100 cm土层进行连续3年的土壤水分观测,掌握不同土地利用类型土壤含水量的季节变化规律和垂直分布特征。结果表明:(1)农林草地土壤水分随时间的变化曲线基本呈"M"形分布,三者季节变化规律相似,但土壤含水量差异达到极显著水平(P<0.01),表现为苜蓿草地>柠条林地>玉米农地;(2)玉米农地与柠条林地土壤含水量随土层深度的增加呈"S"形分布,苜蓿草地的变化趋势与两者完全相反,玉米农地仅土壤表层0-20 cm含水量与降水存在显著相关性,柠条林地和苜蓿草地0-60 cm土壤含水量均与降水显著相关;(3)土壤含水量具有明显的垂直分布特征,在0-100 cm土层层中,随着土层深度的增加,玉米农地CV先逐渐降低后保持稳定,柠条林地CV始终持续降低,苜蓿草地CV先呈现波动变化后明显降低,三者整体表现为表层土壤含水量变异系数大于深层;(4)0-100 cm范围内,玉米农地的土壤层自上而下依次可划分为速变层、活跃层2个层次,柠条林地和苜蓿草地的土壤层划分为速变层、活跃层和次活跃层3个层次。本研究结果表明林地和草地在涵养土壤水分方面优于农田,林地和草地为黄土丘陵缓坡风沙区适宜的土地利用方式,为该区域土壤水分管理及水土资源的合理开发利用提供理论依据。  相似文献   

13.
麦田土壤水分时空变异特性及CA-Markov模型模拟预报   总被引:1,自引:1,他引:0  
为揭示农田土壤水分时空变异特征,精准预测土壤墒情,该研究以河北省太行山山前平原井灌区典型麦田为例,在监测土壤水分的基础上,采用时间稳定性指数法、空间自相关性评价法研究土壤水分时空分布规律,构建了适用于模拟预报田间水分时空变化的CA-Markov 模型,并将该模型的模拟预报效果与HYDRUS 模型进行比较。结果表明:随着土层深度的增加,土壤水分等值线由密变疏,变异系数逐渐减小。随着小麦生育期的推移,前期监测的土壤水分稳定性高于后期;在土壤较湿润的情况下,土壤水分空间相关性较强,土壤水分全局Moran''s I 指数随小麦生育期的推移呈现先增大后变小的规律。CA-Markov 模型模拟预报的各土壤相对湿度等级面积误差的平均值为1.61%,比HYDRUS 模型模拟预报的面积误差平均值(10.86%)小9.25个百分点; CA-Markov 模型对研究区4月下旬、5月上旬的土壤水分干旱等级预测的空间分布Kappa 系数分别为 89.31%、91.46%。该模型可综合考虑麦田墒情的时空变化及随机特性,模拟预测土壤墒情的精度较高、效果良好,可以作为麦田水分管理的重要工具。  相似文献   

14.
黄土高原典型切沟土壤水分时空分布特征及其影响因素   总被引:3,自引:0,他引:3  
研究切沟土壤水分及干层时空分布特征,有利于提高地区水资源利用效率及植被恢复效益。以神木市六道沟小流域典型切沟为研究对象,对土壤水分状况进行定位监测,分析沟底、沟缘和沟岸土壤水分时空分布、干层分布特征及其影响因素。结果表明:沟底土壤含水率由沟头至沟口呈明显增加趋势。沟底、沟缘和沟岸0~480 cm剖面土层平均含水率分别为17.1%、13.5%和14.4%。沟底0~480 cm剖面土层平均储水量为80.54 cm,沟缘及沟岸分别为67.49 cm和71.05 cm。地形和土壤质地是影响土壤储水量的主要因素;土壤储水量与距沟头距离、土壤黏粒、粉粒含量呈极显著正相关。沟底、沟缘和沟岸均有干层出现,且主要集中在靠近沟头位置,平均厚度和起始深度分别为243 cm和257 cm,平均含水率为9.5%。沟底、沟缘和沟岸干层平均厚度分别为100 cm、286 cm和331 cm。研究结果可为该区域土壤水资源管理和土壤水库评价提供理论依据。  相似文献   

15.
祁连山林草复合流域土壤温湿度时空变化特征   总被引:2,自引:0,他引:2  
利用祁连山森林生态站设在祁连山排露沟流域的青海云杉林和草地气象观测场土壤温湿度观测资料,采用对比分析及线性趋势等方法进行青海云杉林和草地2个不同下垫面土壤温湿度的时空特征分析。结果表明:(1)林草地土壤温度日变化表现为浅层(10 cm和20 cm土壤深度)土壤温度呈正弦曲线变化,深层(40、60、80 cm土壤深度)土壤温度约呈直线变化。土壤温度年变化表现为林地土壤温度7月底达到最高值,而后开始下降,翌年2月上旬达到最低值;草地土壤温度7月底达到最高值,而后开始下降,12月中旬达到最低值;林地封冻时长明显大于草地封冻时长。(2)林草地土壤湿度日变化不受太阳辐射的影响。林地不同土层土壤湿度年动态变化趋势均一致,呈现正弦曲线的变化规律;草地在土壤结冻后和未消融期间,土壤湿度较低且变化不明显;其他时间土壤湿度变化明显。(3)林地中,除40 cm深度外,其他深度土壤温湿度均保持在相对稳定的范围内,而且变化趋势基本一致。草地浅层土壤在土壤封冻前和解冻后,土壤温湿度变化趋势相反,封冻期间土壤温湿度亦保持在相对稳定的范围内,温度变化明显,湿度变化不明显;其他土层土壤温湿度总体变化趋势一致。  相似文献   

16.
祁连山区不同土地覆被类型下土壤水分变异特征   总被引:2,自引:0,他引:2  
结合土壤、植被、地形等要素,建立黑河上游土壤水文观测体系,收集代表黑河上游区域特征的36个定位观测点土壤水分数据和12个气象站的降水数据,采用经典统计方法揭示祁连山区区域尺度上7种土地覆被类型下的土壤水分变异特征。结果表明,降水和植被特征是影响生长期土壤水分的主要因素。降水量大的土地覆被类型上土壤水分值较高。同时土壤水分值越低,降水补给和蒸散发消耗所引起的相对波动就越大,导致其变异性越大。由于植被根系对土壤水分的显著影响,高盖度草地、低盖度草地的土壤水分值在剖面各层变化不大,而农田、草甸、灌丛、林地和裸地土壤水分值随深度变化较明显。草甸、灌丛、裸地土壤水分整体均在夏季最高、秋季次之、春季最低。农田和高盖度草地土壤水分均呈现秋季最高、夏季次之、春季最低。土壤水分变异程度除灌丛外,存在春季变异最大,夏季次之和秋季最小的规律。降水是导致土壤水分值和变异系数在夏、秋季变化的主要因素,而土壤冻融过程则是导致其在春季变化的主要因素。总而言之,祁连山区土壤水分具有明显的空间分布差异与季节变化特征,与不同土地覆被类型的降水条件、植被特性和人工影响都有着密切的关系。  相似文献   

17.
青藏高原中部BJ站土壤湿度不同时间尺度的变化   总被引:8,自引:1,他引:7  
青藏高原土壤湿度的时空变化在高原能水循环中起着重要作用。利用GAME-Tibet期间观测的青藏高原中部BJ站2001年1月1日~2005年12月31日00:00~230:0逐时高分辨率土壤湿度资料,分析了4~210 cm深度土壤湿度的日、季节和年际等不同时间尺度的变化特征。结果表明:(1)4 cm深度土壤湿度日变化显著2,0~210 cm深度土壤湿度日变化微弱;土壤湿度日振幅随土壤深度的增加逐渐衰减,但在210 cm深度又出现增加的趋势;4 cm、20 cm、60 cm、100 cm1、60 cm和210cm深度土壤湿度的平均日振幅分别为0.97%、0.22%、0.03%、0.01%、0.01%和0.03%。(2)根据土壤湿度在时间尺度和垂直剖面上的变化特征,将土壤湿度年内的变化过程划分为积累期(3~8月)、衰减期(8~12月)和相对稳定期(12~3月)3个阶段。(3)2001~2005年,BJ站4 cm、20 cm、60 cm、100 cm和160 cm深度土壤湿度8月的平均值表现为线性增加的趋势,210 cm深度土壤湿度8月的平均值则呈现出线性减小的趋势;湿季,土壤湿度显著地受到降水的影响,干季,土壤湿度主要受土壤温度的影响。  相似文献   

18.
为阐明亚热带湿润气候区山地坡面土壤水分的时空变化及影响因素,以三峡库区针叶林覆盖的中山凹坡为研究对象,采用经典统计学和地统计学的方法,对2019-2020年5 m×5 m网格点监测的117个点位0-70 cm土层深度的土壤水分数据进行分析,研究了湿润和干旱条件下典型凹坡集水区内土壤含水量的统计学特征与环境因子的相关性,以及土壤含水量的空间变异特征。结果表明:(1)水平方向上,集水区内各层土壤水分均表现为中等变异(10%相似文献   

19.
为了研究不同土地利用方式下土壤水分的变化特征及其对降雨的响应,以黄丘区辛店沟流域坡面径流小区灌木和荒草地为研究对象,利用多探头土壤水分监测仪对研究对象0—50 cm土层土壤水分进行了连续定位观测,对不同下垫面下土壤水分的变化特征进行了系统的分析和研究。结果表明:(1)不同土地利用方式土壤水分表现出明显的季节变化特征,观测期内荒草地的平均土壤含水量为0.099,大于灌木地0.091,荒草地的土壤含水量总体要高于灌木地。(2)不同土地利用方式土壤含水量垂直变化趋势相似,总体上随着土层深度的增加而减少,具有明显的垂直变异性,灌木地对深层土壤含水量的消耗比荒草地多。(3)土壤含水量在垂直方向上对降雨的响应程度随着土层深度的增加而减小,灌木地和荒草地垂直方向上0—30 cm土层与30—50 cm土层对降雨响应表现为相反的规律。研究认为相比荒草地,灌木地土壤水分消耗更严重,且深层土壤水分受降雨补给有限,易引发土壤干层。  相似文献   

20.
汉江小流域土壤氮素空间分布特征及影响因素   总被引:2,自引:0,他引:2  
氮素是土壤中不可或缺的营养元素之一,对植物生长具有至关重要的作用。利用网格采样法(30m×30m)和典型样地取样法在汉江余姐河小流域进行土样采集,每个样点分为3层A1(0—20cm),A2(20—40cm),A3(40—60cm),分别测定其土壤全氮、土壤铵态氮和土壤硝态氮含量。研究了土壤氮素的空间异质性、氮素的组成比例以及不同土地利用类型下土壤全氮、铵态氮和硝态氮与环境因子间的相关关系,并且分析了不同形态氮素间的相互关系。结果表明:土壤氮素的空间变异性为土壤硝态氮土壤铵态氮土壤全氮;土壤全氮与硝态氮在A1土层为强空间相关性,在A2,A3层为中等程度的空间相关性,土壤铵态氮在各土层均表现为中等空间相关性;农地、林地、草地对全氮储量的贡献依次增大;相较于林地草地,农地对铵态氮储量的贡献最大;而草地对硝态氮储量的贡献在三种土地利用中最大;不同土地利用类型中,农地的氮素空间分布主要与土壤粒径具有相关性,而与地形因子(坡度、坡向等)相关性较小;林地的氮素空间分布主要与地形因子相关性较高,草地介于两者之间;在流域内增加草地林地面积,在流域出口处布设林草地等措施可以减少流域土壤氮素的流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号