首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以一年生平邑甜茶盆栽幼苗为试材,采用15 N同位素示踪技术,研究不同聚天冬氨酸施用量对平邑甜茶生长及氮素利用、损失的影响。结果表明,植株的生长及对15 N的利用率在生长前期均以低水平聚天冬氨酸处理最高,但随着生长期的推移,它们则随着聚天冬氨酸量的增大而显著提高。在整个生长过程中,各处理的15 N分配率均表现为地上部>地下部;随着生长期的推进,植株15 N分配率表现为随着聚天冬氨酸施用量的增加,植株吸收的15 N分配到地上部的比值越高。施用聚天冬氨酸显著降低了土壤氮素的损失,并且聚天冬氨酸用量越高效果越明显。总之,施用聚天冬氨酸显著促进了植株的生长及对15 N的吸收利用,降低了土壤氮素的损失,以施PASP 400mg/kg土处理效果最佳。  相似文献   

2.
以一年生平邑甜茶(Malus hupehensis)盆栽幼苗为试材,采用15 N同位素示踪技术,研究不同聚丙烯酰胺(PAM)用量与尿素混施对平邑甜茶幼苗生长及15 N-尿素吸收、利用和损失的影响。结果表明,在生长后期,随着PAM用量的增加,植株株高、总鲜样质量和氮肥吸收、利用率均呈现出先增大后减小的趋势,且均以PAM用量180mg/kg的处理最高,分别为29.93cm,31.29g,20.30mg和7.35%,显著高于对照(18.93cm,23.33g,8.13mg和3.59%);植株地上部从肥料中吸收分配到的15 N量对该部分全氮量的贡献率(Ndff)高于地下部,施用PAM后各处理显著高于对照,且均以PAM 180mg/kg处理最高;施用PAM后各处理的15 N残留率均显著高于对照,并随着PAM用量的增加而逐渐升高,分别为300240180120600(CK)mg/kg,而土壤氮素的损失率则随PAM用量的增加而减少,分别为0(CK)60120180240300mg/kg。合理施用PAM显著促进植株的生长及对15 N的吸收利用,降低土壤氮素的损失,且以PAM用量180mg/kg的处理效果最佳。  相似文献   

3.
为了寻求改善果园土壤氮素稳定供应问题的有效措施,试验以6年生烟富3/SH6/平邑甜茶为试材,利用~(15)N同位素标记,研究FSA(撒施)、FS+BC(一半撒施一半袋控)、BCRF(袋控缓释肥)对土壤Nmin及氮素吸收、利用和损失的影响。结果表明:在苹果整个生长季BCRF处理土壤Nmin含量保持平稳,FSA处理短期内土壤Nmin含量迅速升高,然后又急剧降低。在果实成熟期植株体内氮素BCRF处理(121.64g)高于FSA处理(79.01g),略高于FS+BC处理(95.92g)。不同施肥处理各器官Ndff差异显著,均以果实中的Ndff最高,各器官的Ndff均以BCRF处理最高,FS+BC处理次之,FSA处理最低。BCRF处理显著提高了苹果植株氮素利用率,分别为FSA和FS+BC处理的1.82倍和1.32倍,而~(15)N损失率为36.23%,显著低于FSA处理(57.44%)和FS+BC处理(51.16%),BCRF处理~(15)N主要残留在土壤上层(0—40cm),向深层土壤淋溶损失明显降低。可见,BCRF处理能够保证土壤氮素的稳定供应,提高氮肥利用率,降低氮肥损失。  相似文献   

4.
以盆栽平邑甜茶为试材,应用15N同位素示踪技术研究了不同灌水量对植株的生长与氮素吸收、利用和损失的影响。结果表明:5个灌水处理(50%FC~90%FC),高灌水处理更能促进植株的生长与氮素的吸收和利用。90%FC处理株高、茎粗和鲜重值最大为31.02 cm,0.364 cm和29.707 g;50%FC处理最小为19.05 cm,0.267 cm和16.887 g,高灌水处理与低灌水处理之间差异显著。植株15N吸收量、利用率随着灌水量的减少而降低。不同灌水量下植株对15N分配均为地上部大于地下部,高灌水处理地上、地下部的15N分配比值较大。灌水量的大小与15N在土壤中的残留量成反比关系,较高的灌水量在促进植株营养生长和氮素吸收、利用的同时,也一定程度上加重了氮素的损失。  相似文献   

5.
土壤有机质含量对平邑甜茶生长及氮素吸收和损失的影响   总被引:3,自引:0,他引:3  
以二年生平邑甜茶为试材,应用15 N示踪技术研究不同土壤有机质含量对植株生长及氮素吸收和损失状况。结果表明:株高、茎粗与鲜重均随土壤有机质含量的升高而显著增加,而且有机质含量越高,增幅越大。植株对15 N利用率随土壤有机质含量的升高而显著增加,高有机质含量处理分别是中和低有机质含量处理的1.48,2.28倍。随土壤有机质含量的增加,植株吸收总氮中来自肥料氮的比例逐渐降低,来自土壤氮的比例逐渐升高。随土壤有机质含量的升高,氮素土壤残留量显著增加,氮素损失量显著降低,高有机质含量处理氮素损失率仅为低有机质含量处理的74.27%。  相似文献   

6.
土壤C/N对苹果植株生长及氮素利用的影响   总被引:4,自引:0,他引:4  
土壤C/N是土壤氮素循环的重要影响因素。本研究以2年生"富士"/平邑甜茶为试验材料, 应用15N示踪技术研究了不同土壤C/N[6.21(CK)、10、15、20、25、30、35和40]对苹果植株生长及氮素利用和损失的影响。结果表明: 随着土壤C/N比值的逐渐增大, 苹果新梢长度和植株鲜重均呈先升高后降低的变化趋势, C/N=15、20和25的3个处理苹果新梢长度和植株鲜重最大, 三者间无显著差异, 但均显著高于其他处理。不同C/N处理间植株15N利用率存在差异, 土壤C/N=25时, 植株15N利用率最大, 为22.87%, 与C/N=20的处理间无显著差异, 但两者均显著高于其他处理; 土壤C/N=40时, 植株15N利用率最低, 仅为15.43%, 低于CK处理的16.65%。土壤C/N处于15~25时, 植株吸收的氮素来自于肥料氮的比例较高; 而土壤C/N较低(<15)或太高(>25)时, 植株吸收的氮素来自于土壤氮的比例较高。土壤氮素残留量随土壤C/N的增大逐渐增加, C/N=40处理的土壤氮素残留量是CK的1.32倍。随着土壤C/N比值的逐渐增大, 肥料氮损失量呈先减少后增加的变化趋势, 以C/N=25时最少, 仅为施氮量的49.87%, 而对照最大, 为61.54%。因此, 综合土壤C/N对苹果植株生长及氮素平衡状况来看, 土壤C/N为15~25时, 能促进植株的生长发育, 降低氮肥损失, 提高肥料利用率。  相似文献   

7.
以一年生平邑甜茶(M. hupehensis Rehd.)、 八棱海棠(M. micromalus Makin)、 楸子[M. micromalus (Willd) Borkh.]、 新疆野苹果[M. micromalus (Ledeb.) Roemer]、 东北山荆子(M. baccata Borkh.)为试材,采用15N示踪技术,研究了施氮量对5种砧木生长及15N吸收、 分配和利用特性的影响。结果表明, 砧木的生物量、 根系总表面积、 总根长和根尖数均随施氮量的增加而增加,但不同砧木增加的程度不同,且地上部生长量对氮素的反应比地下部更敏感。平邑甜茶的生物量最大,楸子的根系总表面积、 总根长和根尖数均最大; 东北山荆子的生物量、 根系总表面积、 总根长和根尖数均最小。不同品种的15N利用率随施氮量增加变化不同且差异显著,并与根系总表面积存在显著正相关关系; 楸子的15N利用率最高,东北山荆子的最低。低氮处理(N1)中各器官从硝态氮中吸收分配到的15N量对该器官全氮量的贡献(Ndff)从大到小顺序为根叶茎,高氮处理(N2)中各器官的Ndff值从大到小顺序为叶根茎。不同砧木的Ndff随施氮量增加变化不同。各砧木15N均主要分配在叶中,其次是根,茎中最少。  相似文献   

8.
运用~(15)N示踪及非损伤微测技术,研究了不同供磷水平(0 mmol×L~(-1)、1.0 mmol×L~(-1)、2.0 mmol×L~(-1)、3.0 mmol×L~(-1)、4.0 mmol×L~(-1)、6.0 mmol×L~(-1)、8.0 mmol×L~(-1)、12.0 mmol×L~(-1)和16.0 mmol×L~(-1) H_2PO_4~-)对平邑甜茶幼苗NO_3~--N吸收及利用特性的影响,为提高果园氮肥利用效率提供理论依据。结果表明,在低磷水平(0~1.0 mmol×L~(-1))时,平邑甜茶根系长度、根系总表面积较小,且根尖数较少。随着供磷水平的增加,在2.0~4.0 mmol×L~(-1)磷浓度处理时,平邑甜茶幼苗生物量、根系长度、根系总表面积及根尖数显著高于其他处理。而在6.0~16.0 mmol×L~(-1)时,过量供磷抑制了根系的生长,使平邑甜茶幼苗根系长度、表面积均大幅降低,根尖数量骤降。非损伤扫描离子选择电极测试表明,当生长介质磷浓度在3.0~6.0 mmol×L~(-1)时,平邑甜茶对NO_3~-有吸收作用,并在3.0 mmol×L~(-1)磷浓度时其吸收速率最高。而在0~2 mmol×L~(-1)及8.0~16.0 mmol×L~(-1)磷浓度处理下,平邑甜茶对NO_3~-有外排作用。随供磷水平的增加,各器官从肥料中吸收分配到的~(15)N量对该器官全氮量的贡献率(Ndff)及植株氮素利用率呈现先升高后降低的趋势,4.0 mmol×L~(-1)磷浓度时植株氮素利用率最大,为42.24%,超过4.0 mmol×L~(-1)植株氮素利用率显著降低。适当充足的供磷刺激了幼苗根系生长,从而促进平邑甜茶对氮素的获取,过量的NO_3~-抑制了平邑甜茶根系的生长,同时叶片硝酸还原酶的活性受到抑制,因此其氮素吸收和利用效率较低。因此,磷浓度在3.0~4.0 mmol×L~(-1)时最有利于平邑甜茶幼苗的生长及氮素的吸收利用。  相似文献   

9.
纳米碳对草莓氮素吸收利用及植株生长的影响   总被引:1,自引:1,他引:0  
以盆栽妙香7号草莓为试材,利用15 N同位素示踪技术探究尿素配施0,2,4,6,8mL纳米碳溶胶(CK、T1、T2、T3)对土壤理化性状、植株氮素吸收利用及生长发育的影响。结果表明:施用纳米碳显著提高了土壤氧化还原电位和土壤脲酶活性;随纳米碳用量的增加处理前期土壤的电导率呈现降低趋势后期呈现增大的趋势。纳米碳的施用促进了草莓植株对氮素的吸收利用,提高了草莓各器官的Ndff值;与对照相比,T1、T2、T3处理草莓植株的氮素利用率分别提高了71.2%,126.8%,98.9%,土壤氮素残留率分别提高了8.2%,16.7%,16.1%,显著减少了氮素的损失。纳米碳的施用不同程度提高了植株叶片的净光合速率、蒸腾速率、气孔导度和叶绿素SPAD值,干物质比对照增加了17.5%,45.8%,32.3%。研究表明,尿素配施纳米碳可改善土壤理化性状,有效吸附土壤中的氮素,提高植株氮素利用率和土壤氮素残留率,减少氮素损失,促进了草莓植株的生长。  相似文献   

10.
不同供氮水平下幼龄苹果园氮素去向初探   总被引:14,自引:7,他引:7  
以2年生红富士/平邑甜茶为试材,采用田间小区和15N微区相结合,研究了不同供氮水平下幼龄苹果园氮素去向。结果表明,施用氮肥显著增加了植株生物量和吸氮量,而氮肥利用率随施氮量的增加显著降低;N75、N150和N225的氮肥利用率分别为31.28%、22.95%和19.38%。土壤残留氮量随施氮量的增加而显著增大,且残留氮素主要分布于060 cm土层,深层渗漏量很小。整个作物土壤体系氮素回收率随施肥量的增加显著降低,损失率显著增高。N75处理的氮素回收率为60.41%,显著高于N150(46.41%)和N225处理(40.88%);且损失率最低(39.59%),显著低于其它两个处理。氨挥发损失随施氮量的增加显著升高,N2O损失量各处理间无明显差异;氮素损失中氨挥发和N2O损失所占比例较低,较多的氮素通过反硝化和径流等途径损失。  相似文献   

11.
不同施肥深度红地球葡萄对15N的吸收、分配与利用特性   总被引:2,自引:0,他引:2  
【目的】研究不同施肥深度葡萄对氮素吸收、 利用和分配的影响,为指导葡萄科学合理地施用氮肥提供依据。【方法】以河北葡萄主产区怀来地区15年生红地球葡萄为试材,通过不同深度(0 cm、 20 cm、 40 cm)春施15N-尿素,分析葡萄树体15N的吸收、 分配和利用规律。【结果】20 cm中层施肥红地球葡萄的产量最优,达22.77 t/hm2,果实Vc含量最高,达117.2 mg/kg,与表层(0 cm)施肥(产量16.22 t/hm2和Vc 103.8 mg/kg)和40 cm深层施肥(产量19.32 t/hm2和Vc 102.3 mg/kg)均存在显著差异;各生育期细根及其他各器官的Ndff 20 cm中层施肥均显著高于表层(0 cm)和深层(40 cm)施肥; 3个施肥深度,植株各器官在同一时期的15N分配率无显著差异,且整个生育期各器官15N分配率表现出相同的趋势,可见不同的施肥深度对 15N在各器官间的迁移和分配影响较小; 植株对15N-尿素的利用率随物候期的推移均呈升高的趋势,盛花期最低,且20 cm中层施肥葡萄树体对氮素的吸收能力最强,氮素利用率最高,四个时期分别为7.36%、 14.70%、 20.24%和24.54%,均大于表层撒施(7.05%、 10.74%、 12.70%和16.54%)和40 cm深层施肥(5.39%、 7.31%、 10.93%和13.62%);果实膨大期,整株15N利用率为后部中部前部,且地上部为叶果干枝,地下部为细根粗根主根,各施肥深度表现一致,且3个不同施肥深度,同一部位植株的果实、 叶、 枝、 干和根的15N利用率均以20 cm沟施最高,显著高于表施和40 cm沟施。【结论】20 cm中层施肥葡萄树体对氮素的吸收征调能力最强,各器官的氮素利用率最高,施肥深度对红地球葡萄树体氮素的吸收、 利用具有显著的影响,对树体氮素的分配影响较小,综合考虑,河北主产区红地球葡萄以20 cm施肥深度为最佳。  相似文献   

12.
【目的】苹果连作障碍发生普遍,严重影响果树生长。研究连作条件下平邑甜茶对氮素吸收、分配和利用的影响,为阐明连作障碍发生机制和防控苹果连作障碍提供理论依据。【方法】盆栽条件下,以平邑甜茶为试材,利用15N同位素示踪技术,研究了平邑甜茶对氮素吸收、分配和利用的影响。试验处理分为连作土溴甲烷熏蒸 (T1)、连作土高温灭菌 (T2)、麦田土 (T3) 和连作土 (CK) 四个处理。分别在8月和9月份进行两次取样,测定了不同处理间生物量、根系、氮素和土壤微生物的差异。【结果】连作显著抑制了平邑甜茶幼苗的生长和根系构型。与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作土处理9月份幼苗的鲜重分别减少了46.77%、46.50%和27.38%;株高分别减少了41.97%、41.95% 和 23.51%;根系面积分别减少了56.21%、55.72%和48.04%。与麦田土相比,连作改变了土壤微生物群落,增加了有害真菌数量,减少了细菌数量,降低了细菌/真菌比值。9月份连作土壤真菌数量是麦田土处理的1.76倍,细菌占麦田土的78.77%。连作减少了氮素对各器官的贡献率 (NDff),显著低于连作土溴甲烷熏蒸、高温灭菌和麦田土处理。与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作土处理9月份叶片组织的NDff分别减少了61.34%、58.65%、57.36%。同时,连作还影响氮素在植株各器官的分配。连作平邑甜茶根系分配了更多的15N,9月份达到42.11%。而叶片组织的15N分配率显著低于其他三个处理,并随着连作时间的延长,叶片组织的15N分配率越少,9月份仅占29.25%。连作还减少了氮肥的利用率,显著低于正常水平。9月份连作土氮肥的利用率为13.33%,与连作土溴甲烷熏蒸、高温灭菌和麦田土处理相比,分别减少了67.19%、67.68%、60.39%。连作还影响了根系功能,与溴甲烷熏蒸、高温灭菌和麦田土处理相比,连作条件下幼苗的根系活力分别降低了39.71%、40.64%和26.80%;根系质膜H+-ATP-ase活性分别减少了41.44%、38.24%、25.78%。【结论】土壤微生物是引起苹果连作障碍的主要因素,连作不仅抑制了植株生长和根系构型,还抑制了根系功能,减少对土壤氮素的吸收,降低氮肥的利用率,影响各器官氮素的分配。连作使根系消耗过多的营养,减少了对地上部分的供应,进而影响地上部分的生长和发育。  相似文献   

13.
分根区交替灌溉和氮形态影响土壤硝态氮的迁移利用   总被引:1,自引:0,他引:1  
采用模拟土柱利用15N标记于土层10~20 cm、40~50 cm的方法,并设置不同形态氮肥供应(铵态氮、硝态氮)、灌溉方式(常规灌溉CI、分根区交替灌溉APRI),研究APRI下土壤中不同层次硝态氮的去向以及不同形态氮肥的影响。结果发现,APRI节水34.31%而不显著影响产量(P0.05)。随着15N标记层次下降,番茄植株对15N吸收利用率以及番茄收获后15N在1 m土层内的残留量显著下降,损失率显著增加。CI对10~20 cm土层的15N淋洗作用强于40~50 cm土层,APRI对10~20 cm的15N淋洗作用相对CI减弱,而促进了40~50 cm土层中61.3%的15N向上层土壤迁移。APRI下15N的损失率显著降低,利用率没有大幅度下降。相对于铵态氮肥料,硝态氮供应由于促进了植株生长及对15N的吸收,造成番茄收获后1m土层内15N累积量减少,而损失率与相应铵态氮供应的处理没有显著差异。因此分根区交替灌溉能够减少土壤中硝态氮的淋洗,并能够促进下层土壤硝态氮向上迁移,减少损失,增加植物吸收利用的机会;不同形态氮肥通过影响植物生长而影响土壤中硝态氮的去向。  相似文献   

14.
在苹果/白三叶(M1)和苹果/黑麦草(M2)复合系统中,设置根系分隔(完全分隔N1、尼龙网分隔N2、不分隔N3),采用~(15) N同位素示踪技术,研究了根系互作对苹果生长及~(15) N吸收、利用,损失和土壤残留的影响。结果表明:苹果新梢旺长期,在M1中苹果各生长指标均为N3N2N1,在M2中趋势相反。与N1处理相比,M1中N2和N3处理苹果~(15) N利用率分别增加了11.91%和18.96%,M2中分别降低了5.76%和8.99%,苹果全氮量和~(15) N吸收量趋势相同。苹果根区土壤~(15) N丰度、总氮含量和~(15) N残留率均以N1处理最高,N3处理最低;苹果落叶期,两种复合体系中均以N3处理的苹果各生长指标最大,N1处理最低。在M1中N2和N3处理苹果根区土壤~(15) N丰度分别比N1处理增加了22.33%和34.15%,在M2中增幅分别为13.73%和21.44%,土壤总氮含量呈相同趋势。M1和M2中苹果全氮量、~(15) N吸收量和各器官Ndff值差异显著,均为N3N2N1。与N1处理相比,M1中N2和N3处理下苹果~(15) N利用率分别增加了19.11%和42.66%,而~(15) N损失率分别降低了13.55%和27.12%,在M2中趋势相同。苹果生长前期,黑麦草和苹果以负相竞争为主,白三叶对其促进效果亦不显著。而至苹果生长后期,两种牧草和苹果根系互作降低了苹果根区氮素损失,促进了苹果的氮素吸收利用和营养生长,且以间作白三叶效果最好。  相似文献   

15.
为探明盐渍化农田不同施氮水平下向日葵氮素吸收利用规律,采用15N同位素示踪技术进行田间微区试验,以不施氮处理(N0)为对照,设计3种施氮水平(N1=150 kg/hm2、N2=225 kg/hm2、N3=300 kg/hm2),于向日葵成熟期测定植株和0—100 cm土层土壤15N同位素丰度及总氮含量,研究各处理肥料氮素的去向及其利用机制。结果表明:向日葵氮素吸收量随施氮量的增加而增加,成熟期作物氮素吸收量在N2水平较不施氮显著增加38.7%;土壤氮和肥料氮对作物当季氮素吸收的贡献比例为84.9%和15.1%。N2水平下,肥料氮的贡献比例较N1增加35.7%,土壤氮的贡献比例较N1降低4.3%。肥料氮残留量随土层深度增加而减少,土壤中47.4%的残留肥料氮主要集中在0—20 cm土层。不同施氮水平下肥料氮去向均表现为氮肥损失率>氮肥残留率>氮肥利用率,N2施氮水平下氮肥利用率较N1、N3显著提高22.7%和14.6%,土壤残留率较N1、N3减少8.5%和8.6%。综合考虑向日葵氮素吸收利用及土壤中氮素残留情况,225 kg/hm2施氮量下氮肥利用率为27.4%,氮肥残留率为32.3%,氮肥损失率为40.3%,是中度盐渍化农田较适宜的施氮量。  相似文献   

16.
  【目的】  探究氮肥减量配施氮肥抑制剂和鸡粪的情况下土壤及肥料氮素供应和利用状况,及其对土壤肥力和水稻产量的影响,为我国东北地区水稻生产中提高氮肥利用效率、实现节肥增效提供理论基础。  【方法】  采用15N同位素示踪技术,盆栽试验设不施氮肥处理 (CK)、常规氮肥 (15N示踪尿素) 处理 (N)、80%尿素氮+20%鸡粪氮处理 (NM)、80%尿素氮+抑制剂处理 (NI)、80%尿素氮+抑制剂+20%鸡粪氮处理 (NIM)。测定不同生长时期来自于土壤及肥料中的铵态氮、微生物量氮含量及植株含氮量,收获时测定水稻产量。  【结果】  1) NI处理在土壤及肥料来源的铵态氮供应能力方面与N处理相当,抑制剂添加对氮肥减施有一定的补偿作用。在分蘖期和灌浆期,NM处理供氮能力优于无机氮肥处理。NIM处理在铵态氮和硝态氮供应能力方面效果最好。与N处理相比,NIM处理在水稻返青期、分蘖期和灌浆期土壤铵态氮含量分别提高了19.2%、66.3%和36.5%,硝态氮含量分别提高了13.9%、12.7%和17.3%,15NH4+-N含量在分蘖期增加了14.59 mg/kg。2) 无机氮肥处理 (N、NI) 对土壤微生物量碳含量无显著影响,但添加鸡粪处理 (NM、NIM) 显著提高了返青期和灌浆期土壤微生物量氮含量 (P < 0.05)。与N处理相比,NIM处理在水稻返青期、分蘖期、灌浆期和成熟期土壤微生物量碳含量分别提高了32.61%、29.23%、53.46%和2.85%,微生物量氮含量分别提高了147.98%、22.97%、133.33%和24.63%,15N-微生物量氮含量在分蘖期增加了约22.56 mg/kg。3) 抑制剂及鸡粪添加均提高了水稻产量和生物量,NIM处理的水稻生物量、产量和吸氮量较N处理分别提高了83.59%、124.18%和46.66% (P < 0.05),土壤中肥料氮的残留量显著增加了56.48%,肥料氮的损失减少了约78.7%。NIM处理的氮素吸收利用率、氮肥农学效率等显著高于其他处理,抑制剂与鸡粪在提高肥料氮素利用率方面存在显著交互作用。  【结论】  在我国北方棕壤水稻土上,在尿素中添加抑制剂 (1%PPD+1%NBPT+2%DMPP) 或者用鸡粪替代20%的尿素均能改善土壤氮素供应,氮肥减量20%配施抑制剂和鸡粪不仅不会减产,还会在提高水稻产量的同时提高肥料利用率。从肥料氮释放及水稻吸收利用的角度综合考量,减少20%尿素投入,添加氮肥抑制剂,以及添加氮肥抑制剂的同时,用鸡粪替代20%的尿素的效果较好。  相似文献   

17.
滴灌施氮对苹果氮素吸收和利用的影响   总被引:3,自引:1,他引:2  
以8年生嘎富苹果/八棱海棠(Malus robusta Rehd)为试材,研究了滴灌施肥下不同滴头数量对其滴施15N-尿素的吸收、分配与利用特性。结果表明:不同滴头数量处理,果实成熟期植株各器官Ndff%差异显著,DF2(两个滴头滴灌施肥处理)各器官Ndff%显著高于DF1(一个滴头滴灌施肥处理)和CK,DF1和CK差异不显著。3个处理均以果实的Ndff %值最高,分别为3.84%、3.14%和3.16%;新梢旺长期和果实膨大期DF2处理果实的Ndff%低于DF1和CK,但在果实成熟期Ndff %超过DF1和CK,DF1和CK 差异不显著。果实成熟期生殖器官分配率最高,营养器官和贮藏器官均较低,处理间差异不显著。DF2处理的15N利用率为38.95%,显著高于DF1(27.68%)和CK(23.69%)。随生长期的推移,各处理间020cm和2040cm土层硝态氮含量变化趋势一致,均呈双峰趋势,峰值分别出现在新梢旺长期和果实膨大期;6080cm和80100cm土层硝态氮含量变化趋势也一致,均变化较为平缓,而4060cm土层硝态氮含量变化差异显著,DF2处理明显高于DF1和CK。  相似文献   

18.
探究地面覆沙与供氮水平对陇东旱塬苹果幼树氮素吸收、分配及利用的影响,为实现半干旱区苹果园合理施氮、提高氮素利用率提供科学依据。该研究以3 a生富士苹果幼树为材料,采用二因素裂区设计,田间设置主区为地面管理措施,清耕(对照CK)和覆沙(SM),副区为2个供氮水平,5 g 15N-尿素(N1),5 g15N-尿素+75.5 g普通尿素(N2)。利用15N同位素示踪技术,分别于6月(果实膨大期)、8月(新梢停止生长期)和10月(落叶前)3个生育期对植株各器官15N丰度和全氮量进行测定分析。结果表明:1)地面覆沙增加了幼树地上部生物量累积,覆沙条件下供氮有利于生育后期地上部和总生物量累积;清耕条件下高供氮量(CKN2)可有效增加地下部干物质量,但SMN1处理于落叶前(10月)地下部生长极快,与CKN2差异不显著(P>0.05)。地面覆沙和供氮水平及二因素互作显著影响果实和多年生枝的Ndff值(氮素含量来自肥料氮的百分比)(P<0.05),二因素互作对果实Ndff值累积作用较多年生枝更大。6月和8月,地面覆沙条件下SMN1处理多年生枝和细根Ndff值最高,分别为2.26%、3.21%和3.67%、5.89%。当年生育周期内,二因素及二因素协同作用对果实15N分配率有极显著影响(P<0.01),对其他器官存在部分显著(P<0.05)或极显著(P<0.01)影响,贮藏器官是树体最大的15N利用器官,其次为营养器官、生殖器官。整个生育期内,植株15N利用率为3.38%~38.00%,表现为地面覆沙SM>CK,地面覆沙显著提高苹果幼树的15N利用率(P<0.05),而供氮水平的升高对树体15N利用率的影响大多情况下并不显著(P>0.05)。综合分析认为,该试验条件下较低的供氮水平(N1)及有效的地面覆沙措施(SM)既可促进幼树总生物量累积,又能提高氮素利用效率,从而优化农业生态系统中氮肥投入。  相似文献   

19.
移栽叶龄对水稻氮素吸收利用及~(15)N-肥料去向影响   总被引:1,自引:0,他引:1  
利用15N示踪技术研究了不同叶龄移栽对水稻产量、氮肥吸收利用及其氮素去向的差异。结果表明,随移栽叶龄推迟,水稻产量显著降低,籽粒与秸秆氮肥吸收量、肥料利用率及其残留量也降低,而氮素损失增加。水稻所吸收的氮素约2/3来源于土壤氮,1/3来源于当季肥料施的氮。肥料利用率为20.8%~25.7%,氮肥残留率为17.9%~32.2%,有42.1%~61.3%的肥料损失。无论哪种叶龄移栽条件下,肥料主要残留在0~20cm土层中。研究表明水稻早栽能增加产量、提高肥料利用率,减少肥料损失,降低氮素对环境的污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号