首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

2.
Denitrification is one of the major processes causing nitrogen loss from arable soils.This study aimed to investigate the responses of nir S-type denitrifier communities to different chronic fertilization regimes across the black soil region of Northeast China.Soil samples were collected from sites located in the north(NB),middle(MB),and south(SB)of the black soil region of Northeast China,each with four chronic fertilization regimes:no fertilizer(No F),chemical fertilizer(CF),manure(M),and chemical fertilizer plus manure(CFM).Methods of quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing were applied to assess the abundance and composition of denitrifier communities by targeting the nir S gene.The results showed that the M and CFM regimes significantly increased the abundances of nir S-type denitrifiers compared with No F at the three locations.The majority of nir S sequences were grouped as unclassified denitrifiers,and the different fertilizers induced little variation in the relative abundance of known nir S-type denitrifier taxa.Over 90%of the sequences were shared among the four fertilization regimes at each location,but none of the abundant operational taxonomic units(OTUs)were shared among the three locations.Principal coordinate analysis(PCo A)revealed that the communities of nir S-type denitrifier were separated into three groups that corresponded with their locations.Although similar fertilization regimes did not induce consistent changes in the nir S-type denitrifier communities,soil p H and NO-3-N content simultaneously and significantly influenced the structure of nir S-type denitrifier communities at the three locations.Our results highlight that geographical separation rather than chronic fertilization was the dominant factor determining the nir S-type denitrifier community structures,and similar chronic fertilization regimes did not induce consistent shifts of nir S-type denitrifier communities in the black soils.  相似文献   

3.
Northern peatlands store nearly one-third of terrestrial carbon(C)stocks while covering only 3%of the global landmass;nevertheless,the drivers of C cycling in these often-waterlogged ecosystems are different from those that control C dynamics in upland forested soils.To explore how multiple abiotic and biotic characteristics of bogs interact to shape microbial activity in a northern,forested bog,we added a labile C tracer(13C-labeled starch)to in situ peat mesocosms and correlated heterotrophic respiration with natural variation in several microbial predictor variables,such as enzyme activity and microbial biomass,as well as with a suite of abiotic variables and proximity to vascular plants aboveground.We found that peat moisture content was positively correlated with respiration and microbial activity,even when moisture levels exceeded total saturation,suggesting that access to organic matter substrates in drier environments may be limiting for microbial activity.Proximity to black spruce trees decreased total and labile heterotrophic respiration.This negative relationship may reflect the influence of tree evapotranspiration and peat shading effects;i.e.,microbial activity may decline as peat dries and cools near trees.Here,we isolated the response of heterotrophic respiration to explore the variation in,and interactions among,multiple abiotic and biotic drivers that influence microbial activity.This approach allowed us to reveal the relative influence of individual drivers on C respiration in these globally important C sinks.  相似文献   

4.
Humic substances acting as an electron shuttle and nitrogen transformation process influence remarkably the electron transfer in anaerobic reaction systems and thus may affect the reductive dechlorination of hexachlorobenzene(HCB). In order to develop an efficient agricultural strategy for the remediation of organochlorine-contaminated soils, a batch incubation experiment was conducted to study the effects of humic acid, urea, and their interaction on the reductive dechlorination of HCB in a Hydragric Acrisol with high iron oxide content. After 44 d of anaerobic incubation, the five treatments, sterile control,control, humic acid, urea, and humic acid + urea decreased HCB residues by 28.8%, 47.8%, 64.7%, 57.8%, and 71.3%, respectively. The amendment of humic acid or urea significantly decreased soil Eh values and accelerated Fe(Ⅲ) reduction to Fe(Ⅱ), thus promoting markedly reductive dechlorination of HCB. Humic acid had a larger dechlorination effect than urea. Since there was a synergistic interaction between humic acid and urea that accelerated HCB dechlorination, the treatment having both amendments together was the most efficient for HCB dechlorination. The results showed that the combination of NH4+-N supplied by a fertilizer and humic substance is a feasible strategy for the remediation of organochlorine-contaminated soils with abundant iron oxide.  相似文献   

5.
Long-term nitrogen(N)fertilization imposes strong selection on nitrifying communities in agricultural soil,but how a progressively changing niche affects potentially active nitrifiers in the field remains poorly understood.Using a 44-year grassland fertilization experiment,we investigated community shifts of active nitrifiers by DNA-based stable isotope probing(SIP)of field soils that received no fertilization(CK),high levels of organic cattle manure(HC),and chemical N fertilization(CF).Incubation of DNA-SIP microcosms showed significant nitrification activities in CF and HC soils,whereas no activity occurred in CK soils.The 44 years of inorganic N fertilization selected only 13C-ammonia-oxidizing bacteria(AOB),whereas cattle slurry applications created a niche in which both ammonia-oxidizing archaea(AOA)and AOB could be actively13C-labeled.Phylogenetic analysis indicated that Nitrosospira sp.62-like AOB dominated inorganically fertilized CF soils,while Nitrosospira sp.41-like AOB were abundant in organically fertilized HC soils.The 13C-AOA in HC soils were affiliated with the 29i4 lineage.The 13C-nitrite-oxidizing bacteria(NOB)were dominated by both Nitrospira-and Nitrobacter-like communities in CF soils,and the latter was overwhelmingly abundant in HC soils.The 13C-labeled nitrifying communities in SIP microcosms of CF and HC soils were largely similar to those predominant under field conditions.These results provide direct evidence for a strong selection of distinctly active nitrifiers after 44 years of different fertilization regimes in the field.Our findings imply that niche differentiation of nitrifying communities could be assessed as a net result of microbial adaption over 44 years to inorganic and organic N fertilization in the field,where distinct nitrifiers have been shaped by intensified anthropogenic N input.  相似文献   

6.
Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fertiliser use persists.Practices that reduce mineral N fertiliser application are needed in a sustainable agricultural ecosystem to control leaching and gaseous losses for environmental management.This study evaluated whether fully or partially replacing mineral N fertiliser with zoo compost(Perth Zoo) could be a good mitigation strategy to reduce mineral N fertiliser application without affecting wheat yield and nutrition.To achieve this,a glasshouse experiment was conducted to assess the complementary effect of zoo compost and mineral N fertiliser on wheat yield and nutrition in a sandy soil of southwestern Australia.Additionally,a chlorophyll meter was used to determine whether there was a correlation between chlorophyll content and soil mineral N content,grain N uptake,and grain protein content at the tillering(42 d after sowing(DAS)) and heading(63 DAS) growth stages.The standard practice for N application for this soil type in this area,100 kg ha-1,was used with a soil bulk density of 1.3 g cm-3 to calculate the amount of mineral N(urea,46% N) and Perth Zoo compost(ZC)(0.69% N) for each treatment.Treatments comprised a control(no nutrients added,T1),mineral N only(100 kg N ha-1,T2),ZC only(100 kg N ha-1,T7),and combinations of mineral N and ZC at different rates(mineral N at 100 kg N ha-1+ ZC at 25 kg N ha-1(T3),mineral N at 75 kg N ha-1+ ZC at 25 kg N ha-1(T4),mineral N at 75 kg N ha-1+ ZC at 50 kg N ha-1(T5),and mineral N at 50 kg N ha-1+ ZC at 50 kg N ha-1(T6)).The T6 treatment significantly increased grain yield(by 26%) relative to the T2 treatment.However,the T7 treatment did not affect grain yield when compared to the T2 treatment.All treatments with mineral N and ZC in combination significantly improved the 1 000-grain weight compared to the T2 treatment.Chlorophyll content was better correlated with soil mineral N content(r = 0.61),grain N uptake(r = 0.62),and grain protein content(r = 0.80) at heading(63 DAS) than at tillering(42 DAS).While ZC alone could not serve as an alternative to mineral N fertiliser,its complementary use could reduce the mineral N fertiliser requirement by up to 50% for wheat without compromising grain yield,which needs to be verified in the field.Chlorophyll content could be used to predict soil mineral N at the heading stage,and further studies are warranted to verify its accuracy in the field.Overall,the application of ZC as part of integrated nutrient management improved crop yield with reduced N fertiliser application.  相似文献   

7.
Functional redundancy in soil microbial communities seems to contradict the notion that individual species have distinct metabolic niches in multi-species communities.All soil microbiota have the metabolic capacity for"basic"functions(e.g.,respiration and nitrogen and phosphorus cycling),but only a few soil microbiota participate in"rare"functions(e.g.,methanogenesis and mineralization of recalcitrant organic pollutants).The objective of this perspective paper is to use the phylogenetic niche conservatism theory as an explanation for the functional redundancy of soil microbiota.Phylogenetic niche conservatism is defined as the tendency for lineages to retain ancestral functional characteristics through evolutionary time-scales.The present-day soil microbiota is the result of a community assembly process that started when prokaryotes first appeared on Earth.For billions of years,microbiota have retained a highly conserved set of core genes that control the essential redox and biogeochemical reactions for life on Earth.These genes are passed from microbe to microbe,which contributes to functional redundancy in soil microbiota at the planetary scale.The assembly of microbial communities during soil formation is consistent with phylogenetic niche conservatism.Within a specific soil,the heterogeneous matrix provides an infinite number of sets of diverse environmental conditions,i.e.,niches that lead to the divergence of microbial species.The phylogenetic niche conservatism theory predicts that two or more microbial species diverging from the same clade will have an overlap in their niches,implying that they are functionally redundant in some of their metabolic processes.The endogenous genetic factors that constrain the adaptation of individuals and,thus,populations to changing environmental conditions constitute the core process of phylogenetic niche conservatism.Furthermore,the degree of functional redundancy in a particular soil is proportional to the complexity of the considered function.We conclude with a conceptual model that identifies six patterns of functional redundancy in soil microbial communities,consistent with the phylogenetic niche conservatism theory.  相似文献   

8.
In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system.  相似文献   

9.
Since the advent of sequencing technologies,the determination of microbial diversity to predict microbial functions,which are the major determinants of soil functions,has become a major topic of interest,as evidenced by the 900 publications dealing with soil metagenome published up to 2017.However,the detection of a gene in soil does not mean that the relative function is expressed,and the presence of a particular taxon does not mean that the relative functions determined in pure culture also occur in the studied soil.Another critical step is to link microbial community composition or function to the product analyzed to determine flux rates.Indeed,flux rates might not only be highly dynamic,but several metabolites can depend on different reactions,which makes the link to one process of interest difficult or even impossible.This review also discusses biases caused by sampling,storage of samples,DNA extraction and purification,sequencing(amplicon-vs.metagenome sequencing),and bioinformatic data analysis.Insights and the limits of predicting microbial interactions by network inference methods are critically discussed,and finally,future directions for a better understanding of soil functions by using measurements of microbial diversity are presented.  相似文献   

10.
Clay minerals play an important role in biogeochemical cycling.Here,kaolinite and montmorillonite,the two most abundant and widespread clay minerals with typical layered structures,were selected to investigate and compare their effects on the biodegradation of benzo[a]pyrene(BaP)by Paracoccus aminovorans HPD-2 and to investigate the underlying interface mechanisms.Overall,the BaP degradation efficiency was significantly higher 7 d after montmorillonite addition,reaching 68.9%(P<0.05),when compared with that of the control without addition of clay minerals(CK,61.4%);however,the addition of kaolinite significantly reduced the BaP degradation efficiency to 45.8%.This suggests that kaolinite inhibits BaP degradation by inhibiting the growth of strain HPD-2,or its strong hydrophobicity and readily agglomerates in the degradation system,resulting in a decrease in the bio-accessibility of BaP to strain HPD-2.Montmorillonite may buffer some unfavorable factors,and cells may be fixed on the surface of montmorillonite colloidal particles across energy barriers.Furthermore,the adsorption of BaP on montmorillonite may be weakened after swelling,reducing the effect on the bio-accessibility of BaP,thus promoting the biodegradation of BaP by strain HPD-2.The experimental results indicate that differential bacterial growth,BaP bio-accessibility,interface interaction,and the buffering effect may explain the differential effects of the different minerals on polycyclic aromatic hydrocarbon biodegradation.These observations improve our understanding of the mechanisms by which clay minerals,organic pollutants,and degrading bacteria interact during the biodegradation process and provide a theoretical basis for increasing the biodegradation of soil pollutants by native microorganisms under field conditions.  相似文献   

11.
Volcanism is a primary process of land formation.It provides a model for understanding soil-forming processes and the role of pioneer bacteria and/or archaea as early colonizers in those new environments.The objective of this study was to identify the microbial communities involved in soil formation.DNA was extracted from soil samples from the Llaima volcano in Chile at sites destroyed by lava in different centuries(1640,1751,and 1957).Bacterial and archaeal 16 S r RNA genes were analyzed using quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing.Results showed that microbial diversity increased with soil age,particularly between the 1751 and 1640 soils.For archaeal communities,Thaumarchaeota was detected in similar abundances in all soils,but Euryarchaeota was rare in the older soils.The analysis of bacterial 16 S r RNA genes showed high abundances of Chloroflexi(37%),Planctomycetes(18%),and Verrucomicrobia(10%)in the youngest soil.Proteobacteria and Acidobacteria were highly abundant in the older soils(16%in 1640 and 15%in 1751 for Acidobacteria;38%in 1640 and 27%in 1751 for Proteobacteria).The microbial profiles in the youngest soils were unusual,with a high abundance of bacteria belonging to the order Ktedonobacterales(Chloroflexi)in the 1957 soil(37%)compared with the 1751(18%)and 1640(7%)soils.In this study,we show that there is a gradual establishment of the microbial community in volcanic soils following an eruption and that specific microbial groups can colonize during the early stages of recovery.  相似文献   

12.
With the continuous increase in human population,there is widespread usage of chemical fertilizers that are responsible for introducing abiotic stresses in agricultural crop lands.Abiotic stresses are major constraints for crop yield and global food security and therefore require an immediate response.The implementation of plant growth-promoting rhizobacteria(PGPR)into the agricultural production system can be a profitable alternative because of its efficiency in plant growth regulation and abiotic stress management.These bacteria have the potential to promote plant growth and to aid in the management of plant diseases and abiotic stresses in the soil through production of bacterial phytohormones and associated metabolites as well as through significant root morphological changes.These changes result in improved plant-water relations and nutritional status in plants and stimulate plants’defensive mechanisms to overcome unfavorable environmental conditions.Here,we describe the significance of plant-microbe interactions,highlighting the role of PGPR,bacterial phytohormones,and bacterial metabolites in relieving abiotic environmental stress in soil.Further research is necessary to gather in-depth knowledge on PGPR-associated mechanisms and plant-microbe interactions in order to pave a way for field-scale application of beneficial rhizobacteria,with the aim of building a healthy and sustainable agricultural system.Therefore,this review aims to emphasize the role of PGPR in growth promotion and management of abiotic soil stress with the goal of developing an eco-friendly and cost-effective strategy for future agricultural sustainability.  相似文献   

13.
Knowing the spatial distribution of soil texture,which is a physical property,is essential to support agricultural and environmental decision making.Soil texture can be estimated using visible,near infrared,and shortwave infrared(Vis-NIR-SWIR)spectroscopy.However,the performance of spectroscopic models is variable because of soil heterogeneity.Currently,few studies address the effects of soil sample variability on the performance of the models,especially for larger spectral libraries that include soils that are more heterogeneous.Therefore,the objectives of this study were to:i)apply Vis-based color parameters on the stratification of a regional soil spectral library;ii)evaluate the performance of the predictive models generated from the spectral library stratification;iii)compare the performance of stratified models(SMs)and the model without stratification(WSM),and iv)explain possible changes in prediction accuracy based on the SMs.Thus,a regional soil spectral library with 1535 samples from the State of Santa Catarina,Brazil was used.Soil reflectance data were obtained by Vis-NIR-SWIR spectroscopy in the laboratory using a spectroradiometer covering the 350–2500 nm spectral range.Sand,silt,and clay fractions were determined using the pipette method.Twenty-two components of color parameters were derived from the Vis spectrum using the colorimetric models.A cubist regression algorithm was used to assess the accuracy of the applicability of the initial models(SMs and WSM)and of the validation between the clusters.Fractional order derivatives(FODs)at 0.5,1.5,and 2 intervals were used to explain possible changes in the performance of the SMs.The SMs with higher contents of clay and iron oxides obtained the highest accuracy,and the most important spectral bands were identified,mainly in the 480–550 and 850–900 nm ranges and the 1400,1900,and 2200 nm bands.Therefore,stratification of soil spectral libraries is a good strategy to improve regional assessments of soil resources,reducing prediction errors in the qualitative determination of soil properties.  相似文献   

14.
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.  相似文献   

15.
Thinning is an important forest management practice that has great potential to influence regional soil carbon storage and dynamics.The present study measured soil respiration(RS,the efflux of CO2 emitted)and its two components(heterotrophic(RH)and autotrophic(RA)respiration)from soil 42 years after thinning in comparison to un-thinning(control).Autotrophic respiration was significantly greater in the thinning plot,approximately 44%higher compared to the control,while both RSand RHwere slightly,but not significantly,higher in the thinning plot.Higher fine root biomass might have contributed to the higher RAin the thinning plot.Both RSand RHshowed clear soil temperature-dependent seasonal patterns,whereas RAwas less responsive to changes in temperature,especially within one specific season.The annual and season-specific temperature sensitivities of RSand RHwere lower in the thinning plot,specifically during the mid-growing season.Furthermore,variations in the season-specific temperature sensitivity of RSand RHwere less intense in the thinning plot.We conclude that forest thinning can reduce the temperature sensitivity of RSand RHduring the mid-growing season and increase soil CO2 emission in the long term.  相似文献   

16.
2007/2008年度冬季气候对农业生产的影响   总被引:1,自引:0,他引:1  
2007/2008年度冬季(2007年12月-2008年2月),全国大部地区平均气温偏低,阶段性变化明显,总体呈现前冬(2007年12月上旬-2008年1月上旬)偏暖、降水明显偏少,后冬(1月中旬-2月15日)持续偏冷、降水大部显著偏多的特点。1月中旬-2月初,出现了大范围历史罕见的低温雨雪冰冻灾害,设施农业、露天蔬菜、经济林果、油菜等越冬作物、养殖业受到严重影响,但低温雨雪天气利于杀灭病菌和虫卵,增加土壤和水利设施蓄水,为春季农业生产奠定较好基础;江南、华南以及贵州等地9月下旬-12月中旬持续少雨,严重秋冬连早,造成水库蓄水严重不足;云南和海南大部秋早持续至1月下旬,造成冬小麦、油菜、荔枝等长势偏差;东北地区大部和内蒙古东部1、2月份降水偏少5成以上,旱情持续发展。  相似文献   

17.
晏其彬,男,47岁,苗族,重庆彭水人,中共党员,研究生学历。1979年10月—1991年2月任四川省黔江县工商局干部(其间在四川大学工商管理系学习);1991年3月—  相似文献   

18.
不同根系土壤温度对烤烟生理生态的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
采用不同覆盖材料调控烟株根系土壤温度的方法,研究覆盖后不同土壤温度对烤烟生理生态的影响.结果表明:烟草幼苗早期400 ℃的积温是培育壮苗的临界温度,400 ℃以上积温虽可增加烟株株高和根长,但综合生长生理性状不佳,干物质积累少,表现为徒长状态,而在积温400 ℃以下随土壤积温增加,各种生长生理性状趋优,生长健壮,有利培育壮苗;各种覆盖材料都表现为气温高时,增温效果明显,不同覆盖材料材质差异较大,覆盖后地温变幅亦较大;大棚膜 稻草苗期覆盖是预防烤烟移栽后冷害的有效方法.  相似文献   

19.
5 病虫综合防治 所谓病、虫、杂草,原本都是食物链上的一些环节,在自然生态条件下,它们以野生植物(包括原始的农作物)为食.在农业开垦以后,人类铲除了其它野生植物,只播种农作物,能够危害农作物的病、虫、杂草必然向农作物上转移,在一定程度上影响作物产量、品质以及安全.  相似文献   

20.
温室土壤连作对黄瓜主要病害的影响   总被引:8,自引:4,他引:4       下载免费PDF全文
在温室条件下,通过田间系统观察和室内测定相结合的方法,研究了不同连作年限温室土壤对黄瓜主要病害发生的影响.结果表明:随种植年限的延长,土壤中病原微生物数量增加,是导致黄瓜土传病害加重的主要原因;黄瓜植株生长发育不良,黄瓜的光合速率及抗性酶活性降低,植株自身抗病性下降,是引起黄瓜病害发生加重的内因;温室内温度降低、湿度提高、光照下降,是导致黄瓜病害发生加重的外部条件.随着连作年限延长,黄瓜病害发生依次加重,土传病害对连作的反应比气传病害敏感,病害是土壤连作障碍的重要原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号