首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
柑橘叶片叶绿素含量高光谱无损检测模型   总被引:13,自引:5,他引:13  
针对柑橘叶片叶绿素含量的传统化学检测,不仅耗时长且损伤柑橘叶片,还依赖检测者实操技术,无法集成于精细农业中变量喷施农机具的诸多弊端,该文探讨快速无损检测柑橘叶片叶绿素含量方法。以117棵园栽萝岗甜橙树为研究对象,选用ASD Field Spec 3光谱仪对萌芽期、稳果期、壮果促梢期、采果期共4个生长时期的柑橘叶片进行高光谱反射率采集,并同步采用分光光度法测得叶片的叶绿素含量;以原始光谱及其变换形式作为模型输入矢量,分别在主成分分析(principle component analysis,PCA)降维的基础上利用支持向量机回归(support vector regression,SVR)算法和在小波去噪的基础上利用偏最小二乘回归(partial least square regression,PLSR)算法对柑橘叶片叶绿素含量进行建模预测,全生长期整体建模的校正集和验证集最佳模型决定系数R2分别为0.8713和0.8670,均方根误差RMSE(root-mean-square error)分别为0.1517和0.1544,试验结果表明,高光谱可快速无损地对柑橘叶片叶绿素含量进行精确的定量检测,为柑橘不同生长期的营养监测提供理论依据。  相似文献   

2.
基于高光谱的柑橘叶片氮素含量多元回归分析   总被引:8,自引:6,他引:2  
快捷、准确、无损地检测柑橘叶片氮(N)素含量,对柑橘树N肥施用的精准动态管理有重大现实意义。以117株园栽罗岗橙为试验研究对象,在不同生长期用ASD公司的FieldSpec3采集柑橘树健康叶片的高光谱反射值,以高光谱反射数据或其变换形式作为柑橘树样本多元矢量描述;用凯氏定氮法同期检测出柑橘树叶的真实N素含量值;在用PCA对高维光谱矢量降维的基础上,利用支持矢量回归算法(SVR)建立高光谱多元表达和N素含量间的映射关系,以实现任意柑橘树N素含量的预测分析。试验结果表明,测试集上预测值和真实值间的平方决定系数R2为0.9730,平均相对误差为0.9033%,均方误差MSE为0.090343,证明了该方法的有效性,为利用高光谱技术进行柑橘树N素含量的无损检测提供了参考。  相似文献   

3.
高光谱遥感可以实现水稻土排水期有机碳含量的快速预测,但土壤反射率受多种噪声的影响,有机碳光谱信号探测受阻,预测模型性能低下,如何在去除噪声的同时最大限度地保持有机碳光谱信号十分重要。以原状新鲜水稻土为研究对象,采用Bior1.3小波系对反射光谱进行1~7层小波包变换,通过相关分析确定最大分解层;将原始反射率至最大分解层以内的各层光谱相关系数组成相关系数集,采用局部最相关算法(local correlation maximization,LCM)构造土壤有机碳最优光谱;最后基于最优光谱建立有机碳含量偏最小二乘预测模型并进行分析。结果显示:1)随着小波包分解层数的增加,土壤反射率与有机碳含量的相关性不断增强,到第6层达到最高,确定为小波包最大分解层;2)基于LCM构造的最优光谱比未去噪光谱平滑,比小波包去噪光谱保留了更多光谱细节;3)未去噪光谱、小波包去噪光谱和LCM最优光谱有机碳预测模型的验证决定系数分别为0.693、0.727和0.781,均方根误差为1.952、1.840和1.679 g/kg,残留预测偏差为1.85、1.97和2.17。小波包-局部最相关算法在去噪同时有效保持了土壤有机碳光谱信号,可提高水稻土有机碳含量高光谱预测精度。  相似文献   

4.
基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型   总被引:8,自引:7,他引:1  
为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立油麦菜叶片全光谱数据、3种特征光谱数据与干基含水率的关系模型。结果表明,基于竞争性自适应加权算法波长选择的支持向量回归模型(CARS-SVR)效果最佳,但预测精度尚不够理想,故引入人工蜂群算法(artificial bee colony,ABC)优化模型的参数惩罚因子和核参数。最终,经人工蜂群算法优化后的模型(CARS-ABC-SVR)的预测集决定系数R2和均方根误差RMSE分别为0.9214和2.95%。因此,利用高光谱技术结合CARS-ABC-SVR模型预测油麦菜叶片水分含量是可行的。  相似文献   

5.
基于高光谱图像和光谱信息融合的马铃薯多指标检测方法   总被引:1,自引:7,他引:1  
针对随机放置的马铃薯缺陷多项指标难以同时检测的问题,提出了一种基于高光谱信息融合的流形学习降维算法与极限学习机(extreme learning machine,ELM)相结合的方法,该方法可同时识别马铃薯的多项缺陷指标。分别采集发芽、绿皮、黑心和合格马铃薯的反射高光谱数据(390~1 040 nm),在光谱维,提取马铃薯样本感兴趣区域(region of interest,ROI)的平均光谱,分别采用扩散映射(diffusion maps,DM)、局部线性嵌入(locally linear embedding,LLE)和海森局部线性嵌入(hessian locally linear embedding,HLLE)3种流形学习降维算法对光谱数据进行降维;在图像维,对马铃薯伪彩色图像进行形态学处理,获取基于灰度共生矩阵(gray level co-occurrence matrix,GLCM)的图像纹理信息,采用连续投影算法(successive projections algorithm,SPA)优选图像纹理特征;融合光谱维信息和图像维信息,分别建立基于极限学习机(ELM)与支持向量机(support vector machine,SVM)的马铃薯多分类识别模型。结果表明,扩散映射结合极限学习机(DM-ELM)模型的预测结果较优,该模型对发芽、绿皮、黑心和合格马铃薯样本的单一识别率分别为97.30%、93.55%、94.44%和100%,混合识别率达到96.58%,时间为0.11 s,可知高光谱信息融合技术结合流形学习降维算法可同时识别随机放置马铃薯的多种缺陷指标。  相似文献   

6.
基于流形光谱降维和深度学习的高光谱影像分类   总被引:1,自引:1,他引:0  
高光谱影像存在的"休斯(Hughes)现象"是制约高光谱影像分类精度的一个重要因素。为了提高高光谱影像分类精度,提出一种基于流形光谱特征的高光谱影像分类算法。首先使用t分布随机邻域嵌入算法对高光谱影像进行降维;其次将降维后的高光谱数据作为输入层,使用卷积神经网络提取空间深层特征;最后,将提取到的深层空间-光谱特征从隐层特征空间映射到样本标记空间并进行分类。结果表明,与其他算法相比,该研究究算法的总体精度和Kappa系数最高,3个数据集总体精度分别为99.05%、99.43%和98.90%,Kappa系数分别为98.78%、98.97%和98.34%,显著提高了高光谱影像的分类精度,减少了分类用时,有效解决了传统降维方法容易忽视局部特征的缺点。将流形学习降维和深度学习分类相结合为高光谱遥感影像分类和土地利用研究研究提供了一种思路。  相似文献   

7.
基于BP神经网络的橡胶苗叶片磷含量高光谱预测   总被引:4,自引:3,他引:1  
为验证高光谱技术在橡胶苗叶片磷素营养诊断方面的可行性,该文以砂培橡胶苗为研究对象,利用高光谱仪测得不同磷处理水平下橡胶苗叶片光谱反射率,并应用微分技术求取去噪后光谱反射率一阶和二阶导数,以叶片磷含量和光谱变量相关性分析为基础,选择出叶片磷含量敏感波段,最后以敏感波段为输入变量,结合多重线性回归、偏最小二乘回归和反向传播神经网络模型对叶片磷含量进行预测。结果表明:原始光谱反射率555和722 nm、一阶导数674、710、855、1 091、1 197、1 275、1 718、2 181和2 228 nm以及二阶导数816、890、1 339、1 357和2 201 nm为叶片磷含量敏感波段;反向传播神经网络模型预测精度最高,训练集和验证集中预测值和实测值之间的相关系数r分别为0.964和0.967,均方根误差RMSE分别为0.0139和0.00856,模型性能指数(ratio of performance to deviation,RPD)分别为3.71和3.23,证明高光谱技术可以快速、准确诊断橡胶苗叶片磷含量。  相似文献   

8.
及时准确地监测柑橘树体钾营养状况,有助于科学施肥,提高柑橘果实的品质和产量。试验对采集的W·默科特叶片钾含量及叶片光谱信息进行相关性分析,利用主成分分析和连续投影算法进行降维处理,同时结合偏最小二乘回归和最小二乘支持向量机回归分别建立了叶片钾含量预测模型。结果显示,柑橘叶片钾含量特征波长主要集中在450~600 nm、700 nm左右、980~1030 nm区域;最小二乘支持向量机回归模型的预测效果明显优于偏最小二乘回归模型,预测集相关系数达0.91。结果表明,利用高光谱成像技术结合最小二乘支持向量机回归可实现对柑橘叶片钾含量的快速诊断。  相似文献   

9.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:5,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   

10.
用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量   总被引:3,自引:2,他引:1  
为解决传统理化法检测柑橘树叶片受红蜘蛛为害后色素含量变化时存在的工作量大、效率低等问题,该文研究应用高光谱成像技术检测柑橘红蜘蛛为害叶片色素含量的方法。研究中对比了正常叶片与受害叶片的原始光谱以及原始光谱一阶微分曲线的差异,寻找反映叶片色素含量变化的特征波段;分析了特征波段反射率比值与叶片色素间相关性;采用单变量线性回归法分析了常用植被指数预测叶片色素含量的效果;采用逐步回归分析法建立了叶片色素含量预测模型,并对模型预测效果进行了F检验。结果表明:常用植被指数预测叶片色素含量结果不理想;选取的667/522、667/647和522/647 nm等3个特征波段反射率比值与叶片3种色素含量间具有较高的相关性;用于建立叶片色素含量预测模型的最佳特征波段反射率比值为667/522和667/647 nm,所建立的模型可较好地预测健康及受害叶片的叶绿素a、叶绿素b和类胡萝卜素含量。  相似文献   

11.
含风机噪声的蛋鸡声音信号去噪方法比较   总被引:6,自引:3,他引:3  
蛋鸡声音可用来评价蛋鸡本身的福利状况,然而蛋鸡舍中往往存在着低频风机噪声干扰蛋鸡声音信号的时频特征。为了优化含风机噪声的蛋鸡声音信号,以海兰褐蛋鸡为例,利用数字化声音采集平台,采集了不同的蛋鸡叫声和风机噪声。采用LabVIEW软件,分析了蛋鸡声音和风机噪声的时频特征,同时比较了滤波器和小波去噪方法在去除风机噪声方面的应用效果。结果表明,蛋鸡产蛋期间的声音频率范围为400~2 500 Hz,而风机噪声的频率在600 Hz以内。在信噪比为-20~10 dB蛋鸡声音环境中,无限脉冲响应滤波器滤波后的均方根误差要比有限脉冲响应滤波器滤波后的均方根误差小,说明无限脉冲响应滤波器具有更好的滤波效果,与其他小波阈值去噪方法相比,以史坦无偏似然估计为阈值的小波去噪方法在去噪后的均方根误差最小,表明这种方法的去噪效果更好。该研究可为蛋鸡舍中风机噪声环境下的蛋鸡声音识别提供参考。  相似文献   

12.
最优权重组合模型和高光谱估算苹果叶片全磷含量   总被引:8,自引:5,他引:3  
为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。  相似文献   

13.
为了解决普通检测装置难以覆盖不同果径(25~95mm)柑橘的检测需求问题,研发了覆盖多果径柑橘的便携式双档位多品质无损检测装置。以砂糖橘(果径25.35~48.61mm)和武鸣沃柑(果径53.24~94.71mm)为研究对象,基于研发的双档位探头,在赤道部位每隔120°采集一次光谱,平均光谱作为该柑橘的原始光谱。经标准正态变量变换(standard normal variable Transformation,SNV)、多元散射校正(multiplicative scatter correction,MSC)预处理,再利用竞争性自适应加权抽样算法(competitive adaptive reweighted sampling, CARS)筛选特征波长,分别建立了沃柑和砂糖橘的可溶性固形物含量(soluble solids content,SSC)和水分的偏最小二乘预测模型。沃柑的SSC和水分预测模型验证集相关系数分别为0.937、0.951,均方根误差分别为0.382%、0.005%;砂糖橘的SSC和水分预测模型验证集相关系数分别为0.921、0.935,均方根误差分别为0.460%、0.007%。为了评估检测装置的准确性和稳定性,使用平均变异系数分析了沃柑和砂糖橘的SSC含量和水分测定结果,并通过预测结果与标准理化值进行残差分析。结果表明,研制的便携式双档位柑橘多品质光谱检测装置对不同果径柑橘内部品质检测稳定性与精度均满足现场实时检测需求。  相似文献   

14.
同时反演氮、磷元素含量相对于单一元素反演可以更加全面地表达水稻的营养状况,为快速、准确获取水稻叶片氮、磷含量和精准变量施肥提供依据。该研究基于不同氮肥处理的田间小区试验,获取水稻叶片氮、磷含量数据,采用竞争性自适应重加权采样法(Competitive Adapative Reweighted Sampling,CARS)筛选氮素与磷素共同特征波长,以特征波长反射率为输入,以化学方法测得叶片氮、磷元素含量为输出,分别使用反向传播神经网络、极限学习机(Extreme Learning Machine,ELM)、龙格-库塔算法优化极限学习机(RUNge Kutta optimizer-Extreme Learning Machine,RUN-ELM)构建水稻叶片氮、磷含量反演模型并分析。结果表明:采用CARS方法有效去除了高光谱中大量无用、冗余信息,得到5个氮、磷元素共同特征波长,去除具有共线性的特征波长,最后筛选出的特征波长分别是451、488、780、813 nm。使用筛选后的特征波长反射率构建RUN-ELM水稻叶片氮、磷含量反演模型效果最好,氮素训练集的决定系数R2为0.690,均方根误差为0.669 mg/g,磷素训练集的决定系数R2为0.620,均方根误差为0.027 mg/g。通过对比,RUN-ELM在预测能力、模型稳定性上优于反向传播神经网络以及ELM模型。综上研究,基于CARS-RUN-ELM的水稻叶片氮、磷含量反演模型可以快速、准确获取水稻叶片氮、磷含量,可为水稻精准施肥提供参考。  相似文献   

15.
基于反射光谱预处理的苹果叶片叶绿素含量预测   总被引:9,自引:8,他引:1  
以苹果叶片叶绿素含量为研究对象,定量研究了光谱数据预处理方法对光谱特征提取及叶绿素含量预测模型的影响。首先,比较了苹果叶片原始反射率光谱、小波包去噪反射率光谱、反射率一阶差分光谱、先小波包去噪后一阶差分光谱、先一阶差分后小波包去噪光谱这5种光谱的波段间相关系数以及光谱与叶绿素含量间的相关系数,建立了叶绿素含量预测逐步回归模型并对建模结果进行了比较分析。结果表明单纯3层sym8小波包去噪可使光谱曲线平滑,但不会明显提高模型精度;一阶差分虽然放大了局部噪声,但是消除了基线漂移影响,可提高模型精度;先差分后小波包去噪比先小波包去噪后差分具有更高的峰值信号噪声比,更低的均方误差与最大误差,建模结果也显示出同样的结果。因此,先差分后小波包去噪算法可认为是一种有效的苹果叶片叶绿素含量预测光谱预处理方法。利用这一方法建立了苹果叶片叶绿素含量预测模型,获得了较高的预测精度。该研究可用于对苹果树营养状态的评价并指导按需施肥。  相似文献   

16.
基于特征光谱参数的苹果叶片叶绿素含量估算   总被引:5,自引:4,他引:1  
果树叶绿素含量的快速、无损、准确监测,可以及时掌握果树的营养水平,对指导果树管理具有重要意义。该文利用2012年和2013年山东省肥城市潮泉镇下寨村的苹果叶片叶绿素含量和叶片光谱数据,分析了叶绿素含量和苹果叶片原始光谱及其变换形式之间的相关性,筛选出较优光谱参数,并利用随机森林法、偏最小二乘法、BP神经网络和支持向量机回归法进行估算和验证。结果表明:1)叶绿素含量与叶片原始光谱及其变换形式之间的最优光谱参数分别为554和708 nm的原始光谱反射率,554和708 nm倒数之对数光谱,535、569、700和749 nm一阶微分光谱以及557和708 nm连续统去除光谱;2)随机森林、偏最小二乘法、BP神经网络和支持向量机估算模型的R2分别为0.94,0.61,0.66和0.60,RMSE分别为0.34,0.78,0.75和0.81 mg/dm2。说明随机森林算法模型用于估算苹果叶片叶绿素含量效果较好,为及时了解果树养分状况及果树营养诊断提供技术支持。  相似文献   

17.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

18.
基于组合滤波的鱼油二十碳五烯酸含量近红外光谱检测   总被引:1,自引:1,他引:0  
为了提高鱼油二十碳五烯酸(eicosapentaenoic acid,EPA)含量的测定精度,该研究将经验模态分解(empirical mode decomposition,EMD)和数学形态学滤波相结合的近红外光谱去噪方法应用于鱼油的一阶导数光谱预处理中,给出了方法的原理和步骤,评估了该方法的去噪效果。运用偏最小二乘回归(partial least squares regression,PLSR)建立了鱼油EPA近红外光谱的预测模型,用处理后的光谱计算了鱼油中EPA的含量,并与九点平滑和小波变换方法的处理结果进行了对比分析。结果表明:与传统的九点平滑处理结果相比,信噪比(signal to noise ratio,SNR)从14 d B左右提高到35 d B左右,原始信号与消噪信号之间的标准差由0.005 71降到0.002 26;预测集的决定系数由0.959 3提高到0.987 9,预测均方根误差(root mean square error,RMSE)由0.060 1降为0.031 2。证明了组合的EMD和数学形态学滤波方法在光谱处理过程中的可靠性,提高了鱼油EPA含量近红外光谱的定量分析精度。  相似文献   

19.
荔枝花芽分化期叶片的光谱特征及其养分预测   总被引:1,自引:0,他引:1  
为实现荔枝营养状况的快速监测,提高荔枝的精细施肥管理水平,服务华南荔枝的高产优质安全生产,研究了广州白云区荔枝花芽分化期冠层高光谱4 种变化形式的特性,结果表明荔枝秋梢冠层叶片光谱具有植物光谱共性。结合试验测得的冠层叶片生化养分数据(全氮、全磷、叶绿素、有机碳)分别与光谱反射率这4种形式作相关性分析。选择最显著相关的波段进行曲线拟合,结果表明:叶绿素、有机碳含量的最佳光谱诊断敏感波段分别是反射率一阶导数的 1 562 nm (r=0.8944)、1 720 nm (r=0.7827),全氮、全磷的最佳光谱诊断敏感波段分别是倒数对数一阶导数的2 059 nm (r=0.8073),1 347 nm (r=0.7575);全氮、叶绿素、有机碳指数函数拟合最优(RMSE分别为0.002730, 0.008138和0.000416),全磷线性模型最优(RMSE=0.000336)。研究结果对华南精细荔枝果业的实施和果业环境保护都具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号