首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
京津冀地区潜在蒸散量时空演变特征及归因分析   总被引:5,自引:5,他引:0  
为了深入认识京津冀地区潜在蒸散量的时空变化特征及其对气候变化的响应,该研究基于京津冀地区23个气象站57 a逐日气象观测资料,应用Penman-Monteith公式计算各站点日潜在蒸散量(ET0),剖析ET0的时空变化特征,运用敏感性分析法定量研究ET0对各气象要素的敏感性及其时空变化特征,定量识别各气象要素变化对ET0变化的贡献。研究结果表明:1)京津冀地区ET0空间分布整体呈由南向北递减趋势(除中部地区的塘沽站、黄烨站与保定站点ET0较高外)。ET0整体呈下降趋势,线性趋势率为-0.92 mm/a。ET0变化趋势空间分布由西北向东南递减,以春季减幅最为明显。2)京津冀地区ET0对相对湿度的最为敏感(-0.44),其次为风速(0.31)、日照时数(0.28)与平均气温(0.26)。随时间推移,ET0对平均风速与相对湿度敏感性整体呈下降趋势,而ET0对平均气温与日照时数的敏感性逐渐增强。敏感性系数空间分布从西北到东南:风速与平均气温敏感性系数逐渐递增,而日照时数与相对湿度敏感性系数逐渐递减。3)风速变化对京津冀地区ET0变化的贡献最大,平均气温次之。风速为主导因素的站点个数随时间呈下降趋势,平均气温与日照时数为主导的站点个数随时间呈上升趋势,说明近年来平均气温与日照时数对潜在蒸散量变化的影响愈加明显,这可能是由于近年来京津冀地区雾霾尤其是冬季雾霾对日照时数、气温与风速的产生一定影响,进而影响ET0。  相似文献   

2.
川中丘陵区参考作物蒸散量时空变化特征与成因分析   总被引:13,自引:7,他引:6  
为深入认识川中丘陵区参考作物蒸散量(reference crop evapotranspiration,ET0)变化特征,使用联合国粮农组织1998年推荐的Penman-Monteith公式计算川中丘陵区13个气象站点近52 a(1961-2012年)的逐日ET0,利用GIS克里金插值法和Mann-Kendall趋势检验法分析川中丘陵区ET0时空变化特征;在此基础上,使用基于通径分析原理的指标敏感性分析方法研究ET0的变化成因。结果表明:近52 a来川中丘陵区ET0年际间整体下降明显,ET0年内变化呈单峰曲线,主要集中在每年3-10月,占全年ET0的85.82%;ET0空间分布整体上呈现自东北、东南向中部递减趋势;在指标敏感性分析中,分别去掉日照时数(n)、风速(u2)、相对湿度(relative humidity,RH)和温度(T)后,剩余3个气象因子对回归方程估测可靠程度(E)由0.89分别降为0.596、0.81、0.84和0.88,表明ET0对n最为敏感,其次为u2、RH和T。因此,日照时数和风速是引起川中丘陵区ET0变化的最主要气象因子,相对湿度次之,温度对ET0的影响最小。当使用各季度平均温度代替逐日温度计算ET0时,各季度估算结果同实际计算结果间决定系数分别达到了0.93、0.97、0.96和0.94,表明估算精度较高,因此在资料缺乏情况下可以使用各季度平均温度替代温度计算ET0。该研究可为川中丘陵区的农田水分管理提供科学依据。  相似文献   

3.
为探讨贵州省乌江流域地表蒸散发(ET)时空特征及其影响因素,运用MOD16A2/ET产品和气象站数据,通过趋势分析与相关分析法,探讨了乌江流域ET时空变化特征及其影响因素。结果表明:(1) 2000—2014年乌江流域年际ET波动较大,年内ET呈周期性单峰变化趋势,ET季节变化表现为夏季(311.31 mm)春季(245.57 mm)秋季(138.10 mm)冬季(132.51 mm);(2)乌江流域ET空间异质性显著,呈西低东高的空间格局,平均ET值为605.43~1 208.26 mm;(3)各气候因子对ET的影响范围由大到小依次为降水量(30.67%)气温(29.56%)日照时数(23.84%),三者对ET均以正相关为主。乌江流域ET的时空分布特征虽受气候因子所控制,但各因子对ET的影响程度、范围却存在显著差异。  相似文献   

4.
利用淮河流域171个站点1971-2010年的气象资料,采用FAO Penman-Monteith公式计算该区近40a的参考作物蒸散量(ET0),并对ET0的时空分布特征和影响因子进行定量分析。结果表明:淮河流域年ET0为898mm,近40a总体以17.5mm/10a的速率减小(P〈0.05);空间分布显示西北部大部站点ET0呈显著下降趋势(P〈0.05),仅东南部个别站点呈显著上升趋势(P〈0.05)。各气象因子对ET0变化的贡献表现为两方面,即ET0对气象因子的敏感性和气象因子的多年相对变化率,在4个主要因子中(平均温度、相对湿度、日照时数和风速),ET0对相对湿度的变化最敏感(敏感系数最大),而风速的多年平均变化率最大。从各因子的贡献率看,对ET0贡献最大的是风速,平均温度的贡献最小,4个因子对ET0变化的总贡献率为-4.96%,总贡献率为负在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

5.
[目的]研究阿克苏河灌区作物的理论需水量的时空变化特征,为该区水资源科学管理、高效利用提供理论依据。[方法]基于灌区内1972—2014年6个气象台站的逐日气象观测数据,采用FAO修正的Penman-Monteith模型,计算参考作物蒸发蒸腾量(ET0),进行空间数据的插值分析,对阿克苏河灌区作物的理论需水量特征分别在空间和时间两个维度上进行探讨。[结果](1)阿克苏河灌区多年平均ET0介于1 118~1 241mm之间,呈现中部以北地区较低,西南部、南部地区较高的规律;(2)春季和夏季的ET0最高,5,6,7月的月均ET0合计为533mm,是作物最需要水分补给的重要时段;(3)自20世纪70年代至今,作物年均蒸发蒸腾量呈现逐渐降低的趋势,2010年以后的变化趋势较为显著;(4)灌区各季节及全年的ET0变化均呈现S形曲线分布,至2014年已接近波谷并有抬升趋势。[结论]在气候变化背景下,阿克苏河灌区作物的理论需水量随时间变化显著,春夏季受蒸腾作用影响是需要补水的关键时期,年际变化呈波动抬升趋势;在空间上亦呈现明显地带分异特点,呈南高北低的特征。  相似文献   

6.
河南省参考作物蒸散量变化特征及其气候影响分析   总被引:1,自引:0,他引:1  
基于河南省111个气象站1971-2010年逐日平均气温、最高气温、最低气温、相对湿度、风速和日照时数等气候要素资料,应用Penman-Monteith模型计算各站点逐日参考作物蒸散量(ET0),结合数理统计方法,分析近40a来河南省年ET0的时空变化特征,并对其主要影响因子进行探讨.结果表明,Penman-Monteith模型对河南省ET0的模拟能力较强,模拟值与同期小型蒸发皿蒸发量的相关系数r=0.84(P <0.01).近40a,河南省年ET0平均值为796.1mm(±102.2mm,n=4169),在空间分布上,总体表现出北高南低的特征,并以24.7mm·10a-1(P <0.01)的线性倾向率减少,呈明显减少的站点主要分布在34°N以北地区.偏相关分析表明,全省各地(市)年ETo与各气象要素关系密切,除济源外,年ET0均表现出与风速呈负相关且相关系数最大.逐步回归分析显示,年ETo与平均气温、日照时数、风速和相对湿度的关系密切;风速、日照时数和平均气温对年ET0的贡献为正效应,而相对湿度为负效应.近40a,风速减小是导致河南省年ET0呈显著减小的主要原因;但从综合影响看,这是各气象因素综合作用的效果,且各因子的贡献存在区域差异.  相似文献   

7.
GFDL-ESM2M气候模式下京津冀地区未来潜在蒸散量时空变化   总被引:3,自引:3,他引:0  
为探究未来潜在蒸散量时空变化特征,该研究以京津冀地区为例,基于美国GFDL提供的GFDL-ESM2M全球气候模式,得到京津冀地区92个格点2000-2050年的平均气温、最高气温、最低气温、太阳总辐射、平均相对湿度和近地面平均风速,应用Penman-Monteith公式计算京津冀地区未来92个格点的逐日潜在蒸散量(ET0),分析其时空分布特征及其与气象要素的相关关系。结果表明:未来年ET0总体呈增加趋势,RCP8.5情景下ET0上升速度最快,且随着时间推移增幅越来越大。夏季ET0增长速度最快,其次为春季、秋季与冬季,意味着未来ET0季节差异将愈加明显,可能出现更为严重的季节性干旱。ET0空间分布呈由西南向东北逐渐递减趋势,其中中部地区增速最快,增长趋势由中部向南北递减。不同气候情景下平均气温均呈逐年上升趋势,风速、太阳总辐射略微上升,而相对湿度下降。ET0与太阳总辐射的相关系数最大,呈由东北向西南递增趋势,其次为最高气温,呈由西北向东南递增趋势。ET0与相对湿度变化呈显著负相关,相关系数绝对值呈东北向西南递增趋势,ET0与风速相关度不明显。该研究可为农业需水预测与灌溉管理、科学应对气候变化提供基础支撑。  相似文献   

8.
基于云模型的甘肃省参考作物蒸散量时空分布特征   总被引:3,自引:3,他引:3  
为了深入探寻甘肃省参考作物蒸散量(reference crop evapotranspiration,ET0)的时空分异特性,利用甘肃省29个气象测站1951-2013年的观测资料,采用Penman-Monteith公式计算参考作物蒸散量。依靠处理定性概念与定量描述不确定转换的云模型,研究了ET0时空分布的均匀性和稳定性,并对ET0在月、季、年及空间上的变化特性进行了分析。结果表明:甘肃省ET0年际变化呈现逐年波动式的上升趋势,整个区域的ET0以2.11 mm/(10a)的倾向率增长;年内ET0逐月变化表现为单峰型,11月到次年3月分布较为均匀、稳定,4月到8月较为离散、不稳定。甘肃省ET0四季分布差异明显,夏季最大、春季次之、秋冬季最小;秋、冬季ET0分布较春、夏季更为均匀;春、冬季稳定性好于夏、秋季。甘肃省ET0在空间上总体呈西北地区大于东南地区的分布态势。与时间分布相比较,空间分布上较为离散、不均匀,而且也不稳定,总体上近33 a的不均匀性小于前30 a,稳定性也有逐渐增强的趋势。  相似文献   

9.
准确评估参考作物蒸散量的变化规律对新疆农业生产及水资源合理利用具有重要作用,采用Penman-Monteith公式以及55个气象站的逐日气象资料,计算了新疆1961-2013年参考作物蒸散量并分析其时空变化特征,运用多元回归分析法对影响参考作物蒸散量变化的主导气象因素进行了定量分析.结果表明:新疆ET0总体呈下降趋势,年际变化率为-1.01 mm/a.在20世纪80年代之前ET0偏高,90年代减少到最大,2000年以来又逐渐增大.从季节来看,夏季、秋季的ET0与年ET0的减小趋势一致,春季冬季ET0的减少趋势不明显.在不同年代际时间尺度,新疆全年及季节ET0的年际变化在空间上存在一定的分异.风速是全年及夏、秋季ET0变化的主导因素,而温度是春季及冬季新疆区域蒸发量变化的主导因素.  相似文献   

10.
蒸散发(ET)是水文过程的关键环节,研究ET时空变化特征及其对气候变化的响应,有助于理清区域水资源与气候变化的关系。基于MOD16 ET数据集和气象数据,采用Sen趋势分析、Hurst指数和相关性分析等方法,分析了武陵山区2000—2014年ET的时空变化特征及气候因子对ET的影响。结果表明:(1)武陵山区近15 a ET呈波动增加趋势; ET月际差异明显,表现为先增后减的单峰型变化趋势。(2)ET空间上整体呈现中部高、四周低的分布格局; 不同土地利用类型ET大小依次为林地>草地>灌木地>耕地,低山平均ET最高,四季ET均值呈现夏季>春季>秋季>冬季。(3)ET空间变化和趋势均处于相对稳定状态,未来ET增加区域与减少区域面积大致相当。(4)各气象因子对ET作用大小排序为气温>风速>降水>太阳辐射>湿度,且与气温、太阳辐射和风速为正相关,与降水和湿度为负相关,气温是其主要影响因子。综上,气候变化是武陵山区ET波动增加的驱动因素,但各因子的影响程度和范围差异较大。  相似文献   

11.
利用FAO推荐的Penman—Monteith公式。以内蒙浑善达克沙地三个气象站太阳辐射实测值计算的参考作物蒸散速率(ET0)为背景值,分析了利用估算的太阳辐射计算ET0时的精确度。结果表明:太阳实际日照时数短时。ET0的计算误差比较明显,必须利用适当的方法予以修正。  相似文献   

12.
冬小麦拔节抽穗期作物系数的研究   总被引:4,自引:1,他引:4  
在2000~2004年4个冬小麦生长季节研究了冬小麦拔节抽穗期农田蒸散量和参考作物腾发量(FAO56 PM方法计算)的关系,以及作物系数和叶面积指数及作物株高的关系。研究发现在冬小麦拔节抽穗前期,参考作物腾发量要大于或者接近于农田蒸散量,而在后期则要明显小于农田蒸散量。作物系数随着叶面积指数的增加和株高的增加而增加。用2003和2004年的数据回归建立了叶面积指数和株高与作物系数的数学表达式,并计算了2001和2002年的农田蒸散量。结果显示用叶面积和株高两种方法都能够很好的估算农田蒸散量。但是当农田蒸散量小于3 mm/d时,计算值要小于观测值。用叶面积指数和株高两种方法计算的农田蒸散量没有明显差别,说明用株高计算农田蒸散量是可行的。  相似文献   

13.
基于MODIS产品和SEBAL模型的三江平原日蒸散量估算   总被引:4,自引:0,他引:4  
在SEBAL模型的基础上,集成MODIS产品和气象数据进行了三江平原的日蒸散量估算,然后以2005年6月22日的蒸散量估算结果为例,在ArcGIS空间分析模块的支持下对不同土地覆盖类型的日蒸散量进行统计分析。结果表明:遥感估算的蒸散量与利用涡度相关系统实测的蒸散量的相对误差较小且相关性较好,平均相对误差为11.2%;不同土地利用类型的日蒸散量间差别显著。水体和林地的蒸散量较大,平均蒸散量分别为8.2mm和6.5mm;湿地和水田次之,平均分别为5.2mm和4.8mm;旱田的蒸散量最低,平均仅为3.7mm,基本符合蒸散规律。  相似文献   

14.
中国参考作物腾发量时空变化特性分析   总被引:28,自引:6,他引:28  
分析参考作物腾发量的时空变化特征,有助于了解中国农业及生态需水的分布与演变规律。基于全国范围200多个气象站测站逐日气象观测资料,应用FAO-Penman-Monteith公式,计算得出各站历年逐日参照作物腾发量ET0。利用GIS的空间分析功能,采用反距离空间插值方法得到全国参考腾发量的分布图,统计分析了不同分区不同时段ET0的变化情况。结果表明:西北河西走廊地区和南方岭南地区的参考作物腾发量较大,最大值超过1500 mm。而东北黑龙江一带和四川盆地附近,参考作物腾发量较小,在600~700 mm之间。此外,夏季ET0的分布特征决定了全年ET0的分布特征。选取4个代表气象站,对其ET0的历年变化及其与气象因素的关系进行了分析。分析表明,受风速减小和气温增加的共同影响,干旱地区、半干旱地区和半湿润地区的参考作物腾发量呈现减少趋势,湿润地区则相对稳定。  相似文献   

15.
西北旱区参考作物蒸散量空间格局演变特征分析   总被引:1,自引:0,他引:1  
利用西北旱区124个站点10a逐日气温、相对湿度、日照时数和风速资料,采用FAO的Penman-Monteith和Kriging方法对参考作物蒸散量进行估算和空间化,分析2000-2009年作物生长季(4-9月)参考作物蒸散量年际变化≥0.4mm区域质心的空间迁移规律。结果表明,作物生长季(4-9月)年际日均蒸散量变化≥0.4mm地区的质心整体经历从西到东两次波动,最后定位在中东部,质心迁移路径空间变化表现为由较发散变为较集中,然后到较发散;从各月年际变化上看,4月质心迁移平面距离最长,其次为7、9、6、8月,5月最短;迁移方向没有明显变化规律,各月质心最后到达位置各不相同,但是都处于内蒙古地区。近10a(2000-2009年)来,4-9月参考作物年际日均蒸散量变化≥0.4mm区域的面积呈现一定的增加趋势,其中4、6、9月的波动较大,年际变化趋势不明显,而5、7、8月面积变化曲线呈稳定增加趋势(P<0.05)。8月蒸散量对平均温度正向敏感的站点最多,敏感性较高的站点主要分布在中部和南部地区,其次是日照时数,蒸散量对相对湿度敏感的站点最少。研究结果对农业旱情监测、水资源管理和评价具有重要意义。  相似文献   

16.
自寻优最近邻算法估算有限气象数据区潜在蒸散量   总被引:1,自引:1,他引:0  
FAO-56 Penman-Monteith估算ET0方法被广泛使用,但计算时需要输入多个气象数据。开发一种替代方法,在使用尽可能少的气象数据情况下,仍可以提供准确的或至少接近FAO-56 Penman-Monteith的ET0估算值是该领域研究热点之一。该文结合典型相关分析(canonical correlation analysis,CCA)和k最近邻算法(k-nearest neighbor,k-NN),提出自寻优最近邻算法的潜在蒸散量计算方法(CCA-k-NN),利用较少气象数据实现潜在蒸散量的估算。核心思想是用CCA算法寻找与潜在蒸散量最相关的气象数据,实现后续估算ET0时的气象数据降维,然后利用k-NN算法估算ET0。选择西北地区为例,将该区域气象数据分别从时间和空间尺度,分为训练数据集,验证数据集和测试数据集,分别在3类数据集上用该文方法估算ET0,并以FAO-56 Penman-Monteith作为参照,评估了该文CCA-k-NN方法的估算精度和适用性。结果表明,CCA-k-NN方法与FAO-56 Penman-Monteith保持了较高的相关性(相关系数大于0.9),有好的估算精度,均方根误差和平均绝对误差均小于1 mm/d,空间尺度上算法纳什效率系数均大于0.5,时间尺度上纳什效率系数均大于0.8,在时空尺度均适用。同时,相对于其他替代方法该文算法具有低的时间复杂度,在计算大量数据时可有效降低时间成本。  相似文献   

17.
四川省潜在蒸散量变化及其气候影响因素分析   总被引:1,自引:0,他引:1  
潜在蒸散(ET_0)是评价某一地区干旱程度的重要指标,在全球气候变暖趋势下,估计ET_0的变化对科学估算作物需水量,提高水分利用率具有重大意义。本文利用四川省1961-2014年151个气象站的气象资料,采用Penman-Monteith公式分3个区域(四川盆地、攀西地区和川西高原)计算ET_0,并对主要气象因子平均气温、相对湿度、日照时数、平均风速的相对变化率、敏感系数及其对ET_0贡献率的时空变化进行分析。结果表明:四川盆地和川西高原ET_0呈现微弱减少,而攀西地区则呈现一定的增加,其空间分布表现为:攀西地区和川西高原南部年ET_0为高值区,多在1000~1350mm,四川盆地的西南部年ET_0为低值区,多在651~900mm,从西南向东北呈现"高-低-高"趋势。各气象因子对ET_0的影响(对ET_0变化的贡献率)主要取决于敏感性和相对变化率两方面。3个区域ET_0对相对湿度的变化均表现最敏感,其敏感系数分别为-1.13、-1.40、-1.53。在主要气象因子中,在四川盆地和攀西地区,平均风速的多年相对变化率最大(-29.7%、-16.3%),川西高原则为平均温度(40.4%)。进一步分析得出,平均风速在四川盆地和川西高原对ET_0变化的贡献率最大,是主导影响因素,而在攀西地区则为相对湿度。  相似文献   

18.
利用小蒸发皿观测资料确定参考作物蒸散量方法研究   总被引:6,自引:2,他引:6  
参考作物蒸散量是土壤-植被-大气系统水分能量平衡模型的重要参数,如何准确获得将直接影响模型应用和最终模拟预测精度。该文利用分布于黄土高原地区65个气象站1971~2000年的气象资料,以FAO推荐的Penman-Monteith方法确定的参考作物蒸散量为标准,提出了根据平均相对湿度与风速为变量确定由20 cm小蒸发皿观测的水面蒸发量计算参考作物蒸散量的系数Kp。结果表明:由蒸发皿观测值计算的3 d或更长尺度的ET0与Penman-Monteith方法计算的ET0结果一致性很高,在对Kp方程系数进行适当的地域性调整后,由蒸发皿观测值和Kp确定的ET0与Penman-Monteith方法确定的ET0结果一致,从而认为在黄土高原地区参考作物蒸散量计算可以应用20 cm蒸发皿系数法。  相似文献   

19.
两种Penman-Monteith公式计算草坪草参考腾发量的适用性   总被引:2,自引:0,他引:2  
为了揭示ASCE和FAO56两种Penman-Monteith公式在计算小时参考作物腾发量(ET0)时的差异,开展了充分供水草坪草腾发量观测试验。基于自动气象站的小时气象数据和蒸渗仪试验结果,在对比两公式计算结果差异基础上,以实测的日草坪腾发量为标准评价了2种计算公式小时ET0的日累积结果及以日的计算结果。结果表明:2种Penman-Monteith公式计算的小时ET0结果存在一定差异,ET0较高的时段差异也比较大。白天FAO56 Penman-Monteith公式的计算结果低于ASCE Penman-Monteith公式的计算结果,夜晚则正好相反,原因在于Cd取值的差异。与实测日ET0结果相比2种公式小时时段的ET0结果的累积值误差均比较大,ASCE的改进并没有使Penman-Monteith在计算结果上取得实质性的改进,相比之下以日为时段的Penman- Monteith公式(ASCE同FAO56)取得了与实测结果最为一致的效果。进一步根据实测的小时ET0数据以及更长序列的日ET0实测结果,评价FAO56 Penman-Monteith和ASCE Penman-Monteith结果的地区适用性将是今后研究内容之一。  相似文献   

20.
新疆参考作物蒸散量时空变化分析   总被引:19,自引:8,他引:11  
参考作物蒸散量是表征大气蒸散能力,评价气候干旱程度、植被耗水量的重要指标。利用新疆101个气象站1961-2008年的逐月气候资料,采用联合国粮农组织推荐的Penman-Monteith公式计算出各站逐月参考作物蒸散量,使用气候倾向率、Mann-Kendall检测以及基于GIS的宏观地理因子三维二次趋势面模拟与反距离加权残差订正相结合的空间插值技术,对新疆近48 a参考作物蒸散量时空变化特征进行了分析。新疆参考作物蒸散量的空间分布总体为南疆大于北疆、东部大于西部、盆(谷)地大于山区。受气温上升、日照时数减少、风速减小、相对湿度增大的影响,近48 a新疆参考作物蒸散量呈显著减小趋势,并于1981年发生了突变性减小,但各地具有明显的区域性差异, 参考作物蒸散越强烈的区域,其递减倾向率和减小幅度也越大。参考作物蒸散量减小对降低作物需水量和农田灌溉量、减小地表干燥度、改善新疆脆弱的生态环境具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号