首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
本研究通过系统研究种植果树对土壤胶结性物质的演化规律及其与土壤团聚体稳定性之间关系的影响,探索影响果园土壤团聚体状态的因素,以期为果园科学管理提供理论依据。在渭北旱塬苹果主产区分别选取10 a、20 a的苹果园和农田(冬小麦-夏玉米轮作,对照)各4个,在果树冠层投影范围内距树干2/3处逐层采集0~100 cm土层土壤样品和0~50 cm土层原状土壤样品,研究不同植果年限果园及农田土壤剖面黏粒、有机质、CaCO_3等团聚体胶结物质的分布及其与团聚体稳定性之间的关系。结果发现:在0~100 cm土层范围内,各果园土壤黏粒含量基本随土层深度的增加而递增,且在0~40 cm土层表现为农田10 a果园20 a果园,40 cm以下土层则呈现相反的态势;种植果树相比农田可显著增加0~100 cm土层土壤有机质总储量,但随着种植果树年限的增加,土壤有机质总储量呈递减趋势;在0~100 cm土层土壤CaCO_3总储量表现为10 a果园农田20a果园,但在0~40 cm土层CaCO_3含量及储量表现为10 a果园农田20 a果园,而40~100 cm土层则为20 a果园10 a农田。皮尔森相关分析发现(29)0.25 mm土壤团聚体的数量和平均重量直径(MWD)与土壤黏粒、有机质和CaCO_3含量密切相关,其中机械稳定性团聚体的数量和稳定性主要受土壤中CaCO_3、有机质含量的影响,水稳性团聚体的数量和稳定性主要受土壤中黏粒和CaCO_3的影响。总之,植果显著改变了土壤中黏粒、有机质、CaCO_3的演化过程和趋势,随植果年限增加,果园土壤黏粒和CaCO_3在土壤较深土层淋溶淀积明显;各果园土壤有机质总储量虽然高于农田,但随植果年限增加,有逐渐减少的趋势。可见植果明显加速了渭北黄土塬地土壤的残积黏化和钙化过程,影响着表层土壤团聚作用和底层土壤的紧实化和坚硬化程度。  相似文献   

2.
黄土高原苹果园深层土壤干燥化特征   总被引:12,自引:3,他引:9  
为了评价黄土高原苹果产区深层土壤干燥化特征及其区域分布规律,测定了其半湿润黄土台塬区(Ⅰ)、半湿润易旱黄土旱塬区(Ⅱ)、半湿润偏旱和半干旱黄土丘陵区(Ⅲ)等不同气候和地貌类型区32块苹果园地0~1500cm土层土壤湿度,定量比较和分析了各类型区苹果园地深层土壤含水率、土壤湿度剖面分布及其土壤干燥化特征。结果表明:1)Ⅰ、Ⅱ、Ⅲ区苹果园地0~1500cm土层土壤含水率依次为17.53%、13.44%和10.29%,土壤有效贮水量依次为1273.70、973.98和864.05mm,土壤水分过耗量依次为199.93、465.10和362.70mm,年均土壤干燥化速率依次为8.47、26.29和23.44mm/a。人工补灌、树龄、种植密度和地貌类型等因素影响果园土壤湿度和土壤干燥化程度。2)各区有补充灌溉的果园土壤剖面湿度显著高于旱作果园,不存在或部分土层存在干燥化现象;旱作果园土壤剖面均存在深厚的干燥化土层。3)Ⅰ、Ⅱ和Ⅲ区有补充灌溉的苹果园地土壤干燥化指数(SDI)分别为-8%、-11%和-34%;旱作果园土壤干燥化指数(SDI)分别为32%、50%和46%,各类型干层厚度分别达到或超过790、1297和910cm。研究结果为黄土高原苹果园地深层土壤水分可持续利用和苹果生产基地可持续发展提供参考。  相似文献   

3.
宁夏环香山地区压砂地土壤肥力特征分析   总被引:3,自引:0,他引:3  
以宁夏环香山地区农田压砂地为研究对象,对压砂不同种植年限(CK,1a,3a,5a,15a,25a)下的土壤肥力及其相关因子进行了研究。结果表明:农田压砂后能显著提高土壤贮水量,压砂不同种植年限下的土壤贮水量分别比农田CK提高了68.5%,50.12%,40.42%,60.03%,44.39%。受季节降雨的影响,压砂不同种植年限土壤贮水量的季节变化趋势相一致。农田压砂种植初期(1~5a)显著降低了pH值,随着种植年限的增加PH值含量基本呈增加趋势。农田压砂后明显降低了土壤全氮、全磷、有机质、碱解氮、速磷、速钾的含量,且随着种植年限的增加呈逐年下降的趋势。随着种植年限的增加西瓜产量呈明显下降趋势,农田压砂种植5~8a,10a,15a,20a分别比压砂种植1~3a产量下降了33.33%,38.89%,55.56%,71.11%。  相似文献   

4.
黄土塬面果园土壤养分特征及演变   总被引:8,自引:0,他引:8  
为了探明黄土高原沟壑区长期种植果树对果园土壤肥力的影响,应用空间代时间的方法,对不同种植年限果园的土壤肥力状况进行多元统计分析。结果表明,果园土壤全磷、速效磷和速效钾含量丰富,有机质、全氮、碱解氮含量属中等偏下水平。不同果园中各养分变异较大的是土壤速效磷、速效钾,土壤有机质和全氮的变异系数最小。与当地农田土壤养分相比,果园土壤养分除有机质含量差异不显著,全氮含量显著低于农田外,其余养分含量均显著高于农田。总体上看,不同种植年限间果园土壤养分含量差异显著。果园土壤肥力综合指数与种植年限二者之间有显著的相关性,其变化趋势符合y=-0.0011x2+0.0419x+0.2078模型。在黄土高原沟壑区种植果树能够提高土壤肥力,但当果树种植年限超过19年时果园土壤肥力开始衰退,果园生态系统质量下降。  相似文献   

5.
渭北不同园龄苹果园土壤团聚体状况及演变趋势研究   总被引:10,自引:0,他引:10  
为了探索果业生产和果园管理措施对土壤质量的影响,选取了渭北旱源苹果主产区彬县10a幼龄和21a老龄苹果园0~40 cm土壤为研究对象,以农田为对照,采用干筛法和湿筛法研究了不同种植年限果园土壤团聚状况与演变趋势。结果表明:渭北地区土壤机械稳定性团聚体以0.25 mm微团聚体为优势级别,仅0~20 cm处随园龄递增果园土壤团聚化趋势较为明显,0.25 mm土壤团聚体含量(DSAC0.25)、平均重量直径(MWD)和几何平均直径(GMD)均显著增大,团聚体分形维数(D)递减,但是,10~0.25 mm和5~1 mm最有价值团聚体和团聚体系数(KCTP)均在递减。渭北土壤水稳性团聚组成中约60%为0.25 mm微团聚体,在0~30 cm处土壤水稳性团聚体的MWD、GMD和WSAC0.25呈现为农田(对照CK)10a果园21a果园,随园龄递增有明显增大趋势。0.25 mm团聚体的破坏率(PAD0.25)随园龄增加显著增大,递增幅度随土层深度增加而递减。相关分析表明,土壤总有机碳(TOC)、颗粒态有机碳(POC)与机械稳定性团聚体各项指标呈极显著相关,土壤碳酸钙含量、黏粒含量与水稳定团聚体多项指标呈极显著相关,PAD0.25与土壤理化性质呈显著相关。研究表明,果树种植在表观上明显提高了渭北地区表层0~20 cm土壤机械稳定性大团聚体数量,增强了土壤抗风蚀能力,但却显著降低了土壤团聚体的农艺质量及其稳定性,果园土壤团聚体的农艺质量显著退化与有机物及碳酸钙含量递减有着直接关系。  相似文献   

6.
洛川塬土壤水分特征及其对土地利用变化的响应   总被引:2,自引:1,他引:1       下载免费PDF全文
[目的]揭示洛川塬土壤水分特征及其对土地利用变化的响应,为优化黄土高原土地利用结构和土壤水分管理提供科学依据。[方法]测定农地、荒草地以及8,13,15,24,28和30a果龄的苹果园0—10m剖面的土壤水分,对比分析各样地的土壤含水率、土壤储水量及土壤干燥化特征。[结果](1)0—10m平均土壤水分含量:荒草地农地≈8a果园13a果园≈15a果园24a果园≈30a果园28a果园;≥24a果园土壤水分随深度增加逐渐减小,而其他样地的土壤水分随深度增加逐渐接近田间持水量。(2)以农地为参照,不同果园4—10m土壤水分减少量明显高于0—4m减少量,与农地的差异性随果龄增大而越发显著。(3)农地和荒草地转化为不同年限果园后出现水分亏缺现象,亏缺量占田间持水量的12%~46%。(4)24,28和30a果园分别出现轻度、中度和轻度干燥化现象。[结论]农地和荒草地转变成不同年限果园后,出现不同程度水分亏缺,并导致一定厚度的干层存在。  相似文献   

7.
以黄土高原沟壑区的苹果园为研究对象,对6~36 a苹果园土壤重金属含量状况进行研究,结果发现,该区苹果园的高投入种植管理模式,能够影响重金属在土壤中的迁移与富集,使土壤重金属含量发生明显变化。土壤Cu含量随树龄增加而增加,20 a以上的土壤-果树系统对土壤Cu的输入与输出趋于平衡,Cu含量变化不大,且耕层土壤Cu含量较高。Cr含量随树龄线性递增,36 a果园0~20 cm,20~40 cm和40~60 cm土层Cr含量分别比6 a果园增加27.14%,17.09%和19.17%。Cd含量随树龄增加先增加后减少,长期大量施用磷肥是土壤Cd的主要来源,果园生态系统深层土壤Cd含量的峰值比耕层提前出现。Pb含量以15~26 a果园含量最高,树龄〈15 a和〉26 a时Pb含量较低。Hg含量则以15 a为转折点,在不同土层上呈现出不同的变化趋势。As含量在树龄〈15 a时逐渐降低,15~20 a时逐渐增加,20 a以后果园土壤As含量趋于不变,且各土层之间差异不显著。  相似文献   

8.
黄土高原沟壑区苹果园土壤重金属含量特征研究   总被引:5,自引:0,他引:5  
以黄土高原沟壑区的苹果园为研究对象,对6~36 a苹果园土壤重金属含量状况进行研究,结果发现,该区苹果园的高投入种植管理模式,能够影响重金属在土壤中的迁移与富集,使土壤重金属含量发生明显变化.土壤Cu含量随树龄增加而增加,20 a以上的土壤-果树系统对土壤Cu的输入与输出趋于平衡,Cu含量变化不大,且耕层土壤Cu含量较高.Cr含量随树龄线性递增,36 a果园0~20 cm,20~40 cm和40~60 cm 土层Cr含量分别比6 a果园增加27.14%,17.09%和19.17%.Cd含量随树龄增加先增加后减少,长期大量施用磷肥是土壤Cd的主要来源,果园生态系统深层土壤Cd含量的峰值比耕层提前出现.Pb含量以15~26 a果园含量最高,树龄<15 a和>26 a时Pb含量较低.Hg含量则以15 a为转折点,在不同土层上呈现出不同的变化趋势.As含量在树龄<15 a时逐渐降低,15~20 a时逐渐增加,20 a以后果园土壤As含量趋于不变,且各土层之间差异不显著.  相似文献   

9.
为探究长期梨树种植土壤团聚体结构及其对土壤有机碳的影响,以砀山县良梨镇共12个年限的梨树土壤为研究对象,以果园附近农田土壤为对照,分析不同梨树种植年限土壤(0~20 cm)的团聚体粒级分布、土壤及各团聚体组分有机碳含量的动态特征。研究结果表明:随着种植年限的增加,土壤大团聚体(>0.25 mm)含量呈先上升后略有下降并趋于稳定的趋势,种植150 a处取得最大值达到798.8 g/kg。梨园土壤总有机碳含量、大团聚体有机碳含量相较对照农田土壤显著提高(P<0.05),分别提高了1.45倍和2.24倍,而微团聚体(<0.25mm)有机碳含量显著下降。各个年限梨园土壤有机碳主要由大团聚体贡献,贡献率为68.06%~98.78%,相较农田土壤(39.76%)贡献率提高28.3%~59.02%;微团聚体的贡献率随着年限的增加而下降,表明梨园的长期种植促使有机碳从微团聚体向大团聚体分配。土壤大团聚体含量与有机碳含量呈极显著正相关(P<0.01),均随着种植年限的增加先上升后下降至稳定趋势。表明梨园种植有利于改善土壤结构,增加土壤的固碳潜力。  相似文献   

10.
采用空间代时间的方法,对不同种植年限苹果园土壤质量演变进行了研究。结果表明,随着种植年限增加,果园土壤pH值有降低趋势;土壤有机碳含量呈缓慢降低趋势。土壤氮磷含量富集;真菌和放线菌数量都表现为先增大后减少的变化规律;但细菌占微生物总量比例呈下降趋势,真菌、放线菌所占比例呈增加的趋势。据主成分分析的结果将不同年限果园土壤质量综合分为:质量最好(9龄果园),良好(5龄和14龄),较差(17和23龄)和差(1龄)共4个等级。农田改建果园后,5a左右进入盛果期,土壤质量状况良好;到第9a时,土壤质量状况最好,土壤养分和酶活性最高;14a左右进入衰退期;至17~23a时土壤质量下降明显,果树退化严重。  相似文献   

11.
为揭示半湿润黄土台塬沟壑区不同密度旱作苹果园产量长周期演变趋势与深层土壤水分变化动态, 应用WinEPIC模型定量模拟分析了1965-2009年期间宝鸡6种种植密度(D1: 2 m×3 m; D2: 2 m×4 m; D3: 2.5 m× 4 m; D4: 3 m×4 m; D5: 4 m×4 m; D6: 4 m×5 m)苹果园果品产量和0~15 m土层土壤水分变化动态, 并据此确定了当地旱作苹果园最佳种植密度和适宜种植年限。结果表明: (1)在1968-2009年42年苹果产果期间, 各密度苹果园果品产量呈现逐渐增高后又强烈波动性降低趋势, 前21年平均产量明显高于后21年。(2)随着种植密度增大, 苹果园果品产量逐渐增加, 当种植密度达到D3(2.5 m×4 m)~D4(3 m×4 m), 即833~1 000 株·hm-2后, 增产幅度趋缓。(3)随着种植密度增加, 果园0~15 m土层土壤有效含水量逐渐降低, 深层土壤干层形成时间逐渐缩短。(4)从产量、干旱胁迫日数、土壤有效含水量和土壤剖面湿度分布演变趋势和变幅分析, 宝鸡旱作苹果园地最佳种植密度为D3(2.5 m×4 m)或D4(3 m×4 m), 即833株·hm-2或1 000株·hm-2, 种植年限为30年左右为宜。  相似文献   

12.
陕北黄土丘陵区山地苹果园的土壤水分动态研究   总被引:3,自引:1,他引:2  
掌握土壤水分特征是实现果园科学管理、有限雨水资源合理高效利用、保证果树高产优质的关键。以陕北米脂山地6年生红富士苹果园为研究对象,于2015年4月—2016年6月采用FDR、中子水分仪和烘干法相结合的土壤水分监测方法,分析了山地苹果园的土壤水分总体特征、单株不同位点的水分动态以及不同旱作措施(秸秆覆盖、起垄覆膜垄沟集雨、有机肥覆盖)的土壤水分环境效应。结果表明:陕北山地果园时段干旱严重,最严重的为苹果树新梢生长和幼果发育期;春季土壤干旱程度取决于上年入冬前土壤储水量高低。果园0~60 cm土层(根系分布集中层)水分随降雨量而变化,表现为较一致的季节变化特征;土壤水分的变化滞后于降雨变化,且降雨对土壤水分的影响随土层加深而减弱,100 cm深土层受降雨影响减弱,土壤剖面200 cm以下土层土壤含水量保持相对稳定。6年生山地苹果园土壤已经出现干化现象,且在90~300 cm存在明显的低湿层,土壤体积含水量常年处在12%以下。苹果树单株尺度范围内,土壤含水量随距树干距离增加单调递增;土壤水分的平均值处在距树干105 cm处;沿行向距树干不同距离位点的土壤含水量显著高于沿株向距树干等距离位点的含水量(P0.05)。秸秆覆盖、起垄覆膜垄沟集雨和有机肥覆盖措施相较于空白对照(不覆盖、不灌溉)均能有效改善土壤水分环境,缓解果树生育期内水分供需矛盾,其中起垄覆膜垄沟集雨措施的保墒效果最佳,建议陕北黄土丘陵区山地雨养苹果园采用起垄覆膜垄沟集雨的保墒措施。  相似文献   

13.
黄土高原沟壑区苹果园土壤剖面水分及矿质氮分布特征   总被引:2,自引:2,他引:0  
路远  党廷辉  成琦 《水土保持学报》2021,35(2):106-112,121
面对苹果园大量施肥带来的潜在环境问题,在黄土高原沟壑区典型流域,分别选取不同树龄和地貌类型的苹果园,分析土壤水分含量和土壤矿质氮在土体剖面中的变化,为促进该流域农业发展提供相关数据支持。在陕西长武县王东沟流域,分别选取不同树龄(14,18,23,28,32树龄)和地貌类型(塬、梁、坡地)的果园,用直径为4 cm的土钻,在每株果树周围距离树干1 m处,采集15个不同样地0—400 cm土层样品,12个果园样地0—600 cm土层样品,分别测定土壤水分、硝态氮、铵态氮含量。结果表明:随着树龄的增加,0—600 cm土壤含水量和贮水量出现明显下降,尤其在300—600 cm处,不同树龄果园贮水量差异显著(P<0.05),贮水量大小表现为18树龄>23树龄>32树龄。流域内各树龄果园各土层铵态氮含量均较低,对矿质氮在土体中的分布基本不构成影响;硝态氮含量较高,矿质氮在土壤中的分布主要受其影响。各果园不同树龄600 cm以上土层硝态氮含量变化幅度较大,且硝态氮主要分布在土层深处。坡地果园18,23,32树龄0—200 cm土层硝态氮累积总量分别占0—400 cm土层累积总量的50%,41%和38%,表现出土壤硝态氮随树龄的增长而向深层累积的趋势。3种地貌类型下硝态氮累积量都表现出随果园树龄增长而增加的特点。黄土高原沟壑区果园土壤深层干燥化和硝态氮累积现象明显,而且随着果园树龄的增加趋于严重。  相似文献   

14.
在黄土高原陕西省长武塬区选取品种和管理手段均相同的3种林龄果园(尚未结果的5年幼龄果园、已结果的8年初果园和13年壮果园)苹果树,采用空间换时间的试验设计,分别于2015年7月12日和8月19日对0—500cm深度土壤及对应取样处的苹果树枝条取样,测定土样和枝条样中水分的稳定氢氧同位素,并利用贝叶斯模型量化降水前后不同土层对苹果林耗水的贡献。结果表明:(1)不同林龄苹果树降雨前后的主要水分来源深度不同。干旱时,13年壮龄果树的主要吸水深度比5年和8年果树深;而生长旺季,雨季降水只能补充未挂果的5年幼龄果园土壤水分消耗,即使降水量很大,也无法满足已经开始挂果的8年和13年果园土壤水分消耗。(2)在干旱期,5年和8年果树50%以上的水分来自表层0—100cm土壤,而13年果树50%的水分来自100—300cm土层。而降水后,5年和8年果树的主要水分来源变为100—300cm土层,贡献值在40%左右;13年果园的主要水分贡献层为0—100cm土层,贡献了近50%的水分。(3)3种林龄果树根系对300—500cm土层土壤水分的吸收对降雨的响应非常弱,降雨前后贡献率始终保持在30%。  相似文献   

15.
基于van Genuchten模型的渭北苹果园土壤水分能量特征分析   总被引:4,自引:0,他引:4  
针对渭北地区干旱缺水,果树生长发育受限的客观实际,开展了苹果树生育期0~150 cm土壤水吸力动态变化规律研究。依据渭北果园土壤剖面构型,将离心机法与水汽平衡法相结合,按照发生学土层,逐层测定了供试土壤水分特征曲线,并用van Genuchten模型拟合。基于该模型,将在幼龄果园、老龄果园以及农田定期逐层监测的土壤水分含量转化为土壤水吸力,以农田为对照,评价植果条件下土壤水分的胁迫状况。结果表明,van Genuchten模型能很好地拟合渭北果园耕层、农田耕层、黑垆土层及黄土母质层的水分特征曲线,拟合精度均达0.96以上。渭北地区农田受干旱胁迫较严重,3月中旬-7月初,0~100 cm土层均处于水吸力高于3.98的重度胁迫状态;受植被冠层覆盖及果树生育期的影响,干旱对果树的胁迫程度较农田小,对老龄果园胁迫程度比对幼龄果园的大,幼龄果园在3月中旬-5月初、5月底-7月初仅0~20 cm土层为高水吸力区,直至6月中旬-7月中旬高水吸力区才延伸到40~70 cm土层;老龄果园在3月中旬-4月底的0~40 cm土层、5月底-7月中旬的30~100 cm土层和7月中旬-8月底的0~20 cm土层为高水吸力区。可得出,渭北不同园龄苹果园在不同生育期的不同深度土层会间歇性地出现高水吸力的土壤水分胁迫区,但相对于农田而言,果园受到的干旱胁迫相对较轻,渭北地区植果有助于缓解干旱胁迫。  相似文献   

16.
【目的】 利用数学模拟方法研究了长周期有机肥与化肥配施对渭北旱塬苹果园产量和深层土壤水分利用的影响。 【方法】 采用WinEPIC模型定量模拟研究了1965—2009年期间洛川苹果园在6种有机肥与化肥配施处理下苹果产量、0—15 m土层土壤水分和有机碳含量的响应动态。在施肥总量均为N 360 kg/hm2、P2O5 180 kg/hm2的基础上,设置6种猪粪和氮磷化肥投入比例:M0 (单施化肥)、M1 (1/5腐熟猪粪)、M2 (2/5腐熟猪粪)、M3 (3/5腐熟猪粪)、M4 (4/5腐熟猪粪) 和M5 (单施腐熟猪粪)。调查了每年11月份果园各处理0—15 m土层土壤有机碳和有效水分含量以及果园产量,模拟值与观测值相一致,并利用数学模型进行了长周期变化动态模拟。 【结果】 通过模型数据库组建、生长参数修订和模拟精度验证,表明WinEPIC模型能够较准确地模拟洛川苹果园产量和土壤水分利用响应,可用于渭北旱塬不同施肥处理下苹果园水分生产力模拟研究;在1965~2009年模拟研究期间,各施肥处理下苹果园果品产量随树龄增长呈现出前期急速增加后期波动降低,土壤含水量波动性下降,土壤有机碳呈逐渐积累的趋势。与M0相比,施用有机肥处理M1、M2、M3、M4和M5分别增产5.2%、9.8%、10.3%、1.3%和–6.6%,M3处理产量最高,其42年年均产量为30.98 t/hm2;M1~M5果园土壤有效含水量分别较M0提高4.3%、6.2%、5.9%、9.0%和9.8%,其中M5处理保墒效果最优,0—15 m土层土壤有效含水量45年均值为1339 mm;M0~M5处理下苹果园0—15 m土层土壤湿度垂直变化剧烈,土壤干层出现时间分别为13年生、14年生、15年生、15年生、16年生和16年生,干层最大深度均达到11 m;6个施肥处理的0—500 cm土层土壤有机碳含量45年均值为6.43、7.68、7.97、8.67、8.71和8.78 g/kg,随着有机肥施用比例增加而提高,M1、M2、M3、M4和M5处理土壤有机碳含量分别较M0提高19.4%、24.0%、34.8%、35.4%和36.4%;不同施肥处理下,土壤含水量与果园利用年限间呈显著负相关,土壤有机碳含量与果园利用年限间呈正相关,随着有机肥施用比例的增加,这两个相关系数均增大。 【结论】 与单施化肥处理相比,5种有机肥施用处理均有利于提高土壤含水量和有机碳含量,且M1~M4 四种有机肥与化肥配施处理均能够不同程度增加苹果园产量,综合0—15 m土层土壤有效含水量和4~45年生苹果园产量模拟结果考虑,在折算纯氮360 kg/hm2用量条件下,洛川果园适宜有机肥与化肥配施比例为4∶6~6∶4。   相似文献   

17.
为揭示黄土高原农田转变为苹果园后土壤水分及硝态氮剖面变化特征,以洛川县为研究区,采集农田(对照)和8,17,25年苹果园共40个0-600 cm剖面土样,分析土壤水分、NO_3~--N浓度及其储量。结果表明:与农田相比,8年苹果园0-600 cm土壤水分含量及贮水量偏高(旧县镇)或相当(槐柏镇),而NO_3~--N浓度及其累积量则没有显著差异;17,25年苹果园0-600 cm土层贮水量则显著降低(P0.05),分别下降150,230 mm,且该差异主要与300 cm以下土层水分变化有关;0-500 cm土层NO_3~--N浓度随苹果种植年限显著增加,17,25年苹果园0-600 cm土层NO_3~--N累积量分别为6 830,8 370 kg/hm~2,二者显著高于农田(695 kg/hm~2)和8年果园(440 kg/hm~2)。综合可知,农田转变为苹果园这一土地利用方式变化可导致深层土壤水分亏缺(300 cm)和硝态氮累积,黄土高原大力发展苹果种植过程中应重视蓄水保墒及氮肥减施等措施。  相似文献   

18.
通过采集胶东地区不同年限苹果园0—100 cm土层土壤,分析了不同种植年限苹果园土壤全磷、有效磷、无机磷含量和无机磷组分特征,以期为苹果园科学施用磷肥提供依据。结果表明:胶东地区苹果园0—40 cm土层土壤全磷、无机磷、有效磷平均含量为0.76 g/kg,681.10 mg/kg,73.05 mg/kg。种植年限显著影响了苹果园土壤磷含量,随着种植年限的增加耕层土壤全磷、有效磷和无机磷含量呈上升趋势。不同种植年限的苹果园土壤全磷、有效磷及各无机磷组分均随着土层的加深整体呈递减趋势。无机磷组分主要以Al-P、O-P的形式存在,其次为Fe-P、Ca-P。种植年限明显影响了无机磷各组分的组成,11~15年苹果园Al-P比例最高,而16~20年苹果园O-P比例最高。相关性分析及通径分析结果表明,Al-P是该地区相对较为有效的磷源。  相似文献   

19.
渭北果园土壤物理退化特征及其机理研究   总被引:2,自引:0,他引:2  
【目的】针对我国渭北苹果主产区出现的随植果年限增加,果园土壤质量严重退化,树势衰弱、树体过早衰老、抗性降低、腐烂病及早期落叶病频繁发生,果品产量与品质下降等问题,开展了渭北苹果园土壤物理质量退化特征、退化机理及危害程度等问题的研究,以期查明制约果业可持续发展的因素,为果园土壤科学管理提供依据。【方法】在渭北黄土塬区选取了10 a、10 20 a、20 a 3个园龄段果园各4个,并以土壤条件相同的农田作对照,在果树冠层投影范围内距树干2/3处采取土样,测定土壤剖面不同层次容重、紧实度、孔隙度、饱和导水率、粘粒含量等物理性指标。【结果】渭北果园土壤容重和紧实度随园龄和土层深度的增加而增大,尤其在表层(20 cm)以下,土壤容重已经达到了1.45 1.61 g/cm3,紧实度达到933 2433 k Pa,严重超出果树健康生长的阈值。土壤孔隙度仅在0—20 cm土层能够保持在50%以上,属于良好状态,而20—60 cm土层维持在40%46%,已处于紧实和严重紧实状态。土壤饱和导水率在果园表层和紧实层均表现出随植果园龄的增大而减小的趋势,尤其是10 20 a和20 a的果园亚表层土壤饱和导水率低至46.88 cm/d和20.89 cm/d,制约着降水入渗和土壤蓄墒。3个园龄段果园土壤剖面上粘粒含量随土层深度呈递增趋势,且在0—30 cm土层随园龄的增加而明显减少,而在30 cm以下则随园龄的增加而呈递增趋势。进一步分析发现,粘粒含量与土壤容重、紧实度以及孔隙度之间呈极显著的相关关系。以压实密度(PD)为指标,对渭北果园土壤压实程度进行评估,发现渭北果园20 cm土层以下的土壤压实密度都在1.40 g/cm3以上,均达到了中度压实的程度,严重影响果树根系的健康生长及对养分的吸收。【结论】渭北果园20 cm以下的亚表层土壤孔隙密实、容重和紧实度增大,土壤饱和导水率递减是其土壤物理性质退化的主要特征,表层土壤粘粒的深层移动与淀积是土壤物理退化的主要过程和机理,果园土壤翻耕扰动少、对物理退化干预少是其土壤物理退化程度逐渐加剧的外在原因,土壤团聚体稳定性差是土壤物理状态退化的根本原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号