首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Germanium(Ge) exhibited a strong inhibition on the growth of rice plants and necrotic spots appeared on leaf bladea which had absorbed 5 ppm Ge via their roots for 4 days. The translocating form of Ge in the exudate was found to be 68GeO2 which was the form given to the roots. Nearly equal radioactivities of the 68Ge in the shoots were extracted from the water-extractable, 0.25 N HCl-extractable and residual fractions. The radioactivities in the water extractable fraction were fractionated into 2 peaks by a molecular sieving effect using a Sephadex G-25 column. Some of the 68Ge in the higher molecular fraction was found to be associated with proteins. On the other hand, the 68Ge in the smaller molecular fraction was proved to be an unchanged form of the 68GeO2 which had been given to the roots.  相似文献   

2.
The effects of germanium dioxide (GeO2) and 2-carboxyethyl germanium sesquioxide (Ge-132) treatments on cucumber (Cucumis sativus L.) growth and Ge accumulation and toxicity were investigated. Accumulated Ge contents in plant treated with GeO2 were two times greater than that in plants treated with Ge-132. Germanium accumulated primarily in the shoots in the GeO2 treatments and in the roots in the Ge-132 treatments. In contrast GeO2 was easily transported from roots to shoots. In cucumber fruit, the range of Ge content in both the GeO2 and Ge-132 treatments was in the order of stalk > rind > pulp > seeds, suggesting that Ge accumulation was based on distance from xylem. Silicon (Si) content significantly decreased as GeO2 concentration increased, but there was no difference in Si content in the Ge-132 treatment. Therefore, plant growth and Ge accumulation are affected differently by GeO2 and Ge-132 treatments, based partly on treatment concentrations.  相似文献   

3.
The accumulation of germanium (Ge) by barley (Hordeum vulgare cv. ‘Arivat') grown at various Ge and pH levels was investigated because Ge is an industrially important metal and bioaccumulation of Ge is a potentially useful means of concentrating this trace metal. Six‐day‐old barley seedlings were grown in perlite and nutrient solution adjusted to a pH of 4.5, 6.0, or 7.5 supplemented with 20, 40,60, or 80 μM Ge for seven days. The plants were divided into roots and shoots after harvesting; the dry weight and Ge content of the individual organs were measured, as was the peroxidase activity in the distal 1 cm of the primary leaves. Barley seedlings accumulated Ge in the roots and shoots; the shoots accumulated Ge linearly as medium Ge concentration increased. The dry weight of the organs was not affected, although necrosis was observed in the primary leaves of the seedlings treated with Ge concentrations greater than 20μM. Peroxidase activity in the primary leaves also increased as the Ge levels in the medium increased which indicated that elevated levels of Ge stimulated leaf senescence. These results demonstrate that barley plants can take up Ge and suggest that Ge is not toxic at the levels that might occur in areas where Ge is normally mined.  相似文献   

4.
Abstract

Nitrogen (N) concentrations and stable N isotope abundances (δ15N) of common reed (Phragmites australis) planted in a constructed wetland were measured periodically between July 2001 and May 2002 to examine their seasonal variations in relation to N uptake and N translocation within common reed. Nitrogen concentrations in P. australis shoots were higher in the growing stage (7.5 to 24.8 g N kg?1) than in the senescence stage (4.2 to 6.8 g N kg?1), indicating N translocation from shoots to rhizomes. Meanwhile, the corresponding δ15N values were higher in the senescence stage (+12.2 to +22.4‰) than in the growing stage (+5.1 to +11.3‰). Coupled with the negative correlation (R2=0.24, P<0.05, n=18) between N concentrations and δ15N values of shoots in the senescence stage, our results suggested that shoot N became enriched in 15N due to N isotopic fractionation (with an isotopic fractionation factor, αs/p, of 1.012) during N translocation to rhizomes. However, the positive correlation between N concentrations and δ15N values in the growing stage (R2=0.19, P<0.001, n=54) suggested that P. australis relies on N re‐translocated from rhizome in the early growing stage and on mineral N in the sediment during the active growing stage. Therefore, seasonal δ15N variations provide N‐isotopic evidence of N translocation within and N uptake from external N sources by common reed.  相似文献   

5.
通过田间试验研究了不施肥(CK)、施氮360 kg?hm?2(T1)、施氮720 kg?hm?2(T2)处理下茶园土壤无机氮、p H、各形态氟含量的动态变化和春、夏、秋茶树新梢一芽四叶、一芽五叶氟含量,探讨茶园施氮对土壤和茶树新梢氟含量的影响。结果表明:1)茶园施氮后短期内(20~30 d)土壤水溶态氟含量显著降低,土壤交换态氟和铁锰结合态氟含量降低;长期(45~50 d)土壤水溶态氟含量的降低作用减弱,土壤交换态氟和铁锰结合态的含量增加;在试验结束时(164 d),与CK处理相比,T1处理0~20 cm土壤各形态氟含量降低,T2处理0~20 cm土壤各形态氟含量增加。2)0~20 cm茶园土壤水溶态氟、铁锰结合态氟与NH4+-N分别呈极显著负、正相关(P0.01),20~40 cm土壤水溶态氟、交换态氟与NO3?-N分别呈极显著正、负相关(P0.01)。土壤p H与土壤水溶态氟含量极显著负相关(P0.01),与其他3种形态氟含量相关性不显著。土壤铁锰结合态氟与交换态氟、有机结合态氟呈显著、极显著正相关,但与土壤水溶态氟均无显著相关性。3)春茶前后施氮可以降低春、夏、秋茶树新梢一芽四叶、一芽五叶氟含量,但未达显著水平。T1处理新梢氟含量的降低值为夏茶(25.15~27.95 mg?kg?1)秋茶(21.06~24.31 mg?kg?1)春茶(18.58~21.03 mg?kg?1),T2处理的降低值为秋茶(18.64~22.34 mg?kg?1)夏茶(7.79~14.14 mg?kg?1)春茶(3.52~7.30 mg?kg?1)。春、夏、秋茶树新梢氟含量主要受0~20 cm土壤无机氮和20~40 cm土壤p H的影响。因此推测施氮通过影响茶树根系氟的吸收和氟在叶片中的累积过程调控茶树新梢氟含量,该研究成果为合理利用施氮技术降低茶园土壤和茶树新梢氟含量提供了理论依据。  相似文献   

6.
Abstract

The tolerance of rice (Oryza sativa L. C.V. Earlirose) to various trace metal excesses was tested to determine if high levels of the trace metals found in some field‐grown plants were at toxicity levels. In one experiment, levels of 2200 μg Zn/g dry weight, 44 μg Cu/g dry weight, 4400 μg Mn/g dry weight, and 32 μg Pb/g dry weight in shoots of young plants had no adverse effects on vegetative yields. A level of 3160μgZn/ g dry weight decreased yields about 40% (P = . 05). In another test 51 μg Cu/g dry weight or 94 μg Pb/g dry weight did not decrease vegetative yields. Boron supplied at 10‐3 MH3BO3 not only caused no toxicity but resulted in only 144 μg B/g dry weight in shoots. Root levels of Zn were about equal to those in shoots; Mn levels were lower in roots than in shoots (1/4 to 1/10); B levels were generally low in both shoots and roots with roots 1/10 that of shoots; Cu levels were higher in roots than in shoots. Rice was tolerant of a high level of Cr. The tolerance of rice to high levels of some trace metals in these experiments may be related to high P levels in plants.  相似文献   

7.
14CO2 was assimilated during 10 min in leaf of rice and soybean under 21 kPa O2 (21% O2 treatment) and 2 kPa O2 (2% O2 treatment) at the vegetative growth stage and flowering stage. The 14C distribution ratio to respired CO2 and crude chemical components (sugars, polysaccharides, amino acids, organic acids, and proteins) was determined. In this paper, since emphasis was placed on the 14C distribution mechanism to carbon compounds and nitrogen compounds, the terms carbon metabolism pool (C-pool) composed of sugars and polysaccharides, and nitrogen metabolism pool (N-pool) composed of organic acids, amino acids and proteins were used. The results obtained were as follows.

14C distribution ratio to N-pool at 0 min after 14C assimilation was higher in soybean than in rice regardless of the treatments and stages, and that at 30 min after 14C assimilation under light condition markedly decreased both in rice and soybean. Therefore, especially in soybean, a large amount of photosynthesized 14C was once distributed to the N-pool, then 14C compounds in the N-pool were reconstructed into the C-pool. During this reconstruction process, 14C compounds in the N-pool were actively respired.

14C distribution to N-pool at 0 min after 14C assimilation changed slightly or did not change by the N treatment. 14C distribution to N-pool in the - N treatment of soybean (13–29 mg N g-1 content in leaves) was higher than that in the + N treatment of rice (31–48 mg N g-1 content in leaves). Photosynthesized carbon distribution to N-pool in rice decreased with growth, while it remained constant in soybean. Accordingly, in soybean, photosynthesized carbon was predominantly distributed to the N-pool through photorespiration and/or Calvin cycle (supplying triose-P), which was less affected by nitrogen nutrient and aging. Thus, the mechanism of photosynthesized carbon distribution to carbon and nitrogen compounds was basically regulated by inherited characters of each plant more than by the nitrogen status of leaves.

By the 2% O2 treatment, 14C distribution to N-pool decreased in both crops regardless of N treatment, indicating that photorespiration plays an important role in the supply of the preliminarily photosynthesized carbon compounds to N-pool. In the 2% O2 treatment, 14C distribution to N-pool was higher in soybean than in rice, indicating that triose-P transported from chloroplast was preferentially distributed to N-pool in the case of soybean.  相似文献   

8.
中国太湖地区稻麦轮作农田硝态氮动态与氮素平衡   总被引:1,自引:0,他引:1  
Nitrate-nitrogen (NO 3--N) dynamics and nitrogen (N) budgets in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region of China were studied to compare the effects of N fertilizer management over a two-year period. The experiment included four N rates for rice and wheat, respectively: N1 (125 and 94 kg N ha-1 ), N2 (225 and 169 kg N ha-1 ), N3 (325 and 244 kg N ha-1 ), and N0 (0 kg N ha-1 ). The results showed that an overlying water layer during the rice growing seasons contributed to moderate concentrations of NO 3--N in sampled waters and the concentrations of NO 3--N only showed a rising trend during the field drying stage. The NO 3--N concentrations in leachates during the wheat seasons were much higher than those during the rice seasons, particularly in the wheat seedling stage. In the wheat seedling stage, the NO 3--N concentrations of leachates were significantly higher in N treatments than in N0 treatment and increased with increasing N rates. As the NO 3--N content (below 2 mg N L-1 ) at a depth of 80 cm during the rice-wheat rotations did not respond to the applied N rates, the high levels of NO 3--N in the groundwater of paddy fields might not be directly related to NO 3--N leaching. Crop growth trends were closely related to variations of NO 3--N in leachates. A reduction in N application rate, especially in the earlier stages of crop growth, and synchronization of the peak of N uptake by the crop with N fertilizer application are key measures to reduce N loss. Above-ground biomass for rice and wheat increased significantly with increasing N rate, but there was no significant difference between N2 and N3. Increasing N rates to the levels greater than N2 not only decreased N use efficiency, but also significantly increased N loss. After two cycles of rice-wheat rotations, the apparent N losses of N1, N2 and N3 amounted to 234, 366 and 579 kg N ha-1 , respectively. With an increase of N rate from N0 to N3, the percentage of N uptake in total N inputs decreased from 63.9% to 46.9%. The apparent N losses during the rice seasons were higher than those during the wheat seasons and were related to precipitation; therefore, the application of fertilizer should take into account climate conditions and avoid application before heavy rainfall.  相似文献   

9.
Abstract

Earlirose rice (Oryza sativa L. ) and Hawkeye soybeans (Glycine max L.) were grown in solution culture with A12(SO4)3 in concentrations of 0, 10‐6, 10‐5, 10‐4, 10‐3 M. Only at 10‐4 (slightly) and at 10‐3 M were there yield depressions due to Al. The threshold concentration of Al for toxicity was about 20 μg/g in rice shoots and about 30 μg/g in soybean leaves. The solution level necessary for these concentrations was 8 μg Al/ml. Plant concentrations which caused severe toxicity were 70 μg Al/g plant with 81 μg Al/ml solution. Most Al remained in roots, but leaves contained more than did stems of soybeans. The high Al decreased Fe, Cu, and Mn concentrations in shoots of rice and decreased Fe, Cu, and Zn in roots of rice. The high Al resulted in decreased Fe and Zn in leaves of soybeans. No Fe deficiency symptoms were present due to the high Al.  相似文献   

10.
 Pot experiments were carried out to evaluate the response of rice to Sesbania rostrata green manure N as compared to urea fertilizer N under flooded conditions. After growing S. rostrata for 21 days with a 15N-labelled N source, the labelled Sesbania was applied to wetland rice as a green manure and the uptake of 15N from this substrate was compared to that from labelled urea. Rice was cultivated twice in the same pots. The rice was grown for a period of 49 days in each case, separated by a period of 21 days when the soil was allowed to dry. The 15N content of the soil and shoots and roots of rice was determined and 15N balances established. The total N content of the shoots and roots of rice was determined by a non-tracer method. The percentage recovery of 15N from shoot material which was derived from urea N was more than twice that from S. rostrata. The recovery of 15N from the pots receiving both green manure and urea was low, and not significantly different from that recovered from the green manure treatment. As much as 64.5–73.5% and 40.1–41% of the 15N remained in the soil which had received green manure or urea, respectively. The overall recoveries of 15N varied between 86.5% and 94.4%. At the second harvest, the oven-dry weight of shoots was significantly (P<0.05) higher in green-manure treated pots, but the total N content did not differ significantly. Labelled N remaining in the soil after amendment with the green manure was much more available to the rice crop than that remaining after the addition of urea-N. The total recovery of labelled N (shoots plus roots) amounted to 65.5% and 74%, respectively of the residual labelled N in the two S. rostrata treatments (i.e. 19.55 mg 15N pot–1 and 39.10 mg 15N pot–1) and 23.2% and 23.2% of the residual labelled N in the two urea treatments (i.e. 19.55 mg 15N pot and 39.10 mg 15N pot–1), respectively. Received: 8 December 1997  相似文献   

11.
Maize plants (Zea mays L. cv. Pioneer 3906) were grown in hydroponics with four different NaCl treatments (control, 50, 100, 150 mM NaCl). Nitrogen (N) was supplied as 2 mM Ca(NO3)2 in the fully concentrated nutrient solution. Plants of half of the pots were treated with additional 1 mM NH4NO3 2 d after start of the NaCl application. After 23 d, the maize plants were harvested and contents and concentrations of nitrate, reduced N as well as chloride were determined in shoots and roots. With increasing NaCl stress net nitrate uptake and net root‐to‐shoot translocation of total N decreased significantly. Under salt stress, decreased nitrate concentrations in shoots probably caused substrate limitation of nitrate reductase. However, the concentrations of reduced N in shoots were not affected by salt stress and no N deficiency was observed. Additional N application to the 100 and 150 mM NaCl treatments did not improve plant growth. A Cl?/NO antagonism was only weakly pronounced, probably because of the Cl? exclusion ability of maize. Thus, although net uptake and net translocation of total N were markedly decreased by NaCl application, the smaller maize plants nevertheless took up enough N to meet their demand pointing to other growth‐limiting factors than N nutrition.  相似文献   

12.
We constructed a new rice growth model, SIMRIWk, and discuss the impact of climate change on the growth and production of rice plants in relation to soil nitrogen (N) kinetics. We developed a model simulating N availability for rice plants associated with soil N kinetics and rice plant N uptake and combined it with the existing rice growth model SIMRIW to construct SIMRIWk. The model parameters were determined from rice plant growth and soil N experimental data obtained over 25 years under four soil management regimes. SIMRIWk successfully simulated the annual changes and upward trend observed during the 25 years in all treatments. The relationship between measured yields and SIMRIWk calculations in all treatments over the 25 years formed one aggregation defined by the regression equation y = 1.00x and showed a significant correlation (r2 = 0.894). According to SIMRIWk, increasing temperature in the cold season increases the formation of easily decomposable organic N produced under dry conditions and N mineralization during the next warm season, suggesting that rice growth is influenced by both warm-season and cold-season temperatures. We forecast rice yield and soil N kinetics from 2016 to 2100 using SIMRIWk and climate change predictions based on the IPCC’s climate change scenario RCP8.5. Atmospheric warming, a rise in CO2 partial pressure, and increased soil N mineralization caused by soil warming will increase rice plant growth, but the decreased radiation absorbed owing to the shortened growing season and high-temperature sterility will prevent any significant change in yield. Furthermore, the acceleration of soil organic N decomposition will decrease soil organic N concentrations. Understanding the influences of climate change on soil organic matter kinetics is absolutely critical for predicting the future soil production capacity.  相似文献   

13.
Abstract

Brachiaria spp. have been grown in a variety of cropping systems and are often terminated with herbicides, which may cause nitrogen (N) loss from the soil-plant system. In this study ammonia (NH3-N) loss by shoots and N balance in a soil-plant system were determined after desiccation of palisade grass (Brachiaria brizantha (Hochst. ex A. Rich) Stapf, cv. Marandu), signalgrass (Brachiaria decumbens Stapf), humidicola (Brachiaria humidicola (Rendle) Schweick) and Congo grass (Brachiaria ruziziensis Germain et Evrard). The grasses were grown in pots filled with an Oxisol in a greenhouse. Sixty days after planting, the plants were desiccated with glyphosate. Analyses were performed on plant and soil at desiccation and then at 7, 14, 21 and 28 days after desiccation in order to assess NH3-N losses by shoots and to estimate the N balance in the system. Total nitrogen (Total-N) concentration in shoots and roots of brachiarias decreased after desiccation, thereby reducing the amount of N in plants of the four brachiaria species. However, as most of the N lost by plants was released into the soil, N losses from the soil-plant system were small compared with the total N in the system: 1.2, 0.5, 0.4 and 1.4% for palisade grass, signalgrass, humidicola and Congo grass, respectively. N losses as NH3 from the soil-plant system after desiccation with glyphosate varied among brachiaria species, ranging from 0.8 to 2.0 g m?2 kg?1, and accounted for 30–80% of total loss.  相似文献   

14.
添加氮素抑制剂是提高水稻氮肥利用率的有效途径之一。采用大田试验,探讨了氮素抑制剂(脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)、硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)及其组合)对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响,旨在为优化沿淮稻田生态系统氮素养分管理,减少氮素损失提供科学依据。以"常糯1号"为供试材料,于2018年6—10月在安徽省怀远县(沿淮平原典型水稻种植区)进行试验。试验设5个处理:不施氮肥(CK);尿素(U);尿素+硝化抑制剂(U+DMPP);尿素+脲酶抑制剂(U+NBPT);尿素+硝化抑制剂+脲酶抑制剂(U+NBPT+DMPP)。结果表明:尿素配施NBPT或者DMPP均有利于提高水稻产量、植株吸氮量和氮素利用效率,NBPT效果优于DMPP,NBPT和DMPP联合施用表现出协同增效作用。尿素配施抑制剂的3个处理U+NBPT、U+DMPP和U+NBPT+DMPP较单独施用尿素U处理的产量分别增加6.8%,4.3%,8.6%,植物吸氮量分别增加9.6%,6.5%,12.2%,与U处理之间差异达显著水平(P0.05)。尿素单独配施NBPT或者NBPT+DMPP组合均显著提高了氮肥吸收利用率(NRE)、氮肥农学利用率(NAE)、氮素吸收效率(NUP)和氮肥偏生产力(NPFP)(P0.05),而尿素单独配施DMPP也有不同程度的提高,但差异未达到显著水平(P0.05)。另外,尿素单独配施DMPP或者DMPP+NBPT组合均显著提高了水稻成熟期土壤铵态氮(NH_4~+-N)和微生物量氮(SMBN)的含量,降低了硝态氮(NO_3~--N)的含量,提高了土壤中铵/硝比,而尿素单独配施NBPT对水稻成熟期土壤NH_4~+-N、NO_3~--N和SMBN无显著影响。总体认为,在沿淮平原稻作种植体系中,尿素配施NBPT或者DMPP可以有效地增加水稻产量,促进水稻对氮素的吸收利用,提高氮素利用效率,NBPT和DMPP联合施用效果最理想。  相似文献   

15.
Assimilation of ammonium (NH4) into free amino acids and total reduced nitrogen (N) was monitored in both roots and shoots of two‐week old rice seedlings supplied with 5 mM 99% (15NH4)2SO4 in aerated hydroponic culture with or without a 2 h preincubation with 1 mM methionine sulfoximine (MSX), an inhibitor of glutamine synthetase (GS) activity. 15NH4 was not assimilated into amino acids when the GS/GOGAT (glutamate synthase) cycle was inhibited by MSX. Inhibition of glutamine synthetase (GS) activity in roots with MSX increased both the amount of NH4 and the abundance of 15N labeled NH4. In contrast, the amount of Gln and Glu, and their proportions as 15N, decreased in roots when GS activity was inhibited. This research confirms the importance of GS/GOGAT in NH4 assimilation in rice roots.

15N‐labeled studies indicate that NH4 ions incorporated by roots of rice are transformed primarily into glutamine (Gln) and glutamic acid (Glu) before being converted to other amino acids through transamination (15). The formation of amino acids such as aspartic acid (Asp) and alanine (Ala) directly from free NH4 in roots also has been reported (4,15). Translocation of free NH4 to plant shoots, based on the concentration of free NH4 in xylem exudate, has been reported in tomato (13), although NH4 in shoots primarily originates from nitrate reduction in the shoot. Photorespiration also can contribute to the accumulation of NH4 in leaves (7).

The GS/GOGAT cycle appears to be primarily responsible for the assimilation of exogenously supplied NH4 and NH4 derived from nitrate reduction in leaves, as well as NH4 derived from photorespiration (2,3,6,8). Genetic evidence cited to support this conclusion includes the lethal effect of photorespiratory conditions on plant mutants deficient in chloroplast‐localized GS and GOGAT activities (2,3,9), and the rapid accumulation of free NH4 in GS‐deficient mutants under photorespiratory conditions (2,3,5).

The present study was initiated to quantify the in vivo amino acid synthesis in rice roots and shoots by analysis of 15N labeling, and should provide a more complete understanding of this important system for NH4 utilization.  相似文献   

16.
氮对水稻铵转运蛋白表达的调控   总被引:3,自引:0,他引:3  
  相似文献   

17.
太湖地区稻麦轮作条件下施用包膜尿素的氮素循环和损失   总被引:8,自引:0,他引:8  
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

18.
The effects of annual application of rice straw or cow manure compost for 17–20 y on the dynamics of fertilizer N and soil organic N in Gley paddy fields were investigated by using the 15N tracer technique during the rice cropping season. The chloroform fumigation-extraction method was evaluated to determine the properties of soil microbial biomass under submerged field conditions at the tillering stage before mid-summer drainage, with special reference to the fate of applied NH4 +-15N.

The transfer ratios from applied NH4 +-15N to immobilized N in soil and to uptake N by rice during given periods varied with the rice growth stages and were affected by organic matter application. The accumulated amounts of netmineralized soil organic N (net-Mj ), immobilized N (Ij ), and denitrified N (Dj ) during the cropping season were estimated to be 14.0–22.5, 6.3–11.2, and 3.4–5.3 g N m-2, respectively. Values of net-Mj and Ij were larger in the following order: cow manure compost plot > rice straw plot > plot without organic matter application, and their larger increase by the application of cow manure compost contributed to a decrease of the Dj values, as compared with rice straw application.

Values of E N extra extractable soil total N after fumigation, increased following organic matter application, ranging from 2.1 to 5.4 g N m-2. Small residual ratios of applied 15N in the fraction E N at the end of the given period indicated that re-mineralization of newly-assimilated 15N through the easily decomposable fraction of microbial biomass had almost ended. Thus, the applicability to paddy field soils of the chloroform fumigation-extraction method was confirmed.  相似文献   

19.
【目的】土壤盐碱化是制约农作物产量的主要因素之一,盐胁迫影响养分运输和分布,造成植物营养失衡,导致作物发育迟缓,植株矮小,严重威胁着我国的粮食生产。在必需营养元素中,氮素是需求量最大的元素,NO-3和NH+4是植物吸收氮素的两种离子形态。植物对盐胁迫的响应受到不同形态氮素的调控,研究不同形态氮素营养下植物的耐盐机制对提高植物耐盐性及产量具有重要的意义。【方法】本文以喜硝植物油菜(Brassica napus L.)和喜铵植物水稻(Oryza sativa L.)为试验材料,采用室内营养液培养方法,研究了NO-3和NH+4对Na Cl胁迫下油菜及水稻苗期生长状况、对Na+运输和积累的影响,以对照与盐胁迫植株生物量之差与Na+积累量之差的比值,评估Na+对植株的伤害程度。【结果】1)在非盐胁迫条件下,硝态氮营养显著促进油菜和水稻根系的生长;盐胁迫条件下,油菜和水稻生物量均显著受到抑制,Na Cl对供应铵态氮营养植株的抑制更为显著。2)盐胁迫条件下,两种供氮形态下,油菜和水稻植株Na+含量均显著增加,硝态氮营养油菜叶柄Na+显著高于铵态氮营养,叶柄Na+含量/叶片Na+含量大于铵营养油菜,硝态氮营养水稻根系Na+含量显著低于铵营养,地上部则相反。3)铵营养油菜和水稻Na+伤害度显著高于硝营养植株。4)盐胁迫条件下,硝态氮营养油菜地上部和水稻根系K+含量均显著高于铵态氮营养。5)盐胁迫条件下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株。【结论】与铵营养相比,硝营养油菜和水稻具有更好的耐盐性。硝态氮处理油菜叶柄Na+显著高于铵态氮处理,能够截留Na+向叶片运输。同时,供应硝态氮营养更有利于油菜和水稻吸收K+,有助于维持植物体内离子平衡。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,表明硝态氮营养油菜和水稻木质部-韧皮部对离子有较好的调控能力,是其耐盐性高于铵营养的原因之一。  相似文献   

20.
Three rice (Oryza sativa L.) cultivars ( cv. Daesanbyeo, cv. Dongjinbyeo, cv. Junambyeo) were analyzed for endogenous gibberellin (GA) and jasmonic acid (JA) contents and their changes in response to elevated nitrogen (N) levels. The N fertilizer was applied in the form of urea [(NH2)2CO] at three rates (0, 36.8, 73.6 kg N ha–1). Plant growth (height and dry weight) was enhanced by the first N rate but not further enhanced by the highest rate. The endogenous GA contents were analyzed through high‐performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry–selected ion monitoring (GC‐MS‐SIM) while that of JA with GC‐MS‐SIM. They were analyzed one week after N application and were significantly increased with elevated N levels in all rice cultivars. The bioactive GA1 markedly increased, but its concentration differed in different rice cultivars. Similar fluctuations were observed for endogenous GA8, GA12, GA19, GA20, and GA53 in response to elevated N levels, showing that the rates of biosynthesis of GAs were differently affected by elevated N levels within different rice cultivars. The level of GA20, a precursor of GA1 biosynthesis, was not significantly increased, though GA19, a precursor of GA20, was found to be the most abundant GA type in all rice cultivars. Jasmonic acid content in the plants increased with the basic urea application (36.8 kg N ha–1), but significantly decreased with the double urea level (73.6 kg N ha–1). The results demonstrate that GA and JA are differentially affected in response to elevated N application in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号