首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了提高氮肥和水分利用效率,该文在甘肃河西灌区试验地点,采用田间小区试验,研究了不同氮水平(0、225、450 kg/hm2)和灌水量(750、1125、1500 m 3/hm2)对小麦/玉米间作土壤硝态氮累积和水氮利用效率的影响。结果表明,不同氮肥和灌水量对小麦带土壤硝态氮含量和累积量影响较小,对玉米带影响显著。随氮肥用量增加,玉米带土壤硝态氮含量和累积量增加,随灌水量和氮肥用量增加,0~60 cm土壤硝态氮相对累积量增加,60~140 cm土层降低。氮肥当季利用率、氮肥生产率、氮肥产投比都是以225 kg/hm2氮水平较高,但不同灌水量差别不大。WUE(水分利用效率)以W750N225最高,W1500N0最低,随灌水量增加WUE降低。  相似文献   

2.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

3.
宁夏引黄灌区稻田氮素浓度变化与迁移特征   总被引:3,自引:0,他引:3  
过量施氮与不合理灌水是农田面源污染加剧的主要原因。为了寻求较优的水氮管理模式以促进农业生产和减少农田退水对黄河水体的污染, 在宁夏引黄灌区典型稻田中开展了不同水氮条件下稻田氮素迁移转化规律研究。结果表明: 不同水氮条件下稻田田面水NH4+-N 与NO3--N 浓度伴随施肥出现明显峰值, NO3--N 峰值出现时间较NH4+-N 晚, 且变化较平缓。3 次追肥时期和整个生育期田面水NH4+-N 平均浓度与施氮量和灌水量都呈显著相关, 田面水NO3--N 平均浓度与施氮量呈显著正相关, 与灌水量相关性不显著。稻田30 cm与60 cm 深度的直渗水NH4+-N 浓度受施肥影响较大, 与田面水NH4+-N 浓度变化规律相似, 90 cm 处直渗水NH4+-N 浓度峰值出现较为滞后, 且浓度较上层土体低, 120 cm 处直渗水NH4+-N 浓度大体呈现持续上升趋势,整个生育期直渗水NH4+-N 平均浓度与施氮量呈显著相关, 仅30 cm 处NH4+-N 平均浓度与灌水量呈负相关, 其他土层深度不显著。30 cm 与60 cm 直渗水NO3--N 浓度在首次灌水后急剧下降, 在施肥后有较小幅度上升, 90 cm 与120 cm 直渗水NO3--N 浓度下降缓慢, 仅30 cm 处NO3--N 平均浓度与施肥量显著正相关。总的结果表明减少施肥或灌水均可达到减少农田氮素淋失的目的。  相似文献   

4.
不同施肥条件下农田硝态氮迁移的试验研究   总被引:22,自引:5,他引:22  
NO-3-N的淋失是旱地农田氮素损失的重要途径之一,也是引起地下水污染的一个主要原因。在黄土高原地区,夏玉米生长正逢雨季,是NO-3-N淋失的主要时期。该研究基于阻水层理论和黄土高原地区传统的垄作习惯,在手工模拟机具成垄压实施肥的基础上研究了该施肥法与传统的平地施肥、垄沟施肥(成垄不压实)条件下土壤NO-3-N的迁移动态,结果表明,在供水量相同条件下,由于平地和垄沟条件下水分分布的差异,导致平地土壤中的NO-3-N较垄沟耕作易于迁移。在生育前期,由于作物根系对NO-3-N的吸收和拦截,成垄压实与成垄不压实施肥对阻止NO-3-N随水下移差异不大;生育后期,当作物需肥量减小时,成垄压实施肥能够阻止NO-3-N向深层土壤迁移累积。玉米收获后,3种施肥方式下土壤NO-3-N迁移深度为平地(>60 cm)>垄沟施肥(>45 cm)>成垄压实施肥(<35 cm)。  相似文献   

5.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:5,自引:0,他引:5  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性。研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度最大值越大,相同深度处土壤NO-3-N浓度也越大。肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型。供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小。  相似文献   

6.
通过连续7 年的定位试验, 研究了日光温室生产中不同施肥模式(常规模式、无公害模式和有机模式)对土壤NO3--N 时空分布及累积的影响。结果表明, 随着种植年限的增加, 3 种施肥模式土壤剖面各层次NO3--N含量均呈上升趋势, 年增加量顺序为常规施肥模式>无公害施肥模式>有机施肥模式。受氮素输入量(施肥)的影响, NO3--N 主要分布在0~40 cm 土层, 0~60 cm 土层NO3--N 含量总体呈作物生长前期低、中期高、后期低的趋势; 与上层土壤相比, 100 cm 以下土层NO3--N 含量有不同程度的增加。0~200 cm 土体NO3--N 平均累积量有机施肥模式比无公害施肥模式低33.8%, 比常规施肥模式低45.9%; 无公害施肥模式比常规施肥模式低18.3%。3 种施肥模式下, NO3--N 都有向2 m 以下土体淋洗的趋势。与施用化学肥料相比, 施用有机肥能明显降低土壤剖面NO3--N 含量, 控制其累积峰的下移, 但不合理施用有机肥也会产生NO3--N 淋洗而污染环境。  相似文献   

7.
采用2水平灌水量(4541.0和2270.6 m3/hm2)×3水平氮肥追施量(747.4、373.9 kg/hm2和0),以番茄品种Skala为试材,研究了不同水、氮供应水平对日光温室越冬栽培番茄土壤中脲酶、蔗糖酶、磷酸酶等活性及细菌、放线菌、真菌等微生物数量的影响。结果表明:高灌水(4541.0 m3/hm2)或高施氮量(747.4 kg/hm2)可显著降低土壤脲酶和磷酸酶活性;水、氮协调供应有利于土壤蔗糖酶活性和土壤微生物数量的提高;通过多目标评价,在该试验条件下,当灌水量4541.0 m3/hm2、氮肥追施量373.9 kg/hm2可获得最优的土壤生物环境。  相似文献   

8.
滇池流域大棚土壤硝酸盐累积特征及其对环境的影响   总被引:8,自引:2,他引:8  
对滇池流域主要大棚土壤的分析结果表明:随着大棚年限的增长,土壤剖面(0~60 cm)土层中硝态氮在不断累积,加重了土壤次生盐渍化;大棚内0~20 cm、20~40 cm土壤硝态氮含量与全盐的相关性均达极显著水平。同时对大棚区的地下水、地表水的分析结果表明:地下水中NO-3含量与土壤NO-3含量呈正相关,相关系数为0.945**,大棚种植区土壤的NO-3累积严重威胁地下水环境;地表水中的总氮含量与大棚土壤NO-3含量的相关性很好(r=0.994**),大棚种植区土壤的NO-3累积将加重滇池面源污染的负荷。  相似文献   

9.
长期施肥对塿土硝态氮分布、累积和移动的影响   总被引:9,自引:0,他引:9  
利用 18年长期定位试验研究了冬小麦 夏玉米轮作制度下 ,有机 无机肥配合施用对土剖面NO3-N的分布累积和阶段性移动的影响。结果表明 ,土壤剖面中NO3-N的总量与氮肥施用量直接相关 ,而作物对化肥氮的利用率与施肥量呈相反趋势。低氮处理 (75kg/hm2)及其与有机肥配合施用 ,NO3-N主要累积在 0~100cm土层内 ;高氮处理 (120kg/km2)及其与有机肥配合施用 ,NO3-N在剖面出现 2个累积峰 ,且在400cm土层处NO3-N的含量接近或超过 10mg/kg。适宜的氮肥用量、施用有机肥及合理的有机 无机肥料配比是减少NO3-N在土壤剖面中的累积和淋失的有效措施  相似文献   

10.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

11.
施肥对日光温室黄瓜和土壤硝酸盐含量的影响   总被引:15,自引:2,他引:15  
通过田间试验研究了不同施肥对日光温室黄瓜NO2--N和NO3--N含量和土壤NO3--N以及黄瓜产量的影响。结果表明,在黄土高原黄绵土上,施N400kg.hm2和P2O5250kg.hm2,黄瓜生长期间,NO3--N含量变化与黄瓜的生长发育阶段关系密切,黄瓜结瓜前020和2040cm土层NO3--N含量较高,随黄瓜生长速度加快和结瓜盛期的到来,土壤NO3--N含量降低;黄瓜收获后,NO3--N含量又有增加。不同施肥种类比较,施用化肥40160cm土层NO3--N的累积和淋洗量最大,施用沼肥其累积和淋洗量小于施用化肥,而施用有机肥(牛粪)NO3--N的累积和淋洗量小于施用沼肥。采用叶面喷施尿素和有机钾肥,可以减少化肥和有机肥用量,从而降低土壤剖面0200cmNO3--N的累积。使用沼肥、叶面肥的黄瓜产量都明显高于不施肥和NP化肥处理。  相似文献   

12.
对连续14年施用不同肥料后,春小麦.春玉米间作下,土壤硝态氮的累积和分布,作物产量及对氮素的吸收利用进行了研究。结果表明,在施农家肥120t.hm2(M)、绿肥45t.hm2(G)、秸杆10.5t.hm2(S)、N375kg.hm2(N)、农家肥60t.hm2+N187.5kg.hm2[1/2(M+N)]、绿肥22.5t.hm2+N187.5kg.hm2[1/2(G+N)]、秸杆5.25t.hm2+N187.5kg.hm2[1/2(S+N)]和CK等8个处理中,土壤剖面硝态氮的累积和分布以N处理最高,地上部N浓度和吸N量以N、1/2(M+N)和1/2(G+N)处理较高,但3处理间无明显差别。间作小麦子粒产量和生物学产量以M、G、1/2(M+N)和1/2(G+N)等处理较高,间作玉米子粒产量和生物学产量以1/2(G+N)、N、G和1/2(M+N)等处理较高。氮肥利用率以1/2(S+N)处理最高,1/2(M+N)和1/2(G+N)低于1/2(S+N)、S和N处理,但高于M、G处理。说明氮肥与农家肥或绿肥配合施用,既能增加作物产量,提高氮素吸收利用,又可减少土壤中硝态氮的累积。  相似文献   

13.
氮钾肥施用量对秋季大白菜产量和品质的影响   总被引:5,自引:0,他引:5  
通过研究不同氮、钾肥用量对秋大白菜产量和品质的影响表明:本地区常年蔬菜地种植秋季大白菜,氮肥(纯N)施用量宜控制在300kg hm-2以下,钾肥(K2O)用量150~225kg hm-2,氮钾肥施用比例1:0.5~0.8;氮肥用量增加植株内的亚硝酸盐含量提高,钾肥用量增加可相应降低大白菜体内亚硝酸盐含量;Vc含量则是随着氮钾肥用量的增加而提高;氮钾肥用量对大白菜容重也有较大影响,决定了大白菜的商品性状。  相似文献   

14.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:8,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

15.
利用D饱和最优设计研究了施肥对黑土玉米农田生态系统硝态氮淋洗的影响,结果表明,黑土玉米农田生态系统氮磷肥配合施用,土壤淋洗液的硝态氮含量及硝态氮淋洗总量主要决定于氮素的施用量。施用氮肥减少了淋洗液的数量,但增加了淋洗液硝态氮的浓度和硝态氮淋洗总量。氮肥增加淋洗液硝态氮总量的原因是增加了淋洗液硝态氮的含量。施用磷肥增加了淋洗液的数量,但减少了淋洗液硝态氮的含量和硝态氮淋洗总量,磷肥降低硝态氮淋洗总量的主要原因是降低了淋洗液硝态氮的浓度。氮磷配合施用减少淋洗液的硝态氮含量和硝态氮淋洗总量,所降低的硝态氮淋洗量是施氮后增加的那一部分。有机肥减少了淋洗液的数量,因此使硝态氮淋洗总量减少,但淋洗液的硝态氮浓度增施有机肥后反而增加。  相似文献   

16.
高肥力稻田分次施氮对氮素淋失的影响   总被引:8,自引:5,他引:8  
通过自行设计的渗漏计研究在控水灌溉条件下稻田不同氮肥处理氮素淋失的动态规律,结果表明:在水稻整个生育期间,渗漏水中铵态氮、硝态氮保持较低的浓度,均小于1mg/L,但对硝态氮而言,仍是氮素淋失的主要类型。从总的趋势来看,渗漏水中氮素浓度随施肥量增加而增加。每次施肥后,不同处理渗漏水中的NO3--N浓度均表现为短期内迅速上升、后期逐渐下降的趋势,其中NH4 -N浓度与NO3--N消长规律相似,但表现出峰值超前的特征。各小区渗漏计中NH4 -N、NO3--N及TN累积渗漏量与施肥量之间存在显著相关性,R2分别达到0.933*,0.984**和0.982**。另外从环境和经济角度考虑,建议在土壤质地粘重、基础肥力较高的水稻土施肥量控制在75~150kg/hm2为宜,控制氮素淋失主要时期为施肥后一周内,特别在基肥施后尤为关键。  相似文献   

17.
氮肥对节水栽培冬小麦产量、土壤硝态氮残留的影响   总被引:6,自引:0,他引:6  
在节水栽培条件下,研究了不同施氮量及氮肥运筹对冬小麦产量、氮肥利用率及生育期间土壤硝态氮的时空变化特征。同时计算了成熟期土壤硝态氮残留量。结果表明。节水栽培条件下冬小麦产量对氮肥反应不明显。氮肥利用率则随施氮量增加而显著降低。同时氮肥用量的增加显著增加了成熟期土壤硝态氮残留量。不同生育期0~60cm土层硝态氮含量均随施氮量增加而增加,开花期表现为施氮量157.5kg/hm^2或226.5kg/hm^2时氮肥一次性底施处理硝态氮含量均低于分次施用处理,成熟期表现为施氮量157.5kg/hm^2时氮肥分次施用处理高于一次性底施处理,而施氮量226.5kg/hm^2则相反。由此可见,节水栽培条件下施氮量157.5kg/hm^2一次性底施既可满足冬小麦高产的要求,同时土壤硝态氮残留量较低。  相似文献   

18.
氮素损失对农业生产造成的影响已成为当前研究的热点,模型是对氮素损失影响评价及定量化研究的有效手段。利用华北典型农田冬小麦-夏玉米轮作种植模式的作物产量、氮素淋失量等田间观测数据对DNDC模型进行了验证,并采用验证后的DNDC模型对该种植模式的氮素损失进行了定量评价,提出了综合考虑作物产量、氮素淋失量、N2O排放量以及NH3挥发损失的综合调控途径。结果表明,DNDC模型较好地模拟了冬小麦-夏玉米轮作系统作物的产量、氮素淋失的动态变化规律,以及土壤中NO3--N和NH4+-N的残留量,说明DNDC已具备模拟农田生态系统中土壤氮素生物地球化学过程的能力。模型模拟结果表明,在传统农业管理措施下,氮素通过淋失、N2O排放以及NH3挥发损失的量分别达到49.4 kg(N).hm-2.a-1、17.71kg(N).hm-2.a-1和144.8 kg(N).hm-2.a-1。综合考虑氮素损失途径,提出了适合当地农业生产条件的最优化管理措施,即减小当前常规施氮量到340 kg(N).hm-2.a-1,提高玉米秸秆还田率到100%,并保持灌溉量不变。相比常规管理措施,最优化管理措施氮素淋失量为14.1 kg(N).hm-2.a-1,降低71.5%,N2O排放量为14.91kg(N).hm-2.a-1,降低15.8%,NH3挥发损失量为117.2 kg(N).hm-2.a-1,降低19.1%,而对作物产量基本不造成明显影响。该评价结果可直接用于农业生产实践。  相似文献   

19.
施氮和豌豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:1,他引:3  
为探明甘肃河西走廊绿洲灌区豌豆/玉米间作体系土壤无机氮时空分布现状和过量施用氮肥对环境的影响,2011年在田间试验条件下,采用土钻法采集土壤剖面样品,采用Ca Cl2溶液浸提、流动分析仪测定土壤无机氮含量的方法,研究了不同氮水平[0 kg(N)·hm?2、75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2、450 kg(N)·hm?2]下豌豆/玉米间作体系土壤无机氮时空分布规律。结果表明:作物整个生育期内,灌漠土无机氮以硝态氮为主,其含量是铵态氮的7.55倍。在玉米整个生育期内,与不施氮相比,75 kg(N)·hm?2、150 kg(N)·hm?2、300 kg(N)·hm?2和450 kg(N)·hm?2处理的土壤硝态氮含量分别增加29.7%、67.5%、88.2%和134.3%。与豌豆收获期相比,在玉米收获时土壤硝态氮含量平均降低44.2%。间作豌豆和间作玉米分别比对应的单作在0~120 cm土层硝态氮含量降低6.1%和5.1%。豌豆/玉米间作体系土壤无机氮累积量在不同施氮量和不同生育时期都是表层(0~20 cm)最高。豌豆收获后,0~60 cm土层土壤无机氮累积量间作豌豆和间作玉米分别比相应单作降低4.9%和1.9%,60~120 cm土层降低10.8%和9.2%;玉米收获后0~60 cm土层平均降低28.2%和9.4%,60~120 cm土层平均降低23.5%和12.5%。土壤无机氮残留量间作豌豆比单作豌豆在0~60 cm土层降低4.9%,60~120 cm降低10.9%。因此,施用氮肥显著增加了土壤无机氮含量和累积量,且主要影响土壤硝态氮。过量的氮肥投入会因作物不能及时全部吸收而被大水漫灌和降雨等途径淋洗到土壤深层,造成氮肥损失和农田环境污染。间作能显著降低土壤无机氮浓度和累积量,特别在作物生长后期对土壤无机氮累积的降低作用更加明显。  相似文献   

20.
【目的】控释尿素已被证明对于提高氮素利用率、减少氮素损失和增产有积极意义,且不同包膜的控释尿素由于包膜材料的不同,对于氮素的释放和供应强度有所不同。本文在黄淮海区域采用玉米田间试验,探讨硫膜和树脂膜控释尿素在氮素供应和减少氮素损失等方面的效应,以期为黄淮海区域夏玉米在高温多雨的种植条件下两种控释尿素的选择和应用提供依据。【方法】以硫膜和树脂膜控释尿素为研究对象,采用田间试验研究0—100 cm土壤剖面中的硝态氮含量,玉米整个生育期的土壤氮素平衡和玉米产量以及氮素利用率。【结果】与相同施氮量的普通尿素相比,硫膜和树脂膜控释尿素均具有"前控后保"的特性,使玉米苗期0—100 cm土层的土壤硝态氮含量降低了11.7%~56.7%和28.8%~68.2%,玉米灌浆期和收获期0—40 cm土层的硝态氮含量分别提高了16.3%~46.7%、0.5%~60.7%;两种控释尿素均能有效降低玉米整个生育期土壤残留的无机氮量、氮素表观损失量和盈余量,降幅分别为12.0%~18.4%、13.2%~66.4%和15.6%~30.9%,使玉米产量提高14.6%~37.5%,氮素利用率提高12.3~20.8个百分点。在N 210 kg/hm2、N 300 kg/hm2两种施氮量条件下,与相同施氮量的硫膜控释尿素相比,树脂膜控释尿素处理的玉米苗期0—60 cm土层的硝态氮含量降低了26.4%~39.1%,灌浆期0—40 cm土层和收获期0—20 cm土层的硝态氮含量分别提高了10%~21.8%和9.6%~16.4%,土壤残留无机氮量、氮素表观损失量和盈余量分别降低了2.3%~6.0%、44.6%~61.3%和17.0%~17.7%,玉米产量提高了6.8%~8.3%,氮素利用率提高了7.1~8.4个百分点,说明树脂膜控释尿素的效果优于硫膜控释尿素。树脂膜控释尿素和硫膜控释尿素在施氮量N 300 kg/hm2时均比N 210 kg/hm2条件下玉米整个生育期不同土层的硝态氮含量提高了1.2%~90.9%和2.0%~56.7%,玉米整个生育期土壤残留无机氮量、氮素表观损失量和盈余量分别提高了42.1%~47.6%、66.2%~137.9%、52.5%~53.8%,玉米产量和氮素利用率分别提高了20.8%和22.5%、6.5和5.2个百分点,施氮量N 300 kg/hm2优于N 210 kg/hm2。【结论】树脂膜控释尿素在减少夏玉米农田土壤剖面硝态氮残留、维持土壤氮素平衡和提高氮素利用率等方面的效果优于硫膜控释尿素和普通尿素。综合考虑保证土壤氮素供应、减少氮素损失、提高玉米产量及氮素利用率等因素,在黄淮海区域高温多雨气候条件下种植夏玉米,以施氮量N 300 kg/hm2的树脂膜控释尿素或者硫膜和树脂膜控释尿素二者配合施用效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号