首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
1901—2016年黄土高原降雨侵蚀力时空变化   总被引:1,自引:0,他引:1  
为了研究横跨20世纪的百年尺度黄土高原降雨侵蚀力时空变化,该文首先验证了CHELSAcrust数据集的精度,并基于该数据集估算了黄土高原1901—2016年逐月降雨侵蚀力,最后分析了降雨侵蚀力的时空变化特征。结果表明:(1)CHELSAcrust数据集精度较高(Nash=0.79; R2=0.82),满足本文分析需求;(2)1901—2016年黄土高原年均降雨侵蚀力东南高、西北低,各地理分区降雨侵蚀力中,土石山区>河谷平原区>丘陵沟壑区>高原沟壑区>沙地沙漠区>农灌区。降雨侵蚀力显著变化区域集中于黄土高原中部地区,非显著变化区域分布在边缘地区;(3)1901—2016年黄土高原降雨侵蚀力变化不显著且无明显突变点,可划分为1901—1930年、1930—1980年和1980—2016年3个阶段;(4)黄土高原地区降雨侵蚀力变化存在周期性规律,2.62 a变化周期最显著,且变化周期与气候要素的波动周期基本一致。结果显示1901—2016年黄土高原降雨侵蚀力变化并不显著且存在周期性规律,其空间分布存在明显差异。  相似文献   

2.
[目的] 基于不同模型探究黄河中游地区降雨侵蚀力的时空演变特征,为该地区水土流失危害评估、水土保持措施规划提供参考依据。[方法] 采用黄河中游1981—2020年日降雨量数据集,基于两种降雨侵蚀力模型探究了降雨和降雨侵蚀性的时空变化特征。 [结果] 黄河中游年均降雨量为349.90~699.90 mm,空间上自东南向西北呈波浪形递减趋势,时间上呈多峰状不显著的波动上升趋势特征,存在2 a主周期变化特征。黄河中游两种模型的降雨侵蚀力年际变化趋势特征和周期性相似,但降雨量越大的地区,两模型估算的降雨侵蚀力结果相差越大。谢云模型估算的降雨侵蚀力结果与降雨量相对更拟合。黄河中游年均降雨侵蚀力为767.00~3 003.40 MJ·mm/(hm2·h),具有高度月度集中性,集中于7—8月,呈单峰型。 [结论] 黄河中游年均降雨侵蚀力具有显著的垂直空间差异,且在地形和地貌影响下空间差异会发生变化,高海拔地区的变化系数通常高于低海拔地区。在东南部秦岭山区和关中平原等地区,随海拔升高,降雨侵蚀力迅速减少,在西北部黄土高原区,随海拔升高而逐渐增加。因此在黄河中游降雨侵蚀性增加的地区,应采取适当措施,减少土壤侵蚀的潜在风险,确保区域生态安全的可持续发展。  相似文献   

3.
降雨侵蚀力经典模型计算结果准确,但计算过程繁琐、数据量大且难获取;简易模型计算便捷,但结果不够准确.本文分析了8种黄土丘陵沟壑区降雨侵蚀力模型的差异,并对简易模型进行修正.以经典模型为基准值,对与经典模型结果最为接近的简易模型进行修正,基于修正后的简易模型分析黄土丘陵沟壑区降雨侵蚀力的时空分布特征.在此过程中用到的方法主要是数理统计法和模型差异分析方法.经典模型更能准确估算陕北黄土丘陵沟壑区降雨侵蚀力;拟合模型y=0.849x-29.651可以提高章文波降雨侵蚀力简易模型的模拟精度(拟合优度0.734);陕北黄土丘陵沟壑区2006-2012年间降雨侵蚀力总体呈现上升趋势;汾川河流域、清涧河流域上游降雨侵蚀力较高,下游次之;延河流域、大理河流域下游降雨侵蚀力较高,上游次之.降雨侵蚀力简易算法经修正后可以较好的估算黄土丘陵沟壑区的降雨侵蚀力的时空分布特征,陕北黄土丘陵沟壑区2006-2012年间降雨侵蚀力时空分布不均,降雨侵蚀力整体较高.  相似文献   

4.
渭河流域降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]揭示渭河流域降雨侵蚀力的时空变化特征,为区域水土保持规划提供依据。[方法]根据渭河流域及其周边范围30个气象站点1957—2014年逐日降雨资料,采用章文波日降雨量侵蚀模型计算各站点的降雨侵蚀力,分析其空间分布规律和年内分布特征。[结果]渭河流域多年平均降雨侵蚀力值分布范围为806.25~3 510.81 MJ·mm/(hm2·h),平均值1 798.97 MJ·mm/(hm2·h),与多年平均侵蚀性降雨的空间分布基本一致,总体呈现西北低东南高的趋势。渭河流域降雨侵蚀力年内变化呈单峰型,主要集中在7—9月,占全年降雨侵蚀力的63.91%。北部黄土高原地区和关中平原发生水土流失的时期集中在7—9月,而秦岭北麓地区5—10月均有可能发生较大的水土流域,侵蚀风险由西北向东南递增。流域降雨侵蚀力年际波动较大,年际变率Cv值在34%~56%之间,整体而言,流域西北部地区的降雨侵蚀力年际变化幅度大于东南部地区。除洛川、长武、环县、平凉4个站点降雨侵蚀力在研究时段内有所增大外,其余地区降雨侵蚀侵蚀力呈不同速率的减小趋势。[结论]渭河流域降雨侵蚀力时空分布差异显著,尽管流域降雨侵蚀力呈减弱趋势,由于流域地处黄土高原,水土保持与水源涵养工作仍需高度重视。  相似文献   

5.
黄土高原南部降雨侵蚀力试验研究   总被引:1,自引:0,他引:1  
基于Wischimeier关于降雨侵蚀力R=EI30的经典算法,以黄土高原南部杨凌天然降雨为研究对象,较详细地分析了一次降雨过程雨滴大小分布;拟合了雨滴中数直径、降雨动能与降雨强度的关系;分别以EI10、EI30、EI60为降雨侵蚀力R指标,计算了该地区6-9月降雨侵蚀力大小,研究分析了降雨侵蚀力与降雨量之间的关系。得出以下结论:雨滴大小分布满足Best提出的分布式;雨滴中数直径反映次降雨过程中雨滴大小的总体趋势,与降雨强度关系密切,其关系式可表示为D50=2.25I0.21;降雨动能由降落雨滴从高空下落而具有的能量,以及与雨滴直径和下落速度有直接关系,得出降雨动能与降雨强度的关系式为E=26.57I0.28;杨凌区降雨量多集中于6-10月,月降雨侵蚀力分布随着月降雨量变化而变化;3种R指标计算的降雨侵蚀力值,EI10>EI30>EI60,且3种指标计算结果与CREAMS月雨量经验模型的相对偏差中,EI10与其相对偏差最小,但波动幅度较大,EI30与其相对偏差居中,但相对较稳定,分析得出EI10更适用于短阵型降雨,EI30适用于普通型降雨。基于上述理论,本研究旨在为今后建立黄土高原南部地区降雨侵蚀力简易计算模型提供理论依据。  相似文献   

6.
黄土高原降雨侵蚀力时空分布   总被引:10,自引:5,他引:10  
降雨侵蚀力时空分布规律定量研究是进行土壤侵蚀预报的基础。利用231个气象站多年平均年雨量资料估算了黄土高原地区多年平均降雨侵蚀力,并绘制了等值线图。利用17个气象站日雨量和日雨强资料估算了半月降雨侵蚀力及其年内分配特征。全区降雨侵蚀力变化于327~4416MJ.mm/(hm2.h.a)之间,等值线图显示降雨侵蚀力的空间分布与年降水量的空间分布规律十分相似,大致从东南向西北递减。半月降雨侵蚀力占年侵蚀力的累积频率表,为估算土壤侵蚀方程中土壤可蚀性因子和植被覆盖—管理因子提供了基础。侵蚀力年内分配集中度指标反映出黄土高原R值年内分配集中度很高,且多集中在6—9月,集中度最大的达96.4%,最小的也有66.9%。  相似文献   

7.
长江上游水蚀区降雨侵蚀力的时空分布特征   总被引:4,自引:1,他引:3  
降雨侵蚀力的时空分布特征对于分析和认识土壤侵蚀规律十分重要.根据长江上游7个省市的704个站点1981-2010年30 a的逐日降雨量资料计算了多年平均降雨侵蚀力R值,多年平均半月降雨侵蚀力及其占年降雨侵蚀力的比例,并分析了长江上游水蚀区降雨侵蚀力的空间分布规律.结果表明,长江上游水蚀区的降雨侵蚀力R值范围为273~11 394MJ·mm/(hm2·h· a);受地形的影响R值的空间分布有3个高值区,位于四川省峨眉山市、贵州省毕节地区和湖北省宜昌市附近;建立了多年平均降雨量和降雨侵蚀力R值的关系,相关系数R2达到0.80;研究区降雨侵蚀力的年内分布集中度较大,均值为69%,主要集中在5-10月.  相似文献   

8.
沂河流域1961-2010年降雨侵蚀力时空分布特征   总被引:2,自引:0,他引:2  
[目的]分析沂河流域近50 a的降雨量和降雨侵蚀力的时空变化特征,为流域水土流失防治及土地利用合理规划等工作提供参考.[方法]利用沂河流域及周边12个气象站1961-2010年的日降雨数据,基于日降雨信息的月降雨侵蚀力模型计算流域多年平均降雨侵蚀力,采用Mann-Kendall非参数检验法及析取Kriging内插法分析流域降雨量和降雨侵蚀力的时空变化特征.[结果]沂河流域降雨量和降雨侵蚀力空间分布上呈现出由西南向北逐级递减的变化趋势.多年平均降雨量为789.41 mm,多年平均降雨侵蚀力为2 626.09(MJ·mm)/(hm2·h·a),两者都在1965年产生突变;降雨量和降雨侵蚀力年内分布主要集中在夏季(6-8月),分别占全年比例的63.02%和71.22%,二者最大值都出现在7月,且秋季对流域多年降雨量的减少趋势贡献最多,夏季的降雨侵蚀力上升幅度最大.[结论]沂河流域的降雨量和降雨侵蚀力空间分布趋势相似,不同月份的降雨量与降雨侵蚀力差异不同.  相似文献   

9.
晋西黄土高原降雨侵蚀力研究   总被引:19,自引:1,他引:19  
降雨侵蚀力R值,是判断土壤侵蚀的最好指标,也是建立土壤流失预报模型最基本的因子之一。本文通过对大量实测资料进行分析,确定出适合于晋西黄土高原降雨侵蚀力R的最佳计算指标R=∑EI10,并根据这一计算指标和417站年、3679次侵蚀性降雨资料,应用微机求得了晋西黄土高原4.6万多km~2的多年平均R值为125.81J/(m~2·h)。晋西黄土高原降雨侵蚀力的年际变化幅度很大,最高年可达575.65J/(m~2·h),最低年只有3.85J/(m~2·h),一年中降雨侵蚀力R值以7、8两个月为最高,可占年R值的76.87%。在空间分布上,南部R值较大,北部偏小。  相似文献   

10.
黄土高原不同侵蚀类型区侵蚀产沙强度变化及其治理目标   总被引:5,自引:3,他引:2  
为了确定黄土高原不同侵蚀类型区的治理目标,采取"水文—地貌法",利用98个水文站控制区和234个侵蚀产沙单元,在分析其不同治理阶段土壤侵蚀产沙变化特征与减沙幅度,不同侵蚀强度面积的变化及其空间分布的基础上,提出了未来20a黄土高原主要流失区的区域治理目标:土壤流失量控制在3.60×108 t左右,土壤侵蚀模数1 300 t/(km2.a)左右。其中,黄土峁状丘陵沟壑区为3 000t/(km2.a),黄土梁状丘陵沟壑区为2 000t/(km2.a),干旱黄土丘陵沟壑区为2 000t/(km2.a),黄土平岗丘陵沟壑区为1 000t/(km2.a),风沙黄土丘陵沟壑区为1 000t/(km2.a),黄土山麓丘陵沟壑区为1 000t/(km2.a),森林黄土丘陵沟壑区为300t/(km2.a),黄土高塬沟壑区为1 500t/(km2.a),黄土残塬沟壑区为3 000t/(km2.a),黄土阶地区为500t/(km2.a),风沙草原区为500t/(km2.a),高原土石山区为100t/(km2.a)。未来20a黄土高原的治理重点区域为黄土峁状丘陵沟壑区(2.20×104 km2)、干旱黄土丘陵沟壑区(1.50×104 km2)、黄土高塬沟壑区(8 600km2)、黄土梁状丘陵沟壑区(4 600km2)。  相似文献   

11.
降雨侵蚀力反映了降雨对土壤侵蚀的潜在能力,准确评估降雨侵蚀力对水土保持规划和水土流失治理具有重要意义。近年来,网格化降水产品在计算中国的降雨侵蚀力方面发挥了积极作用,但不同降水产品存在一定的区域差异性。因此,为评估各类降水产品在不同区域的适应性以利于降雨侵蚀力的准确估计,该研究选用了4种网格化降水产品:中国逐日网格降水量实时分析系统数据集(China gauge-based daily precipitation analysis,CGDPA)、中国区域地面气象要素数据集(China meteorological forcing dataset,CMFD)、中国地面降水日值0.5°×0.5°格点数据集(v2.0)(Dataset of gridded daily precipitation in China(Version2.0),CN0.5)、热带降水测量计划—多卫星降水分析测量产品(tropical rainfall measurement mission-multisatellite precipitation analysis,TRMM-TMPA)3B42V7,采用日降雨侵蚀力...  相似文献   

12.
Erodibility of agricultural soils on the Loess Plateau of China   总被引:6,自引:0,他引:6  
K. Zhang  S. Li  W. Peng  B. Yu   《Soil & Tillage Research》2004,76(2):157-165
Soil erodibility is thought of as the ease with which soil is detached by splash during rainfall or by surface flow. Soil erodibility is an important factor in determining the rate of soil loss. In the universal soil loss equation (USLE) and the revised universal soil loss equation (RUSLE), soil erodibility is represented by an erodibility factor (K). The K factor was defined as the mean rate of soil loss per unit rainfall erosivity index from unit runoff plots. Although high rate of soil loss from the Loess Plateau in China is well known and widely documented, it is remarkable that there is little systematic attempt to develop and validate an erodibility index for soils on the Loess Plateu for erosion prediction. Field experimental data from four sites on the Loess Plateau were analyzed to determine the K factor for USLE/RUSLE and to compare with another erodibility index based on soil loss and runoff commonly used for the region. The data set consists of event erosivity index, runoff, and soil loss for 17 runoff plots with slope ranging from 8.7 to 60.1%. Results indicate that the K factor for USLE/RULSE is more appropriate for agricultural soils on the Loess Plateau than the erodibility index developed locally. Values of the K factor for loessial soils range from 0.0096 to 0.0269 t h/(MJ mm). The spatial distribution of the K value in the study area follows a simple pattern showing high values in areas with low clay content. For the four sites investigated, the K factor was significantly related to the clay content, (K=0.031−0.0013 Cl, r2=0.75), where Cl is the clay content in percent. The measured values of the K factor are systematically lower than the nomograph-based estimates by a factor of 3.3–8.4. This implies that use of the nomograph method to estimate soil erodibility would considerably over-predict the rate of soil loss, and local relationship between soil property and the K factor is required for soil erosion prediction for the region.  相似文献   

13.
 降雨侵蚀力简易算法是较大尺度应用USLE/RUSLE进行土壤侵蚀评价研究的必要内容。基于降雨量和降雨时间建立月降雨侵蚀力计算模型,并以陕北黄土丘陵沟壑区为例,进行模型的拟合。结果表明:随着自变量中降雨量和降雨时间表示方式的改变,模型的拟合优度表现出明显的差异;对于不同因变量而言,以ΣEI30(或lg(ΣEI30))和以ΣEI10(或lg(ΣEI10))为因变量的模型拟合优度在整体上比较接近甚至相同,而以ΣE60I10(或lg(ΣE60I10))为因变量的模型拟合优度在整体上略低;就尺度效应而言,在时间尺度上,整个汛期的模型拟合优度低于1个月份或多个月份模型的拟合优度,在空间尺度上,区域模型中的拟合优度低于至少1个流域的模型拟合优度;在实际应用中,可以选择以ΣEI30为因变量的月降雨侵蚀力公式对该区域进行土壤侵蚀评价。  相似文献   

14.
内蒙古黄土丘陵沟壑区降雨侵蚀力时间变化规律研究   总被引:1,自引:0,他引:1  
降雨侵蚀力指由降雨引起土壤侵蚀的潜在能力,是影响土壤侵蚀的最主要因子之一。以内蒙古准格尔旗沙圪堵气象站45年的日降雨资料为基础,选取适合本地区的降雨侵蚀力模型,分析内蒙古黄土丘陵沟壑区的降雨量与降雨侵蚀力的关系。结果表明年降雨侵蚀力曲线与年降雨量曲线走向基本上是一致的。年内降雨侵蚀力分布与降雨量的年内分布规律也基本相同,所不同的是降雨侵蚀力的季节变化要明显大于降水量的季节变化。二者的回归关系比较表明,降雨量与降雨侵蚀力的关系以幂函数关系表示,相关性系数最大,并且月降雨量与降雨侵蚀力的相关性要明显比年降雨量与降雨侵蚀力的相关性增强,这主要是受降雨强度的影响。降雨侵蚀力在年内主要集中在6~9月,以8月最大。  相似文献   

15.
中国降雨侵蚀力的时空分布及重现期研究   总被引:11,自引:3,他引:8  
降雨侵蚀力是土壤侵蚀模型USLE的一个重要因子。基于中国中东部水蚀区18个气象站1961(1971)-2000年逐分钟降水数据和全国范围内774个气象站1961-2016年逐日降水数据,采用克里金插值方法,得到全国多年平均年、多年平均24个半月、不同重现期年和次侵蚀力空间分布特征,可满足USLE模型对侵蚀力因子相关参数输入的要求。交叉验证结果表明:以上所有指标的空间插值模型精度较好,模型有效系数NSE不低于0.74,偏差百分比PBIAS低于1%,均方根误差与观测值标准差的比值RSR小于等于0.51。侵蚀力年内变化曲线具有较好的区域相似性,使用K均值聚类分析方法将中国侵蚀力年内变化特征划分为4个区域,每个区域概化出一条侵蚀力年内变化曲线。  相似文献   

16.
基于重心模型的西南山区降雨侵蚀力年内变化分析   总被引:5,自引:3,他引:2  
降雨-植被耦合特征是决定土壤侵蚀的关键性要素,研究降雨侵蚀力的年内变化特征对于揭示不同区域降雨-植被的耦合特征、判定土壤侵蚀的危险期具有重要意义。该文利用中国西南山区439个气象站、水文站的逐日降雨量资料,估算了每个台站逐月降雨侵蚀力,并应用重心模型分析了西南山区降雨侵蚀力的年内变化特征。研究结果表明:西南山区春、夏、秋、季四季降雨侵蚀力变化明显,夏季最高,冬季最低。各季节的降雨侵蚀力空间分布与降水量相似,都表现出东南向西北逐渐递减的趋势。降雨侵蚀力年内分配曲线主要有"单峰型"和"双峰型"2种,绝大多数地区降雨侵蚀力年内分配曲线是"单峰型",峰值出现在6月、7月或8月份,青藏高原区域降雨侵蚀力年内分配曲线是"双峰型",有6月和9月2个峰值。从东南部向西北部,降雨侵蚀力峰值出现的月份不断推后。西南山区降雨侵蚀力重心年内先向北迁移,然后向南迁移,形成一个循环,这展示了季风气候影响下的西南山区降雨侵蚀力年内变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号