首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arid soils where water and nutrients are scarce occupy over 30% of the Earth's total surface. However, the microbial autotrophy in the harsh environments remains largely unexplored. In this study, the abundance and diversity of autotrophic bacteria were investigated, by quantifying and profiling the large subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase(Ru Bis CO) form I(cbb L) responsible for CO2 fixation, in the arid soils under three typical plant types(Haloxylon ammodendron, Cleistogenes chinensis,and Reaumuria soongorica) in Northwest China. The bacterial communities in the soils were also characterized using the 16 S r RNA gene. Abundance of red-like autotrophic bacteria ranged from 3.94 × 105 to 1.51 × 106 copies g-1dry soil and those of green-like autotrophic bacteria ranged from 1.15 × 106 to 2.08 × 106 copies g-1dry soil. Abundance of both red- and green-like autotrophic bacteria did not significantly differ among the soils under different plant types. The autotrophic bacteria identified with the cbb L gene primer were mainly affiliated with Alphaproteobacteria, Betaproteobacteria and an uncultured bacterial group, which were not detected in the 16 S r RNA library. In addition, 25.9% and 8.1% of the 16 S r RNA genes were affiliated with Cyanobacteria in the soils under H. ammodendron and R. soongorica, respectively. However, no Cyanobacteria-affiliated cbb L genes were detected in the same soils. The results suggested that microbial autotrophic CO2 fixation might be significant in the carbon cycling of arid soils, which warrants further exploration.  相似文献   

2.
Elucidating the biodiversity of CO2-assimilating bacterial communities under different land uses is critical for establishing an integrated view of the carbon sequestration in agricultural systems. We therefore determined the abundance and diversity of CO2 assimilating bacteria using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene (which encodes ribulose-1,5-biphosphate carboxylase/oxygenase). These analyses used agricultural soils collected from a long-term experiment (Pantang Agroecosystem) in subtropical China. Soils under three typical land uses, i.e., rice–rice (RR), upland crop (UC), and paddy rice–upland crop rotation (PU), were selected. The abundance of bacterial cbbL (0.04 to 1.25?×?108 copies g?1 soil) and 16S rDNA genes (0.05–3.00?×?1010 copies g?1 soil) were determined in these soils. They generally followed the trend RR?>?PU?>?UC. The cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Mycobacterium sp., Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and Alcaligenes eutrophus. Additionally, the cbbL-containing bacterial community composition in RR soil differed from that in upland crop and paddy rice–upland crop rotations soils. Soil organic matter was the most highly statistically significant factor which positively influenced the size of the cbbL-containing population. The RR management produced the greatest abundance and diversity of cbbL-containing bacteria. These results offer new insights into the importance of microbial autotrophic CO2 fixation in soil C cycling.  相似文献   

3.
Solar vegetable greenhouse soils show low soil organic carbon content and thus also low rates of soil respiration. Processing vegetable residues to biochar and mixing biochar with maize straw might improve soil respiration and increase soil organic carbon stocks, while preventing the spread of soil-borne diseases carried by vegetable residues. In an incubation experiment, we tested how additions of maize straw (S) and biochar (B) added in varying ratios (100S, 75S25B, 50S50B, 25S75B, 100B and 0S0B (control)) affect soil respiration and fraction of added C remaining in soil. Daily CO2 emissions were measured over 60 days incubation, the natural abundance of 13C in soil and in the added biochar and maize straw were analysed. Our result shows that (a) soil CO2 emissions were significantly increased compared to soil without the straw additions, while addition of biochar only decreased soil respiration; (b) cumulative CO2 emissions decreased with increasing ratio of added biochar to maize straw; (c) the abundance of soil 13C was significant positively correlated with cumulative CO2 emissions, and thus with the ratio of straw addition. Our results indicate that incorporation of maize straw in greenhouse soils is a meaningful measure to increase soil respiration and to facilitate greenhouse atmosphere CO2 limitation while producing vegetables. On the other hand, additions of biochar from vegetable residues will increase soil organic carbon concentration. Therefore, the simultaneous application of maize straw and biochar obtained from vegetable residues is an effective option to maintain essential soil functions for vegetable production in sunken solar greenhouses.  相似文献   

4.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

5.
Hu  Jiajun  Guo  Hongcheng  Xue  Yiyun  Gao  Min-tian  Zhang  Shiping  Tsang  Yiu Fai  Li  Jixiang  Wang  Ya-nan  Wang  Lei 《Journal of Soils and Sediments》2019,19(11):3718-3727
Purpose

Microalgae, biochar, or organic manure (OM) can be used as soil amendments to enhance soil organic carbon (OC) content. In the present study, a mixture of all three was used to test whether they could further improve soil OC content and the soil’s ability to retain and fix carbon.

Materials and methods

A laboratory incubation study was carried out to evaluate the efficacy of using microalgae, biochar, OM, or their mixture, as a soil amendment to improve OC in soil extract. Metabolic processes and soil microbial community structuring were analyzed to explore the mechanism by which the mixture increased the capacity of soil to act as a carbon sink.

Results and discussion

OC increased markedly (2.9 times its initial level) following the amendment of the soil with a treatment comprising microalgae, biochar, and the highest dose of OM. Microalgal metabolites were utilized by soil microorganisms as a carbon source. Biochar reduced the concentration of extracellular polysaccharides, whereas OM increased extracellular protein concentration. These metabolites affected the relative proportions of different groups of soil microorganisms, thereby increasing the proportion of Rhodobacter and Runella, which exerted a positive synergistic effect on soil OC and increased the soil’s capacity to fix carbon.

Conclusions

A mixture including microalga, biochar, and OM as a soil amendment improved the OC of soil extract, and its effect was greater than that of any of its components alone. The findings of this study can help in devising ways to increase the OC content and the CO2-fixing capacity of the soil.

  相似文献   

6.
Purpose

Soil chromium (Cr) pollution has received substantial attention owing to related food chain health risks and possible promotion of greenhouse gas (GHG) emissions. The aim of the present study was to develop a promising remediation technology to alleviate Cr bioavailability and decrease GHG emissions in Cr-polluted paddy soil.

Materials and methods

We investigated the potential role of biochar amendment in decreasing soil CO2, CH4, and N2O emissions, as well in reducing Cr uptake by rice grains at application rates of 0 t ha?1 (CK), 20 t ha?1 (BC20), and 40 t ha?1 (BC40) in Cr-polluted paddy soil in southeastern China. In addition, the soil aggregate size distribution, soil organic carbon (SOC) concentration of soil aggregates, soil available Cr concentration, and rice yield were analyzed after harvesting.

Results and discussion

Biochar amendment significantly reduced CO2, CH4, and N2O emission fluxes. Compared to CK, total C emissions in the BC20 and BC40 treatments decreased by 9.94% and 17.13% for CO2-C, by 30.46% and 37.10% for CH4-C, and by 34.24% and 37.49% for N2O-N, respectively. Biochar amendment increased the proportion of both the 2000–200 μm and 200–20 μm size fractions in the soil aggregate distribution. Accordingly, the organic carbon concentration of these fractions increased, which increased the total SOC. Moreover, biochar amendment significantly decreased soil available Cr concentration and total Cr content of the rice grains by 33.6% and 14.81% in BC20 and 48.1% and 33.33% in BC40, respectively. Rice yield did not differ significantly between biochar amendment treatment and that of CK.

Conclusions

Biochar application reduced GHG emissions in paddy soil, which was attributed to its comprehensive effect on the soil properties, soil microbial community, and soil aggregates, as well as on the mobility of Cr. Overall, the present study demonstrates that biochar has a great potential to enhance soil carbon sequestration while reducing Cr accumulation in rice grains from Cr-polluted rice paddies.

  相似文献   

7.
Biochar amendment in soil has been proposed as a carbon sequestration strategy which may also enhance soil physical and chemical properties such as nutrient and water holding capacity as well as soil fertility and plant productivity. However, biochar may also stimulate microbial activity which may lead to increased soil CO2 respiration and accelerated soil organic matter (OM) degradation which could partially negate these intended benefits. To investigate short-term soil microbial responses to biochar addition, we conducted a 24 week laboratory incubation study. Biochar produced from the pyrolysis of sugar maple wood at 500 °C was amended at concentrations of 5, 10 and 20 t/ha in a phosphorus-limited forest soil which is under investigation as a site for biochar amendment. The cumulative soil CO2 respired was higher for biochar-amended samples relative to controls. At 10 and 20 t/ha biochar application rates, the concentration of phospholipid fatty acids (PLFAs) specific to Gram-positive and Gram-negative bacteria as well as actinomycetes were lower than controls for the first 16 weeks, then increased between weeks 16–24, suggesting a gradual microbial adaptation to altered soil conditions. Increases in the ratio of bacteria/fungi and lower ratios of Gram-negative/Gram-positive bacteria suggest a microbial community shift in favour of Gram-positive bacteria. In addition, decreasing ratios of cy17:0/16:1ω7 PLFAs, a proxy used to examine bacterial substrate limitation, suggest that bacteria adapted to the new conditions in biochar-amended soil over time. Concentrations of water-extractable organic matter (WEOM) increased in all samples after 24 weeks and were higher than controls for two of the biochar application rates. Solution-state 1H NMR analysis of WEOM revealed an increase in microbial-derived short-chain carboxylic acids, lower concentrations of labile carbohydrate and peptide components of soil OM and potential accumulation of more recalcitrant polymethylene carbon during the incubation. Our results collectively suggest that biochar amendment increases the activity of specific microorganisms in soil, leading to increased CO2 fluxes and degradation of labile soil OM constituents.  相似文献   

8.
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses; however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO_2 m~(-2)s~(-1), respectively.Furthermore, the average SOC content was 16.97 g kg~(-1) following BC, which was higher than that(13.71 g kg~(-1)) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO_2 m~(-2)s~(-1)), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO_2 m~(-2)s~(-1)). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.  相似文献   

9.
Using a laboratory experiment, we investigated the effect of applying willow biochar to short rotation coppice soil on C and N dynamics and microbial biomass and community composition, in the presence and absence of willow litter. Application of biochar at a rate of 0.5 % had no effect on net CO2 mineralisation in the presence or absence of litter. However at a rate of 2 %, net CO2 mineralisation was reduced by 10 and 20 % over a 90-day period in the absence and presence of litter respectively. Biochar reduced N mineralisation when applied at both 0.5 and 2 % concentrations. pH was increased by application of 2 % biochar to soil. Phospholipid fatty acid analysis demonstrated that both concentrations of biochar affected microbial community composition, although the effect of biochar was not as great as the effect of time or litter application in shaping community structure. In particular, the amount of bacterial biomass was increased by biochar application to soil, and there was evidence for increased abundance of Gram-negative bacteria and actinobacteria following biochar application. The data is discussed in the context of microbial mechanisms underlying impacts of biochar on C cycling in soil, and the coupling of C and N cycles following amendment of soil with biochar.  相似文献   

10.
Li  Yongfu  Hu  Shuaidong  Chen  Junhui  Müller  Karin  Li  Yongchun  Fu  Weijun  Lin  Ziwen  Wang  Hailong 《Journal of Soils and Sediments》2018,18(2):546-563
Purpose

Forests play a critical role in terrestrial ecosystem carbon cycling and the mitigation of global climate change. Intensive forest management and global climate change have had negative impacts on the quality of forest soils via soil acidification, reduction of soil organic carbon content, deterioration of soil biological properties, and reduction of soil biodiversity. The role of biochar in improving soil properties and the mitigation of greenhouse gas (GHG) emissions has been extensively documented in agricultural soils, while the effect of biochar application on forest soils remains poorly understood. Here, we review and summarize the available literature on the effects of biochar on soil properties and GHG emissions in forest soils.

Materials and methods

This review focuses on (1) the effect of biochar application on soil physical, chemical, and microbial properties in forest ecosystems; (2) the effect of biochar application on soil GHG emissions in forest ecosystems; and (3) knowledge gaps concerning the effect of biochar application on biogeochemical and ecological processes in forest soils.

Results and discussion

Biochar application to forests generally increases soil porosity, soil moisture retention, and aggregate stability while reducing soil bulk density. In addition, it typically enhances soil chemical properties including pH, organic carbon stock, cation exchange capacity, and the concentration of available phosphorous and potassium. Further, biochar application alters microbial community structure in forest soils, while the increase of soil microbial biomass is only a short-term effect of biochar application. Biochar effects on GHG emissions have been shown to be variable as reflected in significantly decreasing soil N2O emissions, increasing soil CH4 uptake, and complex (negative, positive, or negligible) changes of soil CO2 emissions. Moreover, all of the aforementioned effects are biochar-, soil-, and plant-specific.

Conclusions

The application of biochars to forest soils generally results in the improvement of soil physical, chemical, and microbial properties while also mitigating soil GHG emissions. Therefore, we propose that the application of biochar in forest soils has considerable advantages, and this is especially true for plantation soils with low fertility.

  相似文献   

11.
Biochar application to arable soils could be effective for soil C sequestration and mitigation of greenhouse gas (GHG) emissions. Soil microorganisms and fauna are the major contributors to GHG emissions from soil, but their interactions with biochar are poorly understood. We investigated the effects of biochar and its interaction with earthworms on soil microbial activity, abundance, and community composition in an incubation experiment with an arable soil with and without N-rich litter addition. After 37 days of incubation, biochar significantly reduced CO2 (up to 43 %) and N2O (up to 42 %), as well as NH4 +-N and NO3 ?-N concentrations, compared to the control soils. Concurrently, in the treatments with litter, biochar increased microbial biomass and the soil microbial community composition shifted to higher fungal-to-bacterial ratios. Without litter, all microbial groups were positively affected by biochar × earthworm interactions suggesting better living conditions for soil microorganisms in biochar-containing cast aggregates after the earthworm gut passage. However, assimilation of biochar-C by earthworms was negligible, indicating no direct benefit for the earthworms from biochar uptake. Biochar strongly reduced the metabolic quotient qCO2 and suppressed the degradation of native SOC, resulting in large negative priming effects (up to 68 %). We conclude that the biochar amendment altered microbial activity, abundance, and community composition, inducing a more efficient microbial community with reduced emissions of CO2 and N2O. Earthworms affected soil microorganisms only in the presence of biochar, highlighting the need for further research on the interactions of biochar with soil fauna.  相似文献   

12.
杉木凋落物及其生物炭对土壤微生物群落结构的影响   总被引:6,自引:0,他引:6  
以福建建瓯万木林自然保护区内的杉木人工林土壤为研究对象,设置单独添加生物炭、单独添加凋落物以及混合添加凋落物和生物炭处理,进行一年的室内培养实验,研究不同添加物处理对土壤性质及微生物群落结构的影响。结果表明:与对照(S)相比,单独添加凋落物与混合添加凋落物和生物炭均使土壤磷脂脂肪酸(PLFA)总量、真菌丰度以及真菌/细菌比值显著增加;单独添加生物炭与混合添加凋落物和生物炭均使革兰氏阳性细菌/革兰氏阴性细菌比值显著增加。混合添加凋落物和生物炭处理的放线菌丰度显著高于单独添加凋落物处理的。主成分分析表明,不同添加物处理的土壤微生物群落结构存在显著差异;典范对应分析表明,不同添加物处理通过改变土壤p H、全碳、全氮、C/N、可溶性有机碳(DOC)和可溶性有机氮(DON)等性质,进而影响土壤微生物群落结构。  相似文献   

13.
ABSTRACT

Soil amendment with biochar could increase soil microbial activity and biomass. This study contributes to an understanding of the synergistic effects of biochar and phosphate solubilizing microorganisms on safflower yield and soil microbial activity enhancement. In the split plot experiments that repeated in two years, the main factor was biochar types included cow manure, wheat straw, wood biochar and control. The sub factors were phosphate solubilizing microorganisms included the mycorrhizal fungi (Glomus etunicatum and G. mosseae), Bacillus lentus, Pseudomonas fluorescence and control. The highest levels of dehydrogenase, urease activity and microbial biomass carbon were obtained from the cow manure biochar. The maximum activity of acid phosphatase was in the plots inoculated by P. fluorescence in all treatments, whether using or not using biochar. The grain yield of plants inoculated with B. lentus and P. fluorescence was in the same statistical group. The highest grain yield equal to 1527 kg/ha was obtained when using cow manure biochar. According to the results, the application of cow manure biochar and phosphate solubilizing microorganisms, especially mycorrhiza species, can be recommended for improving soil biological traits and safflower yield traits.  相似文献   

14.
Purpose

The objective of this study was to investigate the effects of amendment of different biochars on the physical and hydraulic properties of desert soil.

Materials and methods

Biochars were produced with woodchip, rice straw, and dairy manure at temperatures of 300 and 700 °C, respectively. Each biochar at 5% (w/w) was mixed with desert soil, and the mixtures were incubated for 120 days.

Results and discussion

The different biochar treatments greatly reduced soil bulk density and saturated hydraulic conductivity. Especially the rice straw biochar addition resulted in the lowest saturated hydraulic conductivities among the treatments. Biochar addition significantly increased water retention of desert soil at any suction. At the same suction and experimental time, the treatment with the rice straw biochar produced at the lower temperature resulted in higher water content than the other treatments. The biochar additions slightly enhanced formation of soil macro-aggregates in the early experimental time. However, the aggregate contents gradually decreased with time due to the lack of effective binding agents (e.g., soil organic matter and clay minerals).

Conclusions

The changes of hydraulic properties of desert soil were attributable to the biochar properties. The higher fine particle content, porosity, and surface hydrophilicity of rice straw biochars were the most beneficial properties to increase soil water retention and to reduce water flow in the desert soil. The improvement of hydraulic properties by biochar addition may provide a potential solution to combat desertification.

  相似文献   

15.
Biogas residues contain microbial biomass, which contributes to the formation of soil organic matter. Whether the potential of biogas residues to increase soil organic matter can be enhanced by co‐application with compost, biochar or manure is unknown, however. The aim of this paper is to evaluate the effects of co‐amendment on the mineralization of biogas residues, carbon dioxide emissions and the carbon flow within the microbial food web. We determined the fate of 13C‐labelled microbial biomass present in biogas residues applied together with compost, biochar and manure to soil, by analysing CO2 and biomarker phospholipid fatty acids. Although the rate of mineralization constant of the slowly degrading carbon pool was not affected by co‐amendments, co‐amendment with manure resulted in a larger rate of mineralization constant of the readily degrading carbon pool of biogas residues. The incorporation of carbon was mainly to Gram‐negative biomass and was the smallest with manure co‐amendment, which indicated differences in bioavailability of the carbon source.  相似文献   

16.
Abstract

An ideal state for agroecosystems to mitigate global warming should include both decreasing CO2 and CH4 emissions and increasing soil carbon storage. Two-year field experiments were carried out to examine the effects of water management (continuous flooding [CF] and Eh control [EH]) and rice straw management (application [+S] and removal [–S]) on the soil carbon budget in a single-cropping paddy field in Japan. The EH water management based on soil redox potential that the authors have proposed decreased the total CH4 emission during the rice growing period compared with CF. The +S increased CO2 emission as soil respiration during the non-flooded fallow period compared with –S, but also increased straw residues in the soil. However, there was little evidence for sequential carbon accumulation in the soil over the year by +S. The resultant annual budget of soil carbon was a loss of 32–103 g C m?2 in the EH+S treatment compared with a loss of 166–188 g C m?2 in the CF–S treatment. Taking into account the global warming potentials, the EH+S treatment also decreased the total CO2-equivalent emission compared with the CF–S treatment. Consequently, a combination of appropriate water management and straw application will be an effective option in decreasing both CO2-equivalent emission and sustaining soil carbon storage.  相似文献   

17.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

18.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

19.
《Pedobiologia》2014,57(4-6):277-284
Assimilating atmospheric carbon (C) into terrestrial ecosystems is recognized as a primary measure to mitigate global warming. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the dominant enzyme by which terrestrial autotrophic bacteria and plants fix CO2. To investigate the possibility of using RubisCO activity as an indicator of microbial CO2 fixation potential, a valid and efficient method for extracting soil proteins is needed. We examined three methods commonly used for total soil protein extraction. A simple sonication method for extracting soil protein was more efficient than bead beating or freeze–thaw methods. Total soil protein, RubisCO activity, and microbial fixation of CO2 in different agricultural soils were quantified in an incubation experiment using 14C-CO2 as a tracer. The soil samples showed significant differences in protein content and RubisCO activity, defined as nmol CO2 fixed g−1 soil min−1. RubisCO activities ranged from 10.68 to 68.07 nmol CO2 kg−1 soil min−1, which were closely related to the abundance of cbbL genes (r = 0.900, P = 0.0140) and the rates of microbial CO2 assimilation (r = 0.949, P = 0.0038). This suggests that RubisCO activity can be used as an indicator of soil microbial assimilation of atmospheric CO2.  相似文献   

20.
秸秆与生物质炭施用对土壤温室气体排放的影响差异   总被引:5,自引:4,他引:1  
采用室内培养试验,向土壤中添加小麦秸秆和不同量生物质炭,同时比较探究秸秆与生物质炭施用对土壤温室气体排放及微生物活性的影响差异。试验共设5个处理:土壤(S)、土壤+1%小麦秸秆(WT)、土壤+1%生物质炭(BC1)、土壤+2%生物质炭(BC2)和土壤+4%生物质炭(BC4)。在培养期内,施秸秆处理土壤CO2排放量比对照处理S显著增加约12.60%~2005.63%,而施生物质炭处理降低约51.49%~97.93%。施秸秆处理的温室气体增温潜势(GWP)是对照处理S的1.12~19.24倍,而施生物质炭处理,即处理BC1、BC2和BC4的GWP分别降低了0.27%~64.06%,15.78%~94.01%和29.43%~92.28%。小麦秸秆施用会明显增加土壤温室气体排放,增加温室效应;而添加生物质炭对土壤CO2、N2O排放表现出一定的抑制作用,并明显减弱温室气体增温潜势,即生物质炭能明显减弱温室效应。添加小麦秸秆促进土壤微生物生物量碳的增加,提高FDA水解酶、脲酶、过氧化氢酶、磷酸酶活性;生物质炭施用一段时间后对土壤过氧化氢酶活性表现为显著激活作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号