首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 130 毫秒
1.
After the Kyoto Protocol: Can soil scientists make a useful contribution?*   总被引:1,自引:0,他引:1  
Abstract. Over 170 countries have ratified the UN Framework Convention on Climate Change (UNFCCC) which aims at ‘the stabilisation of greenhouse gases in the atmosphere at a level that will prevent dangerous anthropogenic interference with the climate system’. The Kyoto Protocol, signed in 1997, commits the developed (‘Annex 1′) countries to a reduction in gaseous emissions. The global increase in atmospheric CO2, the main greenhouse gas, comes mainly from fossil fuels (6.5 Gt C yr?1), together with about 1.6 Gt C yr?1 from deforestation. The atmospheric increase is only 3.4 Gt C yr?1, however, due to a net sink in terrestrial ecosystems of about 2 Gt C yr?1, and another in the oceans. Increasing net carbon sequestration by afforestation of previously non-forested land is one way of reducing net national emissions of CO2 that is permitted under the Kyoto Protocol. Future modifications may also allow the inclusion of carbon sequestration brought about by other forestry and agricultural land management practices. However, associated changes in net fluxes of two other greenhouse gases identified in the Protocol — nitrous oxide (N2O) and methane (CH4) — will have to be taken into account. Growth of biomass crops can increase N2O emissions, and drainage of wetlands for forestry or agriculture also increases them, as well as emissions of CO2, while decreasing those of CH4. The problems of how to quantify these soil sources and sinks, to maximize soil C sequestration, and to minimize soil emissions of CH4 and N2O, will present a major scientific challenge over the next few years — one in which the soil science community will have a significant part to play.  相似文献   

2.
中国农业温室气体排放量测算及影响因素研究   总被引:3,自引:0,他引:3  
农业生产过程所产生的温室气体在全球生产活动温室气体排放总量中占有很大比例,因此对农业温室气体的排放量进行测算并分析其影响因素,对实现农业节能减排有重要意义。本文基于1993―2011年中国农业生产的相关统计数据,借鉴前人关于农业生产中各种温室气体排放源排放系数的研究成果,测算了中国农业生产过程中的CH4、N2O和CO2排放量,并分析了影响因素。结果表明,CH4排放量基本平稳波动不大,N2O排放量从1993年的93.21万t波动增加到2011年的120.51万t,农业生产资料CO2排放量由15 626.98万t增加到31 258.10万t。种植业CO2排放主要分为土壤排放和生产资料排放,土壤CO2排放与大气温度、土壤温度、地表温度和土壤水分有关,生产资料CO2排放主要是由化肥和农药造成的;种植业CH4、N2O排放原因较为复杂,还有待进一步研究;动物肠道发酵CH4、N2O排放的影响因素主要取决于动物种类、饲料特性、饲养方式和粪便管理方式等。  相似文献   

3.
为了研究耕作措施对双序列轮作农田土壤温室气体的排放及影响, 采用CO2分析仪、静态箱 气相色谱法在陇中黄土高原半干旱区对传统耕作不覆盖、免耕不覆盖、免耕秸秆覆盖和传统耕作+秸秆还田4种耕作措施下豆麦双序列轮作农田土壤温室气体(CO2、N2O和CH4)的排放及影响因素进行了连续测定和分析。结果表明: 测定期内4种耕作措施下农田土壤均表现为CO2源、N2O源和CH4净吸收汇; 除传统耕作不覆盖措施, 其他3种耕作措施不同程度地减少了2种轮作序列土壤的N2O排放通量, 并显著增加了土壤对CH4的吸收。CO2和N2O的排放通量分别与地表、地下5 cm处、地下10 cm处的土壤温度呈极显著和显著正相关关系, 相关系数分别为0.92**和0.89**、0.95**和0.91**、0.77*和0.62*; 而CH4吸收通量与不同地层的温度之间无明显的相关关系; CO2和CH4的通量与0~5 cm、5~10 cm的土壤含水量均呈显著正相关关系, 相关系数分别为0.69*和0.72*、0.77*和0.64*, 而与10~30 cm土壤含水量无明显相关关系; N2O排放通量与各层次的土壤含水量之间均呈不显著负相关关系。对2种轮作序列各处理下土壤中排放的3种温室气体的增温潜势计算综合得出: 4种耕作措施中, 免耕不覆盖处理可相对减少土壤温室气体的排放量, 进而降低温室效应。  相似文献   

4.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

5.
水分类型对土壤排放的温室气体组成和综合温室效应的影响   总被引:36,自引:2,他引:34  
蔡祖聪 《土壤学报》1999,36(4):484-491
实验室研究表明,土壤排放出的温室气体(CO2、CH4和N2O)组成及总理显著地受土壤水分类型和施用秸秆的影响。连续淹水条件下,土壤仅排放微理的N2O,但排放出大量的C睡C敢条件下,土壤不排放C上键合的但排放出大量的N2O;虽然淹水的土壤排水促进N2O排放,但显著抑制CH4的排放,淹水好气交替处理的土壤其排放的CO2、CH4和N2O均在好气和连续淹水之间。根据各种温室产生温室效应的相对潜力,计算土壤  相似文献   

6.
It has been well documented that restored wetlands in the Prairie Pothole Region of North America do store carbon. However, the net benefit of carbon sequestration in wetlands in terms of a reduction in global warming forcing has often been questioned because of potentially greater emissions of greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). We compared gas emissions (N2O, CH4, carbon dioxide [CO2]) and soil moisture and temperature from eight cropland and eight restored grassland wetlands in the Prairie Pothole Region from May to October, 2003, to better understand the atmospheric carbon mitigation potential of restored wetlands. Results show that carbon dioxide contributed the most (90%) to net-GHG flux, followed by CH4 (9%) and N2O (1%). Fluxes of N2O, CH4, CO2, and their combined global warming potential (CO2 equivalents) did not significantly differ between cropland and grassland wetlands. The seasonal pattern in flux was similar in cropland and grassland wetlands with peak emissions of N2O and CH4 occurring when soil water-filled pore space (WFPS) was 40-60% and >60%, respectively; negative CH4 fluxes were observed when WFPS approached 40%. Negative CH4 fluxes from grassland wetlands occurred earlier in the season and were more pronounced than those from cropland sites because WFPS declined more rapidly in grassland wetlands; this decline was likely due to higher infiltration and evapotranspiration rates associated with grasslands. Our results suggest that restoring cropland wetlands does not result in greater emissions of N2O and CH4, and therefore would not offset potential soil carbon sequestration. These findings, however, are limited to a small sample of seasonal wetlands with relatively short hydroperiods. A more comprehensive assessment of the GHG mitigation potential of restored wetlands should include a diversity of wetland types and land-use practices and consider the impact of variable climatic cycles that affect wetland hydrology.  相似文献   

7.
In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1-2 years after the climate change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which outweighed the positive effect of warming when analyzed across the study period. Emissions of N2O were generally low (<10 μg N m−2 h−1). As single experimental factors, elevated CO2, temperature and summer drought (D) had no major effect on the N2O fluxes, but the combination of CO2 and warming (TCO2) stimulated N2O emission, whereas the N2O emission ceased when CO2 was combined with drought (DCO2). We suggest that these N2O responses are related to increased rhizodeposition under elevated CO2 combined with increased and reduced nitrogen turnover rates caused by warming and drought, respectively. The N2O flux in the multifactor treatment TDCO2 was not different from the ambient control treatment. Overall, our study suggests that in the future, CH4 uptake may increase slightly, while N2O emission will remain unchanged in temperate ecosystems on well-aerated soils. However, we propose that continued exposure to altered climate could potentially change the greenhouse gas flux pattern in the investigated heathland.  相似文献   

8.
In this paper we describe the accumulation of soil organic matter (SOM) during pedogenesis and the processes that can lead to the emission of greenhouse gases (CO2, CH4, N2O) to the atmosphere via SOM decomposition and denitrification. We discuss the role of management on SOM accumulation and loss, and the potential for controlling emission or comsumption of greenhouse gases by soils. We conclude that under current climate conditions there are global scale opportunities to reduce greenhouse gas emissions from soils and increase the indirect sequestration of greenhouse gases in soils through improved soil management.  相似文献   

9.
Tillage changes soil environmental conditions and controls the distribution of residues in the soil, both actions that affect the production and emission of soil biogenic gases (CO2, N2O, and CH4). The objective of this study was to determine how tillage-induced environmental conditions and substrate quality affect the mineralization rate of easily metabolizable compounds and the subsequent production of these gases. Carbon compounds, with and without nitrogen, were applied to soil cropped to maize under tilled and no-till systems. Following substrate application in the spring and summer, biogenic gases were measured periodically at the soil surface (flux) and within the profile (concentration) at 10-, 20-, and 30-cm depths (i.e., within, at the bottom of, and below the plough layer). Strong CO2 and N2O responses to sucrose and glycine in both the field and the laboratory indicate that the soil was C- and N-limited. Surface fluxes of CO2 and N2O were greater in soils amended with glycine than with sucrose and were greater in tilled than no-till soils. Transient emission of CH4 following the addition of glycine was observed and could be attributed to inhibition of N mineralization and nitrification processes on CH4 oxidation. Laboratory and field measurements indicated that the larger substrate-induced CO2 emission from the tilled soils could not be attributed to differences in the total biomass or the basal respiratory activity of the soils. Thus, there appears to be no underlying difference in the functional capacity of the microbial communities under different tillage regimes. Comparison of gas profiles indicates relative accumulation of CO2 at depth in soils under no-till, as well as greater decline in profile CO2 content with time in the tilled compared to the no-till soil. These results support the conclusion that greater CO2 efflux from the tilled soils resulted from more rapid gas diffusion through the profile. Hence, the observed differences in gas fluxes between tilled and no-till soils can be attributed to differences in physical environment.  相似文献   

10.
As a Party to the United Nations Framework Convention on Climate Change, Israel is committed to develop a national inventory of anthropogenic emissions and removals of greenhouse gases. This paper presents the national inventory, which was developed according to the guidelines of the Intergovernmental Panel on Climate Change (IPCC). The inventory includes the following sectors: energy, industrial processes, agriculture, forestry and waste. In this paper, only the inventory of the direct greenhouse gases (CO2, CH4 and N2O) is presented. Emissions of these gases were converted to CO2 equivalent emissions by means of their Global Warming Potentials (a measure of the radiative effects of the different gases relatively to CO2). CO2 emissions from burning fossil fuels to produce energy are by far the largest source (50 million tons in 1996). The contribution of methane emissions from decomposition of landfilled municipal solid waste is second in importance (8 million tons of CO2 equivalent). Industrial processes emit about 2 million tons CO2 equivalent, the most important process being cement production. Agricultural emissions amount to about 2 million tons CO2 equivalent and are due to soil emissions of nitrous oxide, methane emissions from enteric fermentation in domestic livestock and N2O and CH4 emissions from animal waste management. Although most forests in Israel are in a growing stage and atmospheric CO2 is therefore removed to form biomass, this removal amounts to 0.4 million tons only and is very small as compared to emissions from other sectors. On a per capita basis, Israel's emissions of CO2 from fuel combustion are not far behind those of some of the most developed countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号