首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf and root (tuber) nutrient uptake patterns of cassava (Manihot esculenta Crantz) alley-cropped with gliricidia (Gliricidia sepium), leucaena (Leucaena leucocephala), and senna [(Senna (syn. Cassia) siamea] as influenced by vesicular-arbuscular mycorrhizal (VAM) inoculation in a degraded Alfisol were investigated in consecutive years. The cassava plants were mulched with fresh prunings of each hedgerow tree species at 2-month intervals in the second and third years of alley cropping. While VAM inoculation significantly influenced the root uptake of nutrients, the leaf uptake was not affected except for the uptake of P. In most cases, there was no difference in the nutrient concentration between inoculated and uninoculated plants, either in the leaf or in the root, indicating that the productivity of cassava was regulated by the amount of nutrients the roots could absorb. In spite of similar total soil N in all inoculated and uninoculated alley-cropped cassava plots and similar exchange-able soil K contents in inoculated and uninoculated alley-cropped cassava plots with leucaena and senna, greater uptake of N, P, and K and greater concentrations of K were observed in roots of inoculated alley-cropped cassava with gliricidia and leucaena than with senna. These results indicated that greater mineralization and availability of nutrients to cassava roots from prunings of nodulating gliricidia and leucaena than from non-nodulating senna may be important, particularly with efficient VAM inoculation, in these alley-cropping systems. Also, for similar nutrients in the inoculated and uninoculated cassava soils alley-cropped with each hedgerow species, VAM inoculation significantly enhanced cassava root dry weights, indicating that an effective VAM fungus can be an agent of greater nutrient uptake in a competitive environment.  相似文献   

2.
The effect of inoculation with Glomus clarum, a vesicular-arbuscular mycorrhiza fungus, and alley-cropping on the growth of the cassava cultivar, TMS 30572, was investigated under field conditions in a low nutrient tropical soil. Cassava was grown either interplanted between two hedgerow tree species (alley-cropped) or sole-cropped. Sub-plots were either inoculated with G. clarum or were not inoculated. No effort was made to destroy the indigenous mycorrhizal fungi. Three months after planting, no significant influence of G. clarum inoculation was observed on the growth of roots, shoots or leaf area index (LAI). However, with time, inoculation and system of cropping enhanced these growth parameters. Nine months after planting, the total biomass of alley-cropped cassava was significantly higher than that of inoculated and non-inoculated sole-cropped cassava. Inoculation had led to an increase in the fresh tuber yield of both the alley- and sole-cropped cassava 12 months after planting. The LAI of both alley- and sole-cropped cassava inoculated with G. clarum increased. Received: 6 December 1996  相似文献   

3.
The variation in P uptake and use efficiency and N accumulation by Gliricidia sepium (N2-fixing tree), Senna siamea and S. spectabilis (leguminous non-N2-fixing trees) were examined in the field at Fashola (savanna zone), southwestern Nigeria, using four P rates, 0, 20, 40 and 80 kg P ha-1. Growth of G. sepium and S. spectabilis responded to P application at 24 weeks after planting (WAP) and average yield increases of 58% and 145% were observed by the application of 40 kg P ha-1 for the two species, respectively. Such a P response was not found in S. siamea at 24 WAP and for any of the species at 48 WAP. G. sepium accumulated more P (on average 162%) than S. siamea and S. spectabilis at 24 WAP and had greater root length and a higher percentage of mycorrhizal infection. However, at 48 WAP S. siamea had 2.5 times more P than G. sepium. Differences in the physiological P use efficiency (PPUE) between G. sepium and the non-N2-fixing trees were significant at the 0 P level, being higher for S. siamea (average, 0.61 g shoot mg-1 P) than for G. sepium (0.27 g shoot mg-1 P). G. sepium had a consistently lower atom % 15N than S. spectabilis, while that of S. siamea for most of the time did not differ from that of G. sepium. The reference plant affected N2 fixation extimates, with negative values and a higher variability (CV 60%) associated with S. siamea than with S. spectabilis (CV<20%). Consequently, S. spectabilis was selected as a better reference plant for measuring N2 fixation in G. sepium. G. sepium fixed on average 35% and 54% of its N at 24 and 48 WAP, respectively. Except at the lowest P rate, percentage and amount of N fixed were not generally enhanced by P application.  相似文献   

4.
The influence of four pruning frequencies on biomass, nodulation and N2 fixation was investigated on Albizia lebbeck, Gliricidia sepium and Leucaena leucocephala grown in the screenhouse for 16 months, using acetylene reduction and 15N dilution methods. Frequent prunings at 4-month intervals had no deleterious effect on symbiotic N2 fixation, which increased in Gliricidia and Leucaena in particular. Nodulation and nitrogenase activity varied inconsistently within species, and were not influenced by pruning frequency. Cumulative assessment of pruning effect showed higher biomass, N yield and N2-fixing capacity of the woody species than at last harvest, and appeared to have more practical relevance. Across species, cumulative total dry matter, N yields, and both percentage and absolute amount of N2 derived from atmosphere increased with pruning frequency, except when trees were pruned 3 times. Of the three species, G. sepium had the lowest biomass production, N2 fixation and N accumulation. Received: 25 October 1995  相似文献   

5.
Abstract

High nitrogen (N2)‐fixing potential is a desirable characteristic for any candidate hedgerow tree. Thus a study was conducted to evaluate Albizia lebbeck as a N2‐fixing tree in comparison to Gliricidia sepium and Leucaena leucocephala currently used in alley cropping. Nitrogen fixation and utilization were assessed in a screenhouse at four months after planting by the 15N dilution technique using Senna siamea as the non N2‐fixing reference. A. lebbeck accumulated significantly more N than L. leucocephala, but G. sepium was intermediate. This superiority in N yield was mainly due to its abundant nodule dry weight production which accounted for up to 10.8% of its total N. This was equivalent to 2.5 and 6 fold that of Gliricidia and Leucaena nodules, respectively. A. lebbeck had bigger but significantly (P<0.05) lower number of nodules per plant than G. sepium, but it did not differ from Leucaena. Albizia was the best N2 fixer with 44% Ndfa equivalent to 533 mg N per plant. G. sepium followed with 28% Ndfa and L. leucocephala with 18% Ndfa corresponding to 321 and 191 mg N fixed, respectively. However, the relatively higher N2 fixation in Albizia was not translated into higher N or dry matter yields. As A. lebbeck fixed more N, it depended less on soil N (49.8%) than did Leucaena (72.5% Ndfs) and Gliricidia (63.9% Ndfs) and less on fertilizer N as well. Thus A. lebbeck appears to be a potential hedgerow species for alley cropping purpose.  相似文献   

6.
Nutrients released from tree prunings sustain alley cropping. Potassium (K) uptake and utilization efficiency were monitored over 16 months in Gliricidia sepium, Leucaena leucocephala, and Albizia lebbeck. Tree interspecific variation arose in biomass yields and K nutrition. Tissue potassium concentration narrowed within 0.68–1.15% and varied little among tree parts and species over time. Potassium accumulation increased steadily with tree age and significant differences among trees occurred at all ages. Gliricidia sepium had a higher yield than the others over the first 8 months, after which the uptake pattern declined drastically to become the lowest at harvest. Differential K partitioning within trees occurred as K in leaves, stems, and roots amounted to 18, 35, and 47% in Albizia; 28, 25, and 47% in Gliricidia; and 27, 42, and 31% in Leucaena, respectively. Higher K allocation into Leucaena stems and its low partitioning into Albizia leaves were drawbacks for alley cropping. Potassium utilization efficiency decreased inversely to biomass yield and K uptake over time. It differed significantly among trees with Albizia being the most efficient. Low K returns from tree prunings in alley cropping could be due to its uptake potential and partitioning impairment in each species.  相似文献   

7.
We investigated the influence of vesicular-arbuscular mycorrhizal (VAM) inoculation on growth and nutrient relationships in two alley-cropping trials, one at the top and the other at the base of a hillslope. Each trial involved three woody hedgerow legumes with cassava (Manihot esculenta Crantz) as the sole intercrop. The hedgerow trees at the base of the slope showed greater survival and higher leaf dry weights than those at the top of the slope, although these parameters were not affected by VAM inoculation, either at the top or the base of the slope. In contrast to survival, the uptake of nutrients, particularly P and N, was higher for inoculated than uninoculated hedgerow trees, both at the top and at the base of slope. Increases in stem and leaf biomass and the uptake of nutrients by the trees were strongly correlated with increases in P uptake, indicating that the improvements were attributable to VAM inoculation. Cassava tuber yields at the base of the slope, from inoculated or uninoculated plants, were significantly greater than the corresponding cassava yields at the top of the slope. These increases at the base of the slope compared to the top of the slope were not attributed to available soil nutrients but to greater VAM spore density. Higher available soil moisture may have been another factor. Increasing the VAM spore density of effective mycorrhiza through proper agronomic practices at the top of a slope may bring about comparable yields on different parts of the slope.  相似文献   

8.
The effect of indigenous soil and selected mycorrhizal inoculation and phosphorus (P) applications on wheat yield, root infection and nutrient uptake was monitored for two successive years under field conditions. In addition, phosphorus efficiency and inoculation effectiveness (IE) were determined. Wheat (Triticum aestivum L.) plants were used as host plants in a Menzilat soil series (Typic Xerofluvents) in the Mediterranean coastal region of Turkey. Three levels of phosphorus were applied with Glomus mosseae to wheat plants over two successive years. Mycorrhizal inoculation significantly increased root colonization. G. mosseae-inoculated plants in both years exhibited a two-fold higher root colonization than the indigenous mycorrhizal colonization. Compared with non-inoculated plants, mycorrhizal inoculation increased wheat yield for both years. In addition, increasing P fertilizer levels enhanced the wheat grain yield. In both years, the inoculum efficiency (IE) decreased with increasing P level addition. Phosphorus efficiency is higher under low P application than the higher P application. However, with mycorrhizal inoculation P efficiency is higher than the non-inoculated treatment.

The effects of mycorrhizal inoculation on plant nutrient concentrations were determined: mycorrhiza-inoculated plants exhibited a higher zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) nutrients concentration than non-inoculated plants. After two years of field experiments, it is concluded that mycorrhizal inoculation can be used in large arable areas; however, it is also very important to manage the indigenous mycorrhiza of arable land.  相似文献   


9.
The effect of pruning on the dynamics of N release in the root zone of Albizia lebbeck and Leucaena leucocephala was studied using potted soil and minilysimeters with presterilized sand-medium supplied with N-free nutrient solution. Plants were pruned twice at 11 and 13 months and leachates were collected weekly for 16 weeks starting from first pruning, and analysed for mineral N content. Removal of plant shoots reduced nodule and root biomass by some 30–38% and halved nodule N yields, while total N yields did not differ between pruned and unpruned plants. The dynamics of N nutrient in the rhizosphere was also affected by pruning, irrespective of the growth medium. In soil culture, unpruned plants of both species maintained greater levels of total N in their rhizosphere compared to those that were pruned. In sand culture, nitrate-N was by 66–84% the predominant N form in soil leachate across the two sequential prunings. Over the 16 weeks following these prunings of A. lebbeck and L. leucocephala, cumulative mineral N in both forms was significantly higher in the root zone of unpruned plants, and was consistently greater under rhizobial inoculation. Less mineral N was released into the root zone of each species during the period after the second pruning than after the first one. L. leucocephala released significantly more N than A. lebbeck over the sampling period, but net N release beneath both species was lower than 1%, indicating that tree legumes do not release sizeable proportions of their N into root zone, and that pruning reduces their N release still further. Received: 27 September 1996  相似文献   

10.
In alley-cropping systems, hedgerow trees are regularly cut back. Losses of N released from the decomposing prunings are minimized when N release is synchronized with crop N demand. In this study, the sensitivity of the decomposition of Leucaena leucocephala, Senna siamea, and Dactyladenia barteri leaf litter to the nature of the rainfall regime is correlated with the residue quality. The litterbag technique was used to measure decomposition. Four periods of 115 days, each starting at a time when hedgerow trees are normally pruned, were selected and the rain that fell during each of these periods in 1986 was simulated on a day-to-day basis by applying irrigation water on the litterbags. The number of rainfall events was better correlated with the percentage dry matter loss than with the total amount of precipitation. The relationship consisted of two lines. The slope of the first line, indicative of the sensitivity of the decomposition to varying numbers of rainfall events, correlated well with the watersoluble fraction (P<0.05), the C:N ratio (P<0.05), and the polyphenol: N ratio (P<0.01) of the residues. The decomposition process was shown to be dominated by microbial catabolism, rather than leaching. Because the decomposition of the higher quality residues is affected by varying rainfall patterns and because rainfall may often be unpredictable in frequency and intensity, synchronization of N released from a significant part of the decomposing residue with crop N demand may require additional management practices.  相似文献   

11.
Abstract

A pot experiment was conducted to evaluate the response to vesicular‐arbuscular mycorrhizal (VAM) infection of two species of Cassia and Gliricidia sepium in an oxisol with two levels of soil P. At P level optimum for VAM activity, comparable levels of VAM infection were observed on the roots of the test species. However, the species reacted differently to VAM infection. Hence, VAM inoculation significantly stimulated dry matter accumulation in C. spectabilis and G. sepium, but had no positive influence on this variable in C. reticulata. These differences were not explainable in terms of tissue P status, because P uptake was significantly enhanced by inoculation in all the species tested. At the higher soil P level, roots of all species were colonized by the inoculum, but colonization level in C. reticulata and G. sepium was reduced. Nevertheless, only C. spectabilis benefitted from the presence VAM endophytes at this level of soil P. The results underline the significance of ascertaining the mycorrhizal requirements of host species before reliable VAM inoculation recommendation could be made.  相似文献   

12.
Appropriate 15N-labeling methods are crucial for estimating N2-fixation in trees used in agroforestry systems. A 4-year field experiment was conducted on an Alfisol in Southwestern Nigeria to compare the estimates of N2 fixed in Leucaena leucocephala, using two non-N2-fixing leguminous trees, Senna siamea and S. spectabilis, as reference plants and three different methods of introducing 15N into soil. The atom % 15N uptake pattern (as reflected in the leaves) was identical in both N2- and non-N2-fixing tree species irrespective of the 15N-application method. There was a significant decline in atom % 15N excess in the leaves of L. leucocephala (from 0.266 to 0.039), S. siamea (0.625 to 0.121), and S. spectabilis (from 0.683 to 0.118) from the first sampling 12 months after planting and the second sampling 18 months after sampling. From the second harvest in 1991 until the end of the experiment (fifth) harvest in 1993, however, the atom 15N % excess decline in leaves of the three species was less pronounced and depended on the method of 15N application. In those plants to which the tracer was applied once at planting, the 15N decline was steady between the second and the last prunings. In the split-application treatment, the atom 15N % excess increased slightly at the third pruning and decreased during the subsequent two prunings. The reference tree and the method of 15N application influenced the estimated proportion of N derived from atmospheric N2 by L. leucocephala, calculated as 73 and 64%, corresponding to 119 and 98 kg N ha-1 of N2 fixed per 6 months, when S. spectabilis and S. siamea were used as reference trees, respectively. The approach by which 15N-labeled fertilizer was applied to the soil in three splits gave slightly higher estimates of N derived from the atmosphere but this was of little agronomic significance because total N2 fixed was similar for all methods.  相似文献   

13.
Genotypic variation and mycorrhiza play an important role in plant uptake of phosphorus (P). A pot experiment was conducted with three cereals, wheat (Triticum aestivum L. cv. PBW-34), rye (Secale cereale L. cv. R-308), and triticale (Triticale octoploide L. cv. DT-46), a hybrid of wheat and rye, to examine the genetic variation in the degree of arbuscular-mycorrhizal (AM) infection and its inheritability from parents (wheat and rye) to their progeny (triticale). The soil used for pot culture was low in available P (7.8 mg P kg?1soil). Inoculation with AM fungi showed a significant increase in extent of root colonization for all three cereals (average 70%) compared with their performance without AM (average 19.1%). However, among the three cereals, this increase was significantly greater in rye than in the other two crops, while wheat and triticale did not differ significantly. Mycorrhizal infection resulted in 1.6, 1.7, and 1.8-fold increases in shoot, root, and total plant dry matter, respectively, compared with the un-inoculated treatment. Among the three cereals, rye recorded maximum shoot, root, and total plant dry mass and P content with AM inoculation. The P uptake by wheat, rye, and triticale was 10%, 64%, and 35%, respectively, higher with rather than without mycorrhizal infection. Rye was most responsive to AM inoculation, with mycorrhizal dependency of 193%; here again, triticale followed wheat, with similar mycorrhizal dependency. Rye showed an increase in P utilization efficiency (PUE) without AM inoculation while the PUE of triticale was intermediate between wheat and rye. High efficiency of AM symbiosis in terms of P uptake exists in rye and most of these traits in triticale seem to be inherited from wheat rather than rye.  相似文献   

14.
A glasshouse study was conducted to investigate the effects of soil temperatures of 20, 15 and 10°C on growth and phosphorus (P) uptake of barley (Hordeum vulgare L. cv. Galleon) inoculated with Glomus intraradices Schenck & Smith. Vesicular‐arbuscular (VA) mycorrhiza formation was significantly reduced as the soil temperature decreased. Plant growth depression due to temperature stress was more pronounced in mycorrhizal plants than in non‐mycorrhizal plants. The lower the soil temperature, the higher was the root‐shoot ratio. The ratio was also higher in non‐mycorrhizal plants than in mycorrhizal plants. Concentration of P in roots was influenced by mycorrhiza. Significant interaction between mycorrhiza and soil temperature was observed for root dry matter and specific P uptake (P uptake per unit weight of root). Compared to non‐mycorrhizal plants, specific P uptake in mycorrhizal plants was higher.  相似文献   

15.
Abstract

Survival rate of seedlings planted in arid and semi-arid land parts of Turkey is low. New methods and techniques are needed to increase survival rate and growth performance of seedlings used in afforestation practices in the region. The aim of this study is to evaluate the growth performance of Taurus cedar (Cedrus libani A. Rich) seedlings receiving different mycorrhizae inoculation treatments. The experiment was conducted in the western part of Central Anatolia. Two commercial mycorrhizal cocktails were used for treatments in a completely randomized design experiment. Both ecto- and arbuscular mycorrhizal fungi were observed in the same root system of the seedlings after the mycorrhizal inoculation. But the relationship between ecto- and arbuscular mycorrhiza was antagonistic. Analysis of the data indicated that mycorrhizal colonization was effective on seedlings' morphological characteristics. The significant differences were detected for root collar diameter, shoot height, root length, specific needle area, shoot dry weight, root dry weight, shoot fresh weight, root fresh weight, shoot to root dry weight ratio, and Dickson quality index of seedling received different treatments. Mycorrhizae positively affected plant nutrition by increasing uptake of nutrients.  相似文献   

16.
This study reports the effectiveness of an arbuscular mycorrhizal (AM) fungus Glomus intraradices on three clones (SOM-1, 05 and 50) of cassava (Manihot esculenta). Arbuscular mycorrhizal inoculation increased plant resistance to transplant stress from “in vitro” to “ex vitro” conditions and plant biomass (shoot and root) production was greatly enhanced by AM-colonization. The magnitude of AM growth stimulation over control clones was: 861% (SOM-1), 1042% (05) and 854% (50). Arbuscular mycorrhizal colonized cassava plants increased cassava water uptake in terms of percentage, 62% in clone SOM-1, 24% in clone 05, and 157% in clone 50. The highest effect of AM-colonization on water content in root of clone 50 was correlated with the greatest increment in leaf tissue production (1218% over control) and with the maximum shoot/root ratio determined. The biomass distribution between shoot and root was changed by AM symbiosis and such effect varied for each clone that may be caused by mycorrhizal changes in macro/micro-nutrients translocation/compartimentation. Cassava dependence on AM symbiosis was greatest in clone SOM-1 since AM-colonization provided the highest stem (weight, length, and diameters), leaf (weight and number), bud number, and root weight. These results lead to practical applications because AM inoculation is crucial for improving cassava yield (shoot and root) and nutrition irrespective of the clone involved. Thus, importance of AM symbiosis in micropropagated cassava clones is of great practical interest in agriculture and allows the selection of the most suitable clone for dry environments due to the particular effect on root water content that improves drought adaptation.  相似文献   

17.
Thirty‐day‐old seedlings of Cassia siamea were transplanted into pots containing a subsurface Oxisol uninoculated or inoculated with Glomus agaregatum at two target soil solution phosphorus (P) concentrations. While no evidence of Vesicular‐arbuscular mycorrhizal fungal (VAMF) colonization was noted in the uninoculated soil, C. siamea roots were colonized to the extent of 63 and 61% at soil P concentrations of 0.02 and 0.2 mg/L, respectively. VAMF colonization led to significant increases in tissue P concentrations measured at harvest at both soil P concentrations. However, shoot dry matter yield was significantly increased only at the first soil P concentration. Shoot dry matter yield of mycorrhizal C. siamea at soil P concentration of 0.02 mg/L was comparable to mycorrhizal growth of C. siamea at soil P concentration of 0.2 mg/L but inferior to the nonmycorrhizal growth of the legume. Based on these response patterns, C. siamea was classified as a highly mycorrhizal dependent species.  相似文献   

18.
Soil microarthropod populations in maize plots mulched with the prunings of three woody agroforestry plant residues (Acioa barteri, Gliricidia sepium and Leucaena leucocephala) and two crop residues [maize (Zea mays) stover (leaves and stems) and rice (Oryza sativa) straw] were monitored throughout the 1991 growing season and compared with those in fallow, bare fallow and unmulched control plots with three rates of nitrogen application. The mean densities of detritivore and phytophage microarthropods in the experimental plots decreased in the following order: rice straw > Gliricidia prunings > Leucaena prunings > maize stover > Acioa prunings > control 2 (90 kg N ha-1 year-1) > fallow > control 3 (135 N) > control 1 (45N) > bare fallow. Mulching also affected the population dynamics of predatory microarthropods and omnivorous ants. The chemical composition of plant residues probably influenced the densities of detritivore and phytophage microarthropods, which in addition were also greatly influenced by microclimatic conditons imposed by vegetation cover. Extremely low densities of microarthropods were recorded in the bare fallow plots probably as a result of the combined effects of absence of plant residues and vegetation cover. The potential of mulching as a component of farming practice for increasing the density of microarthropods and for influencing their species composition and population dynamics in agroecosystems is discussed.  相似文献   

19.
 The effects of Leucaena leucocephala and L. pallida prunings and cattle manure on maize nutrient uptake and yield were investigated in a hedgerow intercropping trial in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. For each leucaena species, the experiment had 16 treatments resulting from a factorial combination of four levels of leucaena leaf prunings (no prunings applied; first prunings applied; first and second prunings applied; first, second and third prunings applied), two levels of air-dried cattle manure (0 and 3 t dry matter ha–1) and two levels of N fertilizer (0 and 40 kg N ha–1 as urea). Uptake of N, P and K increased significantly with application of the three nutrient sources, but uptake of Ca and Mg either did not respond or decreased with application of prunings and manure. All the three factors increased maize grain and stover yields significantly, usually with no significant interactions between the factors. At least two applications of prunings were required to significantly increase nutrient uptake and maize yield. Maize in the row closest to the hedge did not respond to these nutrient inputs. It is concluded that hedgerow intercropping, with or without manure application, can increase crop yields moderately (to 2–3 t ha–1 maize grain yields) in the highlands, but P, Ca and Mg may have to be supplied from external sources if they are deficient in the soil. Additional N is still required for higher yields (>4 t ha–1 maize grain yields). However, quantification of the competition effects of the trees is also required to confirm these results. Received: 27 January 1997  相似文献   

20.
Abstract

Studies of the relationship of tree mulch decomposition, nutrient element release and uptake by beans (Phaseolus vulgaris L.) were conducted in excavated compartments. Treatments consisted of single and mixed species combinations of freshly cut biomass additions from the following tropical leguminous trees: 1) Calliandra calothrysus, 2) Gliricidia sepium, 3) Inga edulis, 4) Inga edulis and Calliandra calothrysus, and 5) Inga edulis and Gliricidia sepium. We measured resin‐extractable phosphorus (P), mineral nitrogen (N), nutrient uptake by beans, and bean biomass during sequential harvesting. The Calliandra treatment had significantly higher bean biomass by day 34 with greater P uptake. This was most strongly correlated to resin‐extractable P that showed significant difference in the Calliandra treatment by Day 19. Comparisons with field studies showed similar trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号