首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东北地区降雨-径流侵蚀力研究   总被引:5,自引:0,他引:5       下载免费PDF全文
降雨-径流侵蚀力反映了降雨和融雪及其径流潜在的侵蚀能力。东北地区融雪侵蚀十分显著,进行土壤侵蚀预报时,需要计算降雨侵蚀力,也要求推算融雪径流侵蚀力。利用21个典型流域水文站径流泥沙资料及相应雨量站点资料,推导融雪径流侵蚀力(Rw)估算方法;利用全区234个气象站降水资料,提出了不同类型降水资料计算年降雨-径流侵蚀力(Rτ)的方法,并分析其空间分布特征。结果表明:在降雪量占年降水量≥10%的地区,融雪径流侵蚀力可利用多年平均11-翌年4月降水量P11-4估算:Rw=33.124P^0.5845 11-4;若有逐日降水量资料,则可在计算出融雪径流侵蚀力基础上,利用日降雨量计算降雨侵蚀力(R),二者之和为年降雨-径流侵蚀力(Rτ);若无逐日降水资料,则可采用平均年降雨量P计算年降雨-径流侵蚀力,Rτ=0.0668P^1.626.6;本区Rτ值变化于523.3-8243.4MJ·mm/(hm^2·h·a)之间,大致从西北向东南递增。研究成果有助于提高土壤侵蚀预报精度,为本区水土保持规划提供依据。  相似文献   

2.
贵州省降雨侵蚀力时空变化特征研究   总被引:7,自引:0,他引:7  
降雨侵蚀力是区域土壤侵蚀状况定量化的首要因子,反映了区域降雨对土壤侵蚀的潜在作用.贵州省地处喀斯特强烈发育地区,水土流失极为严重.利用罗甸小区降雨过程资料及相应的土壤流失量资料,得出贵州省降雨侵蚀力指标的最佳组合为EI30;采用回归分析得出降雨侵蚀力的简易算法为:R=2.0354P1.2159+45.5649.利用264个站点1956-2000年的月降雨量、多年平均降雨量资料得出各站点降雨侵蚀力,并采用Kriging方法进行插值,得到降雨侵蚀力的空间分布图.结果表明:贵州省降雨侵蚀力的空间变化表现为由南向北递减的趋势.按照月降雨侵蚀力的分布状况,将贵州省全年划分为干季和湿季两个阶段,其中湿季降雨侵蚀力约占多年平均降雨侵蚀力的57%.总体而言,近年来贵州省的降雨侵蚀力变化不明显,但仍不能排除个别区域有增高的趋势.  相似文献   

3.
黄土高原不同地貌类型区降雨侵蚀力时空特征研究   总被引:6,自引:1,他引:5  
通用土壤流失方程USLE是迄今为止较为成熟,应用较广的土壤侵蚀预报模型,区域降雨侵蚀力R及其分布特征是将USLE应用于较大地区的关键.以日降雨量计算侵蚀力模型为基础,建立了黄土高原月降雨量计算降雨侵蚀力模型.用黄土高原235个气象站点1971-2000年30 a的月降雨量数据,计算得各站点的时间序列月降雨侵蚀力和年降雨侵蚀力,通过Kriging空间插值方法生成降雨侵蚀力时空分布栅格图像,并分析了不同地貌类型区降雨侵蚀力的时空特征.黄土高原降雨侵蚀力空间分布从东南到西北呈梯度递减趋势,范围在300~7 500,平均不到3 000,不同地貌类型区从大到小依次为土石山区、丘陵沟壑区(延安)、高塬沟壑区、丘陵沟壑区(榆林)、丘陵区(陇西);降雨侵蚀力年内分布主要集中于7,8两月,年际变化上存在一个2.7 a的波动周期,波动范围在多年平均值的1倍以上,不同地区相差较大.  相似文献   

4.
1980-2013年闽西地区降雨侵蚀力时空变化特征   总被引:2,自引:0,他引:2  
闽西地区是福建省土壤侵蚀重点防治区,为研究闽西地区降雨侵蚀力的时空分布格局,根据1980-2013年闽西地区9个站点的逐日降雨数据,利用日雨量模型来计算降雨侵蚀力,采用线性回归、气候倾向率、Mann-Kendall检验和反距离加权插值法(IDW)等方法对区域降雨侵蚀力的时空变化进行分析.结果表明:1)闽西地区多年平均降雨侵蚀力为9 504 MJ·mm/(hm2·h),与降雨量呈极显著正相关(P<0.o1);2)空间上西高东低,与降雨量分布规律基本一致;3)降雨侵蚀力的年内分布主要集中在3-8月,占到全年的80.12%;4)1980-2013年期间研究区降雨量呈微下降趋势,而整体上降雨侵蚀力呈略微增加趋势,但未达到显著水平(P>0.05),其中其在夏季呈现上升趋势,而在春秋冬3季呈现下降趋势;5)34年内降雨侵蚀力分别在1995和2002年发生突变.该研究可为该区域土壤侵蚀危险性评估和土壤侵蚀治理工作提供依据.  相似文献   

5.
黑龙江省降雨侵蚀力的变化规律   总被引:4,自引:1,他引:3  
 利用黑龙江省16个气象站1960—2000年日降雨量资料,采用日降雨量侵蚀力模型计算降雨侵蚀力,对黑龙江省降雨侵蚀力变化规律及其与降雨量的关系进行分析。结果表明:1)黑龙江省1960—2000年年降雨侵蚀力、年降雨量、侵蚀性降雨量都呈升高的趋势,年降雨侵蚀力、年降雨量和侵蚀性降雨量变化速率分别为1.47MJ.mm/(hm2.h.a)、0.29 mm/a和0.35mm/a;2)黑龙江省16个气象站中有11个气象站降雨侵蚀力倾向率为正值,牡丹江降雨侵蚀力升高幅度最大,为15.6MJ.mm/(hm2.h.a),有5个气象站的倾向率为负值,其中齐齐哈尔降雨侵蚀力降低幅度最大,为-16.8MJ.mm/(hm2.h.a);3)16个气象站除哈尔滨、克山、呼玛、通河外,侵蚀性降雨时间变化对侵蚀性降雨量变化的作用大于侵蚀性降雨强度变化对侵蚀性降雨量变化的作用,显示大部分站点侵蚀性降雨量变化主要由侵蚀性降雨时间变化引起的。研究结果可为土壤侵蚀预报以及水土保持规划与决策提供依据。  相似文献   

6.
降雨侵蚀力是土壤侵蚀模型中的一个重要因子,但计算时收集和处理降雨数据需要消耗大量的人力物力,为此基于第一次全国水利普查降雨侵蚀力计算模型和通用土壤流失方程中的降雨侵蚀力计算模型,运用ENVI遥感软件,开发了降雨侵蚀力计算工具。降雨侵蚀力计算工具以时间序列的栅格降雨量数据集或栅格降雨强度数据集为输入数据,能人机交互选择要采用的计算模型,并根据输入的栅格数据集的类型来判断是否满足所选计算模型的要求:对不满足要求的,提示用户先进行数据处理;对满足要求的,可实现对月、年时间尺度的降雨侵蚀力数据的计算与整理。  相似文献   

7.
湖北省侵蚀性降雨时空分布特征   总被引:1,自引:0,他引:1  
侵蚀性降雨是南方红壤区剧烈水蚀的原动力,因此分析其时空分布特征对于区域内水土保持相关研究有十分重要的意义。选取国家气象数据网站数据(2014—2020年)、结合水土保持监测站点人工观测数据(2016—2019年),对湖北省4个水土保持分区24个监测站点的侵蚀性降雨标准及降雨侵蚀力进行了分析、计算,并用克里格模型进行插值。结果表明:湖北省整体的降雨侵蚀力从西北到东南逐渐增加,与降雨量的空间分布表现出相同特征,同时降雨量与侵蚀性降雨量表现出高度协同性。全省年平均降雨量813.88~1 590.15 mm(2014—2020年),多年平均年降雨量为1 201.98 mm,多年平均侵蚀性年降雨量为603.53 mm。多年平均侵蚀性年降雨量占多年平均年降雨量的50.21%,多年平均侵蚀性降雨频次(天数)为14次,平均次侵蚀性降雨量为46.88 mm。根据多年平均半月侵蚀力计算结果分析可知,湖北省全省多年平均年降雨侵蚀力值为6 650.10 MJ·mm/(hm2·h·a)。省内年内降雨侵蚀力时间分布基本符合正态分布。4—10月总降雨侵蚀力值为6 202.10 MJ·mm/(h...  相似文献   

8.
长江上游水蚀区降雨侵蚀力的时空分布特征   总被引:4,自引:1,他引:3  
降雨侵蚀力的时空分布特征对于分析和认识土壤侵蚀规律十分重要.根据长江上游7个省市的704个站点1981-2010年30 a的逐日降雨量资料计算了多年平均降雨侵蚀力R值,多年平均半月降雨侵蚀力及其占年降雨侵蚀力的比例,并分析了长江上游水蚀区降雨侵蚀力的空间分布规律.结果表明,长江上游水蚀区的降雨侵蚀力R值范围为273~11 394MJ·mm/(hm2·h· a);受地形的影响R值的空间分布有3个高值区,位于四川省峨眉山市、贵州省毕节地区和湖北省宜昌市附近;建立了多年平均降雨量和降雨侵蚀力R值的关系,相关系数R2达到0.80;研究区降雨侵蚀力的年内分布集中度较大,均值为69%,主要集中在5-10月.  相似文献   

9.
 定期公告水土保持监测情况是水土保持法等法律法规的主要规定之一,但如何利用监测站点的现测数据较为科学准确地推算区域土壤流失量及水土保持效益,是目前水土保持公告中存在的主要问题之一。以北京市为例,利用全市水土保持监测网络站点观测到的降雨量及水土流失量等资料,基于GIS平台和降雨侵蚀力模型,对2009年北京市土壤流失量进行定量计箅。结果表明,计箅结果可靠,方法可行,可为其他地区计箅土壤侵蚀量提供参考。  相似文献   

10.
喻石  王瑄  张锐 《水土保持研究》2007,14(3):158-160
降雨是引起土壤侵蚀的主要动力因素,而降雨侵蚀力是引起土壤侵蚀的主要动力因子,对于降雨侵蚀力时空分布规律的定量研究是进行土壤侵蚀预报的基础。以丹东地区41个雨量站1990~2000年逐月降雨资料,依据有关降雨侵蚀力的计算方法,估算丹东不同地区的降雨侵蚀力,并在AreiMo软件支持下对所得结果进行时空分布规律的分析。结果表明:(1)在空间分布上,丹东地区多年年均降雨侵蚀力总体趋势是由南向北递增。(2)降雨侵蚀力的月分布情况与降雨量的月分布情况大致相一致,且月R值的年内变化显著。(3)年R值的年际变化在空间分布上大致呈南北高,中间低的特点。  相似文献   

11.
降雨侵蚀力反映了降雨对土壤侵蚀的潜在能力,研究其时空变化特征对流域土壤侵蚀监测、评估、预报和治理等工作具有重要意义。根据珠江流域43个气象站1960-2012年逐日降雨资料计算各站点降雨侵蚀力,采用线性回归,Mann-Kendall方法,小波分析和Kriging插值等方法对流域降雨侵蚀力进行了时空变化分析。结果表明:珠江流域多年平均降雨侵蚀力值的分布范围为1 858.0~14 656.6 MJ·mm/(hm2·h),平均值为7 177.1 MJ·mm/(hm2·h),与多年平均降雨量极显著相关(相关系数0.952,P0.01),空间分布规律与多年平均降雨基本一致,即总体上均呈从东到西逐渐递减的规律,被统计站点的降雨侵蚀力随着经度增加而增加,但随纬度增加而减少;流域年、季节、汛期和非汛期降雨侵蚀力变化趋势均不显著,均没有发生显著的突变,其中春、秋两季降雨侵蚀力呈下降趋势,其余时间段呈上升趋势;珠江流域大部分地区年降雨侵蚀力呈上升的趋势,其中韶关站点上升显著,沾益站、风山站、河池站、百色站、柳州站、融安站和桂林站的冬季降雨侵蚀力同样上升显著,这些地区面临的水土保持压力较大;流域年均降雨侵蚀力变化主周期为3.8 a,且存在2.0~7.0 a的振荡周期。研究结果可为珠江流域的水土保持、农业和生态保护,灾害控制等工作提供科学决策依据。  相似文献   

12.
为了对降雨引起的土壤侵蚀力的潜在能力进行评估,在收集整理了辽宁省及周边22个气象台1965—2016年的逐日降雨量数据的基础之上,通过构建日降雨侵蚀力模型对研究区域的多年降雨侵蚀力进行计算和分析,并初步探讨了降雨侵蚀力在时空上的分布变化规律。研究表明:辽宁省降雨侵蚀力在空间上整体表现出由东南向西北方向逐级递减的趋势;降雨量与降雨侵蚀力的分布特征表现出明显一致性,且在年际变化上均呈现出不明显的上升趋势;年内降雨侵蚀力主要集中于每年的6~9月,并占全年的78.51%。研究成果可为辽宁省水土流失的准确预测并采取有效的关键性水土保持治理措施提供一定的参考依据和数据支撑。  相似文献   

13.
基于侵蚀降雨特征的湘江流域R因子修正算法   总被引:2,自引:0,他引:2  
降雨侵蚀因子R表示由降雨引起的土壤侵蚀的潜在能力,能够反映气候因素对土壤侵蚀能力的作用.根据湘江流域18个水文气象站近50 a的降雨量数据,采用针对不同类型降雨资料的不同R值的计算方法,对湘江流域近50 a的降雨侵蚀力R值进行估算.结果表明:Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式分别计算出的R1、R2值与章文波日降雨量估算方法计算出的R3值有较大误差,分别达到35.99%和45.58%,不适用于直接计算该区域的降雨侵蚀力R值;经过侵蚀降雨特征因子修正后的Wischmemier年降雨侵蚀力经验公式与福建省降雨侵蚀力计算公式计算出的年降雨侵蚀力R值精度比修正前大大提高,其平均误差减小到9.59%和5.53%,表明在缺少日降雨量数据资料的情况下,采用根据侵蚀降雨特征因子侵蚀降雨量与侵蚀降雨时间修正后的降雨侵蚀力计算公式能够更加精确地估算出研究区内降雨侵蚀力R值.  相似文献   

14.
新疆维吾尔自治区1981-2018年降雨侵蚀力的空间变化特征   总被引:1,自引:0,他引:1  
[目的] 分析1981—2018年新疆维吾尔自治区降雨侵蚀力空间变化特征,为该区土壤水力侵蚀理论研究和开展水土保持相关实践工作提供科学参考。[方法] 以1981—2018年新疆38个气象站的逐日降雨资料为基础,采用半月降雨侵蚀力算法模型计算降雨侵蚀力因子R,进而反映降雨对土壤侵蚀的内在作用,并采用倾向率和Kriging插值方法分析新疆降雨侵蚀力的空间变化特征。[结果] ①新疆多年平均降雨侵蚀力和降雨量空间格局相似,呈西高东低,中部高南北低的格局。近40 a新疆年降雨侵蚀力总体上处于波动增加趋势,其平均增速为15.6[MJ·mm/(hm2·h·a)]/10 a,但因区域不同而有差异,其倾向率天山北部多呈正值,南部多为负值或持平,且北部高于南部。②降雨侵蚀力最大倾向率多出现在夏季(6—8月),但不同区域四季分配格局不同,北部大部分区域春、夏季较高,南部大部分区域夏、秋季较高,多年平均降雨侵蚀力年内分配呈集中在“春夏”格局,但不同区域集中程度不同,其年内集中程度均为降雨侵蚀力高于降雨量,说明能够产生土壤侵蚀的大降雨事件多出现在5—8月。[结论] 气候和海拔高度是影响降雨侵蚀力格局的关键要素,在气候变化背景下,春夏季的大降水事件对新疆天山山区土壤水力侵蚀不容忽视。  相似文献   

15.
GIS支持下的长江上游降雨侵蚀力时空分布特征分析   总被引:8,自引:0,他引:8  
降雨侵蚀力是土壤侵蚀评估模型中的一个基本因子,利用长江上游361个测站1961-2004年日雨量资料估算降雨侵蚀力R值,利用GIS空间分析功能,获得长江上游降雨侵蚀力分布图、降雨侵蚀力年际变化趋势图、各区域R值平均年内分配曲线,在此基础上分析长江上游降雨侵蚀力时空分布特征。研究表明长江上游降雨侵蚀力的地域差异十分显著,与降雨量空间分布近似,由东向西减少,且降雨侵蚀力大的区域与多雨中心和暴雨中心分布基本一致。降雨侵蚀力年际变化存在明显的空间差异性,在一些地区年降雨侵蚀力的变化与年降雨量的变化趋势不一致。各区域降雨侵蚀力年内分配曲线为尖峰状分布,降雨侵蚀力十分集中。  相似文献   

16.
闽西典型红壤区降雨侵蚀力变化特征研究   总被引:3,自引:0,他引:3  
闽西典型红壤区土壤侵蚀较为严重,尤其是长汀、宁化等县,属国家级水土流失重点治理区.以闽西地区1980-2009年10个站点的降雨资料为基础,计算其降雨侵蚀力R值,研究了该区域降雨侵蚀力的时空分布特征.结果表明:闽西典型红壤区10个站年内降雨侵蚀力分布主要集中在3-8月,呈弱双峰式分布;R值年际间变化较大,1983年最大达525.31 (MJ·mm)/(hm2·h),1991年最小为155.63 (MJ·mm)/(hm2·h),最大值是最小值的3.38倍;年降雨侵蚀力在30 a内未出现明显的突变现象;降雨侵蚀力空间分布不均匀,总体趋势为北部由东向西递增,南部由东南、西南向中间递减.  相似文献   

17.
1951-2018年韶关不同量级降雨侵蚀力变化   总被引:2,自引:2,他引:2       下载免费PDF全文
降雨是引起土壤水蚀的主要动力因子之一,为探讨韶关市不同量级降雨对土壤水蚀特征造成的影响,选取1951—2018年韶关市逐日降雨量数据,采用日降雨侵蚀力模型计算降雨侵蚀力,利用变异系数、趋势系数分析不同时间尺度各量级降雨侵蚀力的变化。结果表明:(1)68年来韶关市年均降雨侵蚀力为9 314(MJ·mm)/(hm~2·h·a),变异系数为0.29,属于中等变异;(2)年降雨量、降雨日数、侵蚀性降雨量和降雨日数均呈上升趋势,而非侵蚀性降雨量和降雨日数则呈下降趋势,且暴雨量和暴雨侵蚀力呈较明显上升趋势,说明韶关市降雨更为集中,降雨侵蚀力增加;(3)大雨以上量级的降雨日数和降雨量占总降雨日数和总降雨量的比例分别为43.91%,51.15%,而其引起的降雨侵蚀力占总降雨侵蚀力比例却高达77.05%。研究结果为韶关市的土壤侵蚀的监测和水土保持工作提供参考。  相似文献   

18.
以无锡市21处雨量站1992—2016年的日雨量数据等为基础,运用章文波等修订的日雨量侵蚀力模型计算降雨侵蚀力,分析了无锡市降水时空分布规律,并提出了基于年侵蚀性降雨量的降雨侵蚀力简化算法。结果表明,无锡市降雨侵蚀力随月份先增加后减小;随年份总体呈增加的变化规律,但不是单一增长,而是三段式变化;在空间分布上表现为西南部高于东北部,最高值是最低值的1.5倍。利用无锡市10个站点数据进行回归分析,得出年侵蚀性降雨量与年降雨侵蚀力之间的三次曲线拟合方程作为简化算法,经验证可以用于无锡市年降雨侵蚀力计算。  相似文献   

19.
选取1956-2013年福建省57个主要气象站点日降雨量数据,采用日降雨侵蚀力模型计算降雨侵蚀力,分析厄尔尼诺—南方涛动(ENSO)对福建省降雨侵蚀力的影响.结果表明,虽ENSO对福建省不同区域的气象站点的影响存在差异,但总规律为:(1)福建省降雨侵蚀力年际变化和年内变化较大,总体呈现略微波动上升的趋势;(2)福建省降雨侵蚀力与赤道太平洋中东部海洋表面温度(SST)距平值呈现极显著相关.厄尔尼诺(El Ni(n)o)时期降雨侵蚀力较拉尼娜(La Nina)时期大,但均低于福建省平均降雨侵蚀力;(3)降雨侵蚀力与南方涛动指数(SOI)和多变量ENSO指数(MEI)存在极显著相关.通过分析ENSO对福建省降雨侵蚀力影响,为福建省土壤侵蚀的预测和土壤保持提供参考和依据.  相似文献   

20.
山东省降雨侵蚀力空间分布特征及简易方程的研究   总被引:4,自引:1,他引:3  
研究基于山东省境内22个气象站1951-2008年间日降雨资料,计算了该省多年降雨侵蚀力因子R值,运用径向基函数空间插值法,分析了该省降雨侵蚀力的空间分布特征,同时借助年降雨量与年降雨侵蚀力之间的数量关系,建立并验证了山东省年降雨侵蚀力的简易经验方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号