首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
硝化反应是土壤、特别是干旱半干旱地区农业土壤N2O产生的重要途径之一。但是,目前环境条件对硝化反应中N2O排放的影响研究较少,而在国内外通用的几个模型中均用固定比例估算硝化反应过程中N2O的排放。本文通过砂壤土培养试验,研究了土壤温度、水分和NH4+-N浓度对硝化反应速度及硝化反应中N2O排放的影响,并用数学模型定量表示了各因素对硝化反应的作用,用最小二乘法最优拟合求得该土壤的最大硝化反应速度及N2O最大排放比例。结果表明,随着温度升高,硝化反应速度呈指数增长;水分含量由20%充水孔隙度(WFPS)增加到40%WFPS时,反应速度增加,水分含量增加到60%WFPS时反应速度略有降低;NH4+-N浓度增加对硝化反应速度起抑制作用。用米氏方程描述该土壤的硝化反应过程,其最大硝化反应速度为6.67mg·kg?1·d?1。硝化反应中N2O排放比例随温度升高而降低;随NH4+-N浓度增加而略有增加;20%和40%WFPS水分含量时,硝化反应中N2O排放比例为0.43%~1.50%,最小二乘法求得的最大比例为3.03%,60%WFPS时可能由于反硝化作用,N2O排放比例急剧增加,还需进一步研究水分对硝化反应中N2O排放的影响。  相似文献   

2.
中亚热带地区春季降雨频繁,茶园施肥量大,该季节茶园土壤氧化亚氮(N2O)排放量较高,研究春季茶园土壤N2O排放及其影响因子有一定意义。以中亚热带丘陵区土壤为对象,采用静态箱-气相色谱法,研究了两种植茶年限茶园和林地土壤春季N2O排放特征及其影响因子。结果表明:茶园N2O排放量明显高于林地,50年茶园N2O排放量明显高于20年茶园,林地N2O的排放量最少;50年茶园、20年茶园和林地土壤春季N2O累积排放量分别为2.07、1.39、0.22 kg·hm-2。两种植茶年限茶园土壤N2O排放通量均与土壤NO-3-N含量呈显著正相关(P<0.05),林地土壤N2O排放通量则与土壤NH+4-N含量呈极显著正相关关系(P<0.01);茶园和林地土壤N2O排放通量均与5 d累积降雨量之间存在显著的相关性。多元逐步回归分析显示,茶园土壤N2O排放通量受土壤温度和NO-3-N含量影响,共同解释其48%~49%的变化;林地土壤N2O排放通量受土壤温度和NH+4-N含量影响,共同解释其55%的变化。这项研究显示施肥对春季茶园N2O排放的促进作用与降雨有关。  相似文献   

3.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:11,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

4.
保护地土壤N2O排放通量特征研究   总被引:4,自引:1,他引:3  
为研究保护地土壤N2O排放通量特征,于2009年8~12月,在河北辛集不施氮(N0)、当地习惯施氮(N900)及减量施氮(N675)处理下的秋冬季番茄保护地土壤上使用静态箱采集、气相色谱仪检测的方法测定了土壤N2O排放通量。得到以下研究结果:灌溉施肥后,各处理N2O平均排放通量与表层土壤硝态氮含量呈极显著正相关关系。灌溉施肥后7 d内是施氮处理土壤N2O主要排放期,其排放量占当季总排放量的55.9%~59.8%;高峰值一般出现在第3~5 d,此时的土壤含水量对硝化、反硝化作用都较适宜。8~10月份由于温度较高,N2O排放通量明显高于较冷的11~12月。8~10月份施氮是影响保护地土壤N2O排放的主导因素,减少施氮量显著降低了N2O排放量;之后温度是主导因素,此时N2O排放量受追施氮量的影响较小。经估算,保护地秋冬季番茄不同施氮处理N2O总排放量的大小顺序为:N900(N 5.304 kg/hm2)N675(N 3.616 kg/hm2) N0(N 0.563 kg/hm2),差异显著,减量施氮比习惯施氮处理降低了31.8%的N2O排放量;N675和N900处理的N2O排放系数分别为0.45和0.53。  相似文献   

5.
不同氮水平下黄瓜-番茄日光温室栽培土壤N_2O排放特征   总被引:7,自引:3,他引:4  
为探讨日光温室黄瓜—番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P0.01)。日光温室黄瓜—番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。  相似文献   

6.
秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响   总被引:23,自引:3,他引:23  
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。  相似文献   

7.
猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
以典型的猪粪尿发酵沼液为对象,探讨了沼液施入量和管理方式对以中国东部稻麦轮作农田系统土壤N2O排放规律和排放量的影响。研究结果表明,与化学氮肥相比,沼液施用未影响稻麦轮作系统土壤N2O排放的季节变化规律,但影响其排放量的大小。稻季100%施用沼液的处理(N100%DPS)其累积排放量为0.71kg·hm-(22008年)和1.38kg·hm-(22009年),显著高于100%施用化肥的处理(N100%Ure)a,即0.68kg·hm-2和1.06kg·hm-2。麦季N100%DPS处理N2O的累积排放量分别为6.56kg·hm-(22008年)和5.05kg·hm-2(2009年),与N100%Urea处理(2008年:5.89kg·hm-2;2009年:3.93kg·hm-2)无显著差异,但均显著高于稻季各处理。随着沼液替代化学肥料用量的降低,稻田N2O排放量呈降低趋势,而沼液一次性施入和分次施入对稻田N2O排放的季节动态和累积排放量均无显著影响;但沼液不同的管理方式对麦季累积N2O排放量更为复杂。稻、麦两季N100%DPS处理中N2O排放系数(f)均最大,分别达到0.3%和1.6%,但沼液分次施入和一次性施入的处理间f值均无显著差异。  相似文献   

8.
菜地氮肥用量与N2O排放的关系及硝化抑制剂效果   总被引:5,自引:0,他引:5  
熊舞  夏永秋  颜晓元  周伟 《土壤学报》2013,50(4):743-751
通过连续种植四季蔬菜近一年的大田试验,探究高施氮水平和低氮肥利用率的蔬菜生产系统中,N2O排放量与氮肥施用量之间的定量关系及其机理,并研究硝化抑制剂减少菜地N2O排放的效果.结果表明,在氮肥施用水平为N 0~1 733 kg hm-2a-1间,无论氮肥中是否添加硝化抑制剂,N2O总排放量与氮肥施用量均呈指数函数关系,即氮肥施用量高时,N2O排放率也高.在各氮肥水平处理下,硝化抑制剂均能降低N2O排放,抑制率为8.75% ~ 25.28%,且这种减排效果随着施氮量增加而增加.在氮肥施用量为N 300或400 kg hm-2季-1时,施用硝化抑制剂减少N2O排放所带来的效益略高于其成本,因此,即使不考虑氮肥利用率的提高等因素,施用硝化抑制剂仍是一种有利的选择.  相似文献   

9.
氧化亚氮(N2O)是重要的农业源温室气体,菜地土壤施肥量高、施肥次数多,且肥水同期,是重要的N2O排放源。采用室内培养实验,测定在70%田间持水量条件下菜地土壤施用铵态氮肥后3周内N2O排放动态,利用不同气体抑制剂(低浓度乙炔、纯氧、纯氦、纯氧+乙炔)对N2O排放过程抑制效果各不相同的特点,经合理组合计算得出自养硝化、硝化细菌的反硝化、生物反硝化等主要过程对土壤N2O排放的相对贡献及其动态,以探索菜地土壤施用铵态氮肥后土壤N2O排放的来源及动态。结果表明,(1)在70%田间持水量条件下,菜地土壤施用铵态氮肥后2d内(48h内)的N2O排放通量最高,为314.4ng·g-1·d-1,到第4天时N2O排放通量已迅速降至前两天的1/6,且随培养时间的延长其排放通量不断降低。(2)自养硝化作用是菜地施用铵态氮肥后N2O排放的主要来源,施肥培养后2周内的贡献率在50%以上,2周后其贡献率降至40%左右。(3)硝化细菌的反硝化作用对N2O排放的贡献主要在施铵氮后2d内,其贡献率达44%,之后其贡献率一直保持在14%~27%。反硝化作用对N2O排放的贡献随着土壤中铵态氮含量的下降和硝态氮含量的升高而逐渐从开始时不到1%增至30%,但由于施肥培养2周后N2O的排放通量绝对数值很低(仅为施肥后2d内排放高峰的1/20),故其对N2O排放的贡献有限。土壤N2O排放通量及其来源与土壤中铵态氮和硝态氮含量的动态变化密切相关,施用铵态氮肥后土壤短期内呈现酸化趋势。因此,合理控制硝化作用是有效控制菜地土壤N2O排放的关键措施。  相似文献   

10.
为合理利用工业副产硫酸铵,探究3,4—二甲基吡唑磷酸盐(DMPP)配施硫酸铵对石灰性褐土中氮素转化及N_2O和CO_2排放的影响。通过室内培养试验,研究不同剂量DMPP与硫酸铵配施后,石灰性褐土中铵态氮(NH_4~+-N)含量、硝态氮(NO_3~--N)含量、土壤pH、N_2O和CO_2排放通量和累计排放量的动态变化,并进行了相关性分析。结果表明:单施硫酸铵的ASN处理在培养的前15天硝化作用强烈,第15天时,土壤NH_4~+-N含量降低了477.28 mg/kg, NO_3~--N含量增高了177.03 mg/kg。添加DMPP可以明显抑制硫酸铵NH_4~+-N向NO_3~--N转化。培养30天后,0.75%~1.75%剂量的DMPP处理的土壤NO_3~--N含量低于ASN处理174.02~177.00 mg/kg,硝化抑制率为94.92%~95.30%,且在0.75%~1.75%浓度范围内未表现出明显的剂量差异效应。各剂量DMPP在试验期间的硝化抑制效果表现较好,其作用时长为30天以上。培养30天时,与空白CKII处理相比,单施硫酸铵T1处理的N_2O和CO_2的累计排放量分别显著增加了975.3%,126.66%(P0.05),而添加了DMPP的T2处理相较于单施硫酸铵T1处理,N_2O和CO_2累计排放量分别显著降低了76.8%,6.22%(P0.05)。相关性分析表明,CO_2排放通量与N_2O排放通量呈正相关关系,土壤pH与N_2O、CO_2排放通量呈负相关关系。硫酸铵与0.75%DMPP配合施用在一定程度上可以抑制土壤酸化,同时短期内可以显著降低N_2O和CO_2累计排放量(P0.05)。  相似文献   

11.
Laboratory incubation experiments were conducted to compare the effects of the nitrification inhibitors 3,4-dimethylpyrazole phosphate (DMPP) and 2-Chloro-6-(trichloromethyl)-pyridine (N-serve) on nitrification and nitrous oxide (N2O) emission from a Vertosol from southern Australia, under controlled moisture and temperature. Nitrification rates in the control soil were strongly influenced by the temperature and moisture, increasing by a factor of 3.6 for each 10 °C increase between 5 and 25 °C. DMPP inhibited nitrification effectively for 42 days at 5-15 °C and 40-60% water filled pore space (WFPS). DMPP also slowed nitrification appreciably at 25 °C when the soil was at 40% WFPS, but was less effective at 60% water filled pore space. N-serve inhibited nitrification effectively for 42 days under all test conditions. Emissions of N2O from the urea treatment (no inhibitors) significantly increased with increasing temperature and moisture. The ratio of total N2O emission to total nitrification was not constant and varied from around 0.03% at 5 °C and 40% WFPS to 0.12% at 25 °C and 60% WFPS. DMPP and N-serve reduced cumulative N2O emission over 42 days by more than 65% under all the imposed conditions.  相似文献   

12.
王启  兰婷  赖晶晶  高雪松 《土壤》2020,52(6):1170-1178
生物质炭施用可能对土壤中氮素硝化过程和N2O排放产生影响。本研究通过室内培养试验,研究铵态氮肥与玉米秸秆生物质炭施用量(0、1%、2%、5%、10%w/w)对酸性(pH=5.10)和石灰性紫色土(pH=8.15)氮素硝化率、净硝化速率及N2O排放特征的影响。结果表明:(1)酸性和石灰性紫色土生物质炭处理平均净硝化速率相比对照分别降低了33.7%~93.7%和7.5%~40.9%,生物质炭添加抑制了酸性和石灰性紫色土硝化作用,在酸性紫色土中生物质炭对氮素硝化作用的抑制作用随施用量的增加而增强,在石灰性紫色土中无明显规律。(2)与对照相比,酸性紫色土N2O累计排放量在1%生物质炭(1%BC)和2%生物质炭(2%BC)处理下降幅分别为15.9%和27.7%,在5%生物质炭(5%BC)和10%生物质炭(10%BC)处理下增幅分别为60.1%和93.2%。石灰性紫色土生物质炭各处理N2O累积排放量均显著高于对照。(3)综合考虑酸性紫色土1%、2%生物质炭量施用下对硝化作用抑制和N2O减排综合效果最好,在石灰性紫色土中无明显抑制和减排效果。  相似文献   

13.
An incubation study investigated the effects of nitrification inhibitors (NIs), dicyandiamide (DCD), and neem oil on the nitrification process in loamy sand soil under different temperatures and fertilizer rates. Results showed that NIs decreased soil nitrification by slowing the conversion of soil ammonium (NH4+)-nitrogen (N) and maintaining soil NH4+-N and nitrate (NO3?)-N throughout the incubation time. DCD and neem oil decreased soil nitrous oxide (N2O) emission by up to 30.9 and 18.8%, respectively. The effectiveness of DCD on reducing cumulative soil N2O emission and retaining soil NH4+-N was inconsistently greater than that of neem oil, but the NI rate was less obvious than temperature. Fertilizer rate had a stronger positive effect on soil nitrification than temperature, indicating that adding N into low-fertility soil had a greater influence on soil nitrification. DCD and neem oil would be a potential tool for slowing N fertilizer loss in a low-fertility soil under warm to hot climatic conditions.  相似文献   

14.
有机无机肥配施对酸性菜地土壤硝化作用的影响   总被引:5,自引:0,他引:5  
通过室内培养和田间试验, 研究了有机无机肥配施对酸性菜地土硝化作用的影响。培养试验条件为60%土壤最大持水量和25 ℃。 结果表明,土壤硝化作用模式为指数方程,延滞期10天。与纯化肥处理(NPK)相比,鲜猪粪配施无机肥(FPM+NPK)和猪粪堆肥配施无机肥(CPM+NPK)均能降低土壤硝化势和氨氧化潜势,猪粪堆肥配施无机肥还能增加土壤微生物量碳、 氮。鲜猪粪配施无机肥和猪粪堆肥配施无机肥处理在硝化培养和田间试验期间N2O释放量均没有差异,但硝化培养期间鲜猪粪配施无机肥的N2O释放量显著低于纯化肥处理,田间试验期间猪粪堆肥配施无机肥的N2O释放量显著低于纯化肥处理。培养试验结束后的土壤pH值与土壤硝化势间,以及硝化培养期间N2O累积释放量与土壤硝化势间均存在显著正相关关系。本研究表明, 有机无机肥配施显著影响土壤硝化作用以及硝化培养期间和田间N2O释放。  相似文献   

15.
肥料添加剂降低N2O排放的效果与机理   总被引:4,自引:2,他引:2  
如何降低氮肥施入农田后的N2O排放,实现氮肥增产效应的同时降低其对环境的负面影响是全球集约化农业生产中重要的科学问题,氮肥添加剂是有效途径之一。本研究采用室内静态培养法,在调节土壤水分含量和温度等环境因素的条件下,研究不同肥料添加剂对华北平原典型农田土壤N2O排放的影响及其机制。结果表明,N2O排放通量的峰值大约出现在施氮后的第24 d,肥料混施较肥料表施的出峰时间提前。与单施尿素处理相比,添加硝化抑制剂DMPP或DCD能分别降低N2O排放总量99.2%和97.1%; 添加硫酸铜对N2O排放的抑制作用不显著; 添加秸秆会增加N2O排放总量60.7%,而在添加秸秆的土壤中施加硝化抑制剂DMPP能够显著降低N2O排放量至无肥对照水平。说明华北平原农田土壤中N2O的产生主要是由硝化作用驱动,同时也可看出,添加硝化抑制剂是N2O减排的有效措施。  相似文献   

16.
The production of nitrous oxide by soils was studied over short periods at a range of moisture contents up to field capacity with a highly-sensitive gas Chromatographic method.Nitrous oxide (N2O) was emitted from all soils studied at all soil moisture contents, which ranged from air dry to field capacity. The rate of emission increased with increasing moisture content and with increasing temperature up to 37°C.The evolution of N2O was not due to displacement of soil air during wetting. It was inhibited by HgCl2 and toluene, and was prevented by formaldehyde and autoclaving. Thus it appeared to be due to microbiological processes.The results of experiments with nitrification and denitrification inhibitors suggest that a considerable part of the N2O was produced by the oxidation of ammonia. Production by denitrification of nitrate cannot be ruled out. The relative importance of these two mechanisms probably depends on the moisture and oxygen content of the soil.It is concluded that the microbial production of N2O is continuous in soil at all moisture contents. The process at low moisture contents constitutes an important component in the cycle which maintains the N2O concentration in the atmosphere.  相似文献   

17.
施肥方式对紫色土农田生态系统N2O和NO排放的影响   总被引:1,自引:1,他引:0  
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

18.
A better understanding of the nitrogen (N) cycle in agricultural soils is crucial for developing sustainable and environmentally friendly N fertilizer management and to propose effective nitrous oxide (N2O) mitigation strategies. This laboratory study quantified gross nitrogen transformation rates in uncultivated and cultivated black soils in Northeast China. It also elucidated the contribution made by nitrification and denitrification to the emissions of N2O. In the laboratory, soil samples adjusted to 60 % water holding capacity (WHC) were spiked with 15NH4NO3 and NH4 15NO3 and incubated at 25 °C for 7 days. The size and 15N enrichment of the mineral N pools and the N2O emission rates were determined between 0 and 7 days. The results showed that the average N2O emission rate was 21.6 ng N2O-N kg?1 h?1 in cultivated soil, significantly higher than in the uncultivated soil (11.6 ng N2O-N kg?1 h?1). Denitrification was found to be responsible for 32.1 % of the N2O emission in uncultivated soil, and the ratio increased significantly to 43.2 % in cultivated soil, due to the decrease in soil pH. Most of the increase in net N2O-N emissions observed in the cultivated soil was resulting from the increased production of N2O through denitrification. Gross nitrification rate was significantly higher in the cultivated soil than in the uncultivated soil, and the ratio of gross nitrification rate/ammonium immobilization rate was 6.87 in cultivated soil, much larger than the uncultivated soil, indicating that nitrification was the dominant NH4 + consuming process in cultivated soil, and this will lead to the increased production of nitrate, whereas the increased contribution of denitrification to N2O emission promoted the larger emission of N2O. This double impact explains why the risk of N loss to the environment is increased by long-term cultivation and fertilization of native prairie sites, and controlling nitrification maybe effective to abate the negative environmental effects.  相似文献   

19.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号