首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
中国东南部红壤地区不同植被对土壤侵蚀和土壤养分的影响   总被引:31,自引:0,他引:31  
The effect of different vegetation systems including bamboo plantation (BP), forest ecosystem (CF), citrus orchard (Ctr) and farmland (FL) on erosion and nutrients of red soil were investigated in hilly region of southeastern China to find effective control measures for soil erosion. The results showed that all the vegetation systems could significantly reduce soil erosion and nutrient losses compared to bare land (Br). The ability of different vegetation systems to conserve soil and water was in the order of Ctr > BP > CF > FL > Br. Vegetation could also improve soil fertility. The soil organic matter, total N and total P contents were much higher in all the vegetation systems than in bare land, especially for the top soils. Vegetation systems improved soil physical properties remarkably. Compared to the bare land, soil organic matter, TP, TK and available K, especially soil microbial biomass C, N and P, increased under all the vegetation covers. However, they were still much lower than expected, thus these biological measurements are still needed to be carried out continuously.  相似文献   

2.
《土壤圈》1994,4(1):53-58
The work was carried out to study the uptake,storage and return of S in the evergreen broad-leaved forest ecosystem of Hangzhou in Zhejiang Province,based on the annuam increments of plants and Scontents per unit weight plant organs as well as the measured data about the biological return and decomposition.Results showed that the vegetation layer had an annual S uptake of 55.02kg ha^-1,which accounted for 15.8% of the total S storage in the vegetation layer,The S uptake was the highest in the arbor layer but the lowest in the shrub layer,the biological return of S was 50% higher than the biological uptake,indicating the relatively high cycling effciency of S.Nevertheless,S had a relatively low rate opf biological release,so that S trended to accumulate in the litter layer,S taken up by plants each year came mostly from precipitation and the reserve of soil.  相似文献   

3.
江西省雨水、灌溉水及渗漏水中的硫对土壤硫的影响   总被引:1,自引:0,他引:1  
Ten rainfall and irrigation water-collecting posts were set up in different ecotype districts of Jiangxi Province,China,to quarterly measure S content in rainfall and irrgation water.A rasinwater chemical composition-collecting device was used to collect the sulphur in rainfall,and the amount of sulphur adsorbed on the resin column in the device was determined.The soil percolating water was gathered using 6 lysimeters built up according to the profile sequence of the red soil derived from red sandstone and the red soil derived from Quaternary red clay,separately.On the lysimeters peanuts,soybean and radish were grown in rotation.Two treatments were designed:without S addition and with S additin at a rate of 14kg S ha^-1,The SO4^2- contents in rainfall,irrigation water and soil percolating water were determined by the turbidimetry.The results in 1997 showed that the average annual S content in rainwater ws 28.13kg S ha^-1.the average S content in irrigation water was 1.7mg S L^-1,and the average content of SO4^2- in soil percolation water was 2.30kg Sha^-1 year^-1 and 4.70 kg Sha^-1 year^-1 in treatments without and with sulphur application,respectively,In Jiangxi Province,apart from the losses by runoff and leaching,the sulphur in rainfall avaliable to crops is 7.3kg S ha^-1 year^-1 and additional S application is required.When rice is grown.however,irrigation water can suply 6.9kg S ha^-1,which,along with the sulphur in rainfall,cal almost meet the S requirement of one cropping of rice.  相似文献   

4.
Land degradation causes great changes in the soil biological properties.The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity.The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation(NV),moderately degraded land(LDL),highly degraded land(HDL) and land under restoration for four years(RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil.Soil samples were collected at 0-10 cm depth.Soil organic carbon(SOC),soil microbial biomass C(MBC) and N(MBN),soil respiration(SR),and hydrolysis of fluorescein diacetate(FDA) and dehydrogenase(DHA) activities were analyzed.After two years of evaluation,soil MBC,MBN,FDA and DHA had higher values in the NV,followed by the RL.The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV.However,after land restoration,the MBC and MBN increased approximately 5-fold and 2-fold,respectively,compared with the HDL.The results showed that land degradation produced a strong decrease in soil microbial biomass.However,land restoration may promote short-and long-term increases in soil microbial biomass.  相似文献   

5.
Trace element (TE) and rare earth element (REE) contents in red soils from the Dongting Lake area of China were determined to understanding the provenance and weathering characteristics of the red soils. The results showed similar REE distribution patterns among red soils from the Dongting Lake area, Xiashu loess from Zhenjiang, loess and the Pliocene red soil from the Loess Plateau. These patterns implied a similar provenance from dust-storms, except for red soil R5 which formed by bedrock weathering and had significant light REE (LREE) enrichment and heavy REE (HREE) depletion due to longer weathering periods and higher intensity of weathering. Trace element, especially the Rb/Sr and Li/Ba ratios, and REE, especially the LREE/HREE ratio and δEu could trace weathering intensity. Higher Rb/Sr, Li/Ba, and LREE/ HREE ratios and negative Eu anomalies were present in the red soil from the Dongting Lake area. The weathering intensity was in the decreasing order of R5 in the Dongting Lake area > red soil from the Dongting Lake area (including reticulate red soil, weak reticulate red soil, and homogeneous red soil formed by dust storms) > Xiashu loess from Zhenjiang > Loess-paleosol and Pliocene red soil from the Loess Plateau. Variations in the TE and REE contents of soil could be effectively used to study the provenance and the weathering intensity.  相似文献   

6.
To compare the CH4 oxidation potential among diferent land uses and seasons,and to observe its response to monsoon precipitation pattern and carbon and nitrogen parameters,a one-year study was conducted for diferent land uses (vegetable field,tilled and non-tilled orchard,upland crops and pine forest) in central subtropical China.Results showed significant diferences in CH4 oxidation potential among diferent land uses(ranging from 3.08 to 0.36 kg CH4 ha-1 year-1).Upland with corn-peanut-sweet potato rotation showed the highest CH4 emission,while pine forest showed the highest CH4 oxidation potential among all land uses.Non-tilled citrus orchard (0.72±0.08 kg CH4 ha-1 year-1)absorbed two times more CH4 than tilled citrus orchard(0.38±0.06kg CH4 ha-1 year-1).Irrespective of diferent vegetation,inorganic N fertilizer application significantly influenced CH4 fluxes across the sites (R2=0.86,P=0.002).Water-filled pore space,soil microbial biomass carbon,and dissolved nitrogen showed significant efects across diferent land uses (31% to 38% of variability)in one linear regression model.However,their cumulative interaction was significant for pine forest only,which might be attributed to undisturbed microbial communities legitimately responding to other variables,leading to net CH4 oxidation in the soil.These results suggested that i)natural soil condition tended to create win-win situation for CH4 oxidation,and agricultural activities could disrupt the oxidation potentials of the soils;and ii)specific management practices including but not limiting to efficient fertilizer application and utilization,water use efciency,and less soil disruption might be required to increase the CH4 uptake from the soil.  相似文献   

7.
退化喀斯特植被恢复与土壤微生物特征的关系   总被引:10,自引:0,他引:10  
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.  相似文献   

8.
To solve soil shortage in reclaiming subsided land of coal mines, the principal chemical properties of artificial soil formed by mixing organic furfural residue and inorganic fly ash were examined. The results indicated that the artificial soil was suitable for agriculture use after irrigation and desalination, the available nutrients in the artificial soil could satisfy the growth demand of plants, and the pH tended to the neutrality.  相似文献   

9.
《土壤圈》2016,(2)
The Loess Plateau,which is located in the arid and semi-arid areas of China,experiences significant soil erosion due to intense human activities and soil erodibility.It is necessary to explore and identify the land-use types or land-use patterns that can control soil erosion and achieve certain agricultural production capabilities.This study established runoff plots with two slope gradients(5°and 15°) in north of Yan'an,one area of the Loess Plateau,with 3 single land-use types(cultivated land,CL;switchgrass,SG;and abandoned land,AL) and 2 composite land-use types(CL-SG and CL-AL).Prom 2006 to 2012,we continuously monitored the rainfall characteristics,runoff depth,soil loss,vegetation coverage,and soil physical properties.The results indicated a general trend in the number of runoff and soil loss events for the 5 land-use types:CL = CL-SG CL-AL SG AL.The general trend for runoff depth,soil loss,their magnitudes of variation,and the slopes of rainfall-runoff regression equation was CL CL-SG CL-AL SG AL,whereas the rainfall threshold for runoff generation exhibited the opposite trend.Results of nonparametric test regarding runoff depth/EI_(30) and soil loss/EI_(30),where EI_(30) is the product of rainfall kinetic energy and the maximum rainfall intensity over 30 min,and the runoff depth-soil loss relationship regression indicated that the effect of CL-AL was similar to that of SG;SG was similar to AL;and CL-AL,SG,and AL were superior to CL with regard to soil and water conservation.Runoff depth and soil loss significantly increased as the slope gradient increased.Runoff depth and soil loss were significantly correlated with the soil particle size composition and bulk density,respectively.The strongest significant correlations were found between runoff depth and vegetation coverage as well as between soil loss and vegetation coverage,which showed that vegetation coverage was the primary factor controlling soil erosion.Therefore,the composite land-use type CL-AL and the artificial grassland(SG) are appropriate options because both soil conservation and a certain degree of agricultural production are necessary in the study area.  相似文献   

10.
土地利用方式及土壤特性对土壤调节雨水效率的影响研究   总被引:3,自引:1,他引:2  
One of the most important functions of soils is to regulate rainwater and mitigate flooding and associated damages; this function can be estimated by the rainwater regulation ratio (η), i.e., percent of regulated rainwater. Fifteen experimental plots were set up on the hills in Yingtan of Jiangxi Province, southern China. These plots were under three land use patterns, cultivated cropland, noncultivated land, and orchard interplanted with cash crops. With aid of an artificial rainfall simulator and Guelph method, rainfall, runoff, soil infiltration, and so on were measured in situ. Results showed that the orchard interplanted with cash crops was more effective in regulating rainwater than the other two land use patterns. When the maximum infiltration intensity was three times higher than the observed mean,η was higher than 70% for all plots. 77 was related to land use, slope gradient, and soil properties such as soil infiltration, organic carbon, bulk density, and texture. There is still more room to improve capacity of rainwater drainage (underground percolation) than that of rainwater storage in soils. Therefore, enhancing soil permeability is vital to improve the rainwater regulation efficiency in soils.  相似文献   

11.
生态系统自我修复是黄土高原植被恢复的重要途径。以永久性天然草地和三龄沙打旺人工草地为对照,在对黄土丘陵区坡地退耕植被自然恢复过程群落演替、地上部分生物量的增长及其组成动态变化特征调查的基础上,定量分析了不同恢复阶段主要群落下土壤的入渗能力。研究表明,随着植被演替的进展,群落生物量逐步增加,土壤入渗能力显著改善。退耕草地土壤表层0-20cm土壤渗透能力(K10℃)每年可提高0.10mm。植被改善土壤入渗能力的有效深度达40cm。说明黄土丘陵区通过坡地退耕还林还草恢复植被可以改善土壤渗透性能,强化降雨就地入渗,减少水土流失。  相似文献   

12.
植被恢复往往有利于提高生态系统的碳储量,但对南方丘陵陡坡荒山灌木草丛造林后如何影响生态系统碳库及其分配格局仍知之甚少。选取江西泰和典型丘陵陡坡(>25°)荒山灌木草丛和马尾松(Pinusmassoniana)造林19年后的林地为对象,开展上、中、下坡0~75cm土壤层和植物体碳储量的对比研究。结果表明,造林地土壤容重低于灌木草丛,土壤石砾含量与土壤碳含量和碳密度呈显著负相关,表明造林有利于改善土壤物理结构;石砾含量影响土壤碳积累。荒山灌木草丛和马尾松林土壤碳含量和碳密度均表现为随土壤加深呈下降的趋势(P<0.05),但上、中、下坡的变异规律不一致,且2种生态系统之间差异不显著。荒山灌木草丛和马尾松生态系统碳储量分别为52.85,111.31t/hm2,均表现为自上、中坡至下坡呈增加的趋势;灌木草丛和马尾松林中的植物体分别占生态系统碳储量的11.2%和59.5%。灌木草丛马尾松造林碳年均增汇3.08t/(hm2.a),林分生物量的积累是造林增汇的直接原因;推断种植耐瘠速生树种是提高困难立地造林碳增汇的有效途径。  相似文献   

13.
上舍流域两种林地土壤结构与抗蚀性   总被引:1,自引:0,他引:1  
[目的]为了解土壤侵蚀的机理,探究土壤抗蚀性与土地利用类型、土壤结构的关系。[方法]以安徽省岳西县毛尖山乡上舍村典型小流域马尾松林(Pinus massoniana Lamb)和桑树林(Morus alba L)为研究对象,在0—40cm土壤深度范围内,按照10cm间隔分层取样,室内测定土壤孔径、比表面积、崩解指数、不同径别(0.5,0.5~1.0,1.0~2.0和2.0~2.5mm)根系长度特征。[结果]土壤抗蚀性强弱表现为马尾松林大于桑树林。表层0—10cm范围内,桑树林地土壤根系小于马尾松土壤根系,土壤的抗蚀性随着土层深度的增加而减小;桑树林和马尾松林土壤根系主要分布在0—30cm层次内,而且1mm的根系长度由表层向深层递减,土壤平均孔径随着深度的增加而减小,而比表面积随着深度的增加而增大;在0—40cm深度马尾松各层次孔径分布呈分层现象,而桑树林各层次土壤孔径分布差异不大。土壤孔隙度和土壤孔径越大,土壤抗蚀性越强,而土壤颗粒比表面积越大土壤抗蚀性越小;通过SPSS分析得到桑树林地土壤抗蚀性与土壤根系质量在0.01水平上显著相关,马尾松土壤平均孔径与土壤根系质量在0.05水平上显著相关。[结论]降雨时,由于马尾松林地地表覆盖均匀,坡面产生壤中流下渗,土壤20cm以下分化明显,不易透水,导致下坡壤中流蓄满流出地表带出土壤颗粒。而桑树林地原为耕地无地表覆盖,人为翻种活动频繁,导致土壤层次性质相似,表层土壤颗粒流失严重。  相似文献   

14.
Abstract

Soil microorganisms drive nutrients cycling to a great extent, and they play an essential role in maintaining a stable soil ecosystem and ensuring sustainable forestry development. Land management has been proven to be a real factor in influencing soil quality. The purpose of this study was to investigate the effects of different land management techniques on soil microbial communities. There were four types of land management systems selected for this study: natural masson pine, Phyllostachy pubescens, Phyllostachys praecox, and vegetable. Soils were sampled from these four systems and assayed for soil microbial biomass carbon (MBC), community level substrate utilization pattern, functional diversity, and principle component analysis. Values of MBC were significantly different (P<0.05) from one another in the order of masson pine>Phyllostachy pubescens>Phyllostachys Praecox>vegetable. Analysis of community level substrate utilization pattern indicated that carbon source utilization and total activity by soil microorganisms were greater under the masson pine system than the other three systems (P<0.01). The functional diversities of soil microbial communities characterized as Shannon and McIntosh indexes were much richer in soil under masson pine system; Shannon index was 4.483, 4.241, 4.224, and 3.938 and McIntosh index was 13.51, 7.332, 6.272, and 6.261 for natural masson pine, Phyllostachy pubescens. Phyllostachys praecox, and vegetable systems, respectively. The results from the principle components analysis (PCA), based on the data of optical density (OD) at 120 h of incubation, showed that the value of the first principal component (PC1) of soil for natural masson pine was greater (P<0.05) than those for the other three systems. The difference in scores of the second principal component (PC2) between Phyllostachy pubescens, Phyllostachys praecox, and vegetable were not statistically different. The size and activity of soil microbial communities generally decreased with soil depth, with significant differences in soil MBC, community level substrate utilization pattern, and functional diversity indexes found between A and C horizons (P<0.01). It was concluded that land management systems had a great influence on soil microbial biomass, activity, and functional diversity.  相似文献   

15.
黄土高原丘陵区人工灌草生态系统水土保持功能评估   总被引:3,自引:3,他引:3  
人工灌草复合植被是黄土高原植被恢复与重建的主要植被类型,在该区域水土保持中发挥着重要的作用。以定西市安定区为例,基于InVEST模型对该区人工灌草生态系统的水土保持功能进行定量化评估,以期为黄土高原丘陵区生态恢复与水土资源的可持续利用提供决策支撑。评估结果为:(1)人工灌草地单位面积的水源涵养量为369.25 m~3/hm~2,是草地的90.5%、林地的134%和耕地的110%;该区的水源涵养总量为3 970.99×10~4 m~3,人工灌草地水源涵养量占该区总水源涵养量的29.9%。(2)人工灌草地单位面积的N保持量为2.4 kg/hm~2,净化率为72.21%,P保持量为0.12 kg/hm~2,净化率为71.07%。(3)人工灌草地单位面积的土壤保持量为308.76 t/hm~2,比草地、林地和耕地分别高1.88,1.44,6.01倍,该区的土壤保持总量为3 310.21×10~4 t,人工灌草地土壤保持量占总土壤保持量的54.82%。结果表明,人工灌草地的水源涵养能力仅次于草地,高于其他土地利用类型,但土壤保持能力是6种土地类型中最强的,具有较好的水土保持功能,是黄土高原丘陵区适宜的植被类型和土地利用方式。  相似文献   

16.
为确定适宜湖北宜昌风化花岗岩地区的林草植被类型,利用主分量分析方法对该地区林草植被的土壤改良作用进行了数量化分析和评价。结果表明:松栎混交林对土壤的改良效果最好,草地次之,马尾松纯林则较差。  相似文献   

17.
肖列  刘国彬  薛萐  张超 《水土保持通报》2016,36(4):204-209,215
[目的]研究不同土地利用方式下的土壤水分状况及其与植被群落特征的关系,为黄土丘陵区的植被恢复和重建提供理论依据。[方法]采用野外调查的方法和数理统计分析方法开展研究。[结果]纸坊沟流域主要植被类型的地上干生物量为310.0~10 036.2g/m2,平均地上干生物量由大到小依次为:林地灌木地农田人工草地天然草地。地上鲜生物量与株高存在极显著的正相关关系(R2=0.967 4,p0.01)。不同土地利用方式0—100cm土层土壤含水量较高,且土壤水分变异较大;100cm以下土壤含水量相对稳定,坝地玉米和梯田玉米的极易效水量分别为221.73和221.99mm;柠条和刺槐的土壤含水量最低,土壤水分类型为难效水,分别为311.44和333.09mm;其他6种土地利用方式的土壤水分为中效易效水。[结论]黄土丘陵区人工林灌植被的种植导致深层土壤水分的大量消耗,不利于该区植被恢复和建设的可持续发展。  相似文献   

18.
对黄土高原丘陵沟壑区不同植被地连续10a的试验调查发现,人工草地和沙棘、油松林地土壤水分在长系列年内变化上基本一致,1m土层含水量处于100~140mm,生长期土壤水分基本上处于亏缺状态;而荒坡草地土壤含水量年内均比人工草地高约40mm,土壤水分一直处于适宜、稳定的水平。林地沙棘和油松均表现出适应该地气候特点的生长的状况,但从土壤水文循环状况看,土壤水分长时期处于亏缺状态不利于植被的再生长和生态效益的发挥。径流试验研究表明,人工草地、油松林地年内平均径流深分别为1.45mm和1.27mm,径流系数为0.08和0.07;荒坡草地和沙棘林地在年内基本上不发生大的径流,且多为清流。因此,植被恢复在治理措施上应当注重植被的自然修复和保护,并充分利用径流资源补充土壤水分,使其朝着利于植被生长的方向发展。  相似文献   

19.
花岗岩红壤区不同治理模式土壤抗冲性因素试验   总被引:5,自引:3,他引:2  
为探讨花岗岩红壤区不同治理模式下的土壤抗冲性特性,得出适用于花岗岩红壤区水土保持效果最优的植被恢复模式,选取红壤丘陵区不同治理模式下的土壤作为研究对象,运用湿筛法、原状土冲刷法,在3种冲刷流量(1.5,2.5,3.5 L/min)下,对不同治理模式的土壤抗冲性规律及其影响因素进行研究。结果表明:(1)不同治理模式土壤抗冲系数由大到小分别为条沟草灌带风水林全坡面播草芒萁地封禁裸露地开垦地。治理措施封禁、风水林、全坡面播草、芒萁地、条沟草灌带的冲刷产沙量处于低水平平衡状态,3种冲刷流量(1.5,2.5,3.5 L/min)下,其变化范围分别为0.01~1.12,0.02~1.53,0.02~2.57 g;CK1和CK2冲刷产沙量最大,其冲刷产沙量变化范围分别为0.08~65.20,0.07~60.56,0.24~80.60 g。(2)条沟草灌带和风水林的土壤总孔隙度、0.25 mm水稳性团聚体含量、根系表面积、体积、根长和生物量分别占所有治理模式的37.08%,80.38%,44.15%,45.12%,52.11%,57.91%。(3)条沟草灌带和风水林的团聚体平均重量直径(MWD)、几何平均直径(GMD)、根长密度和根重密度均较大,分别占所有治理模式的55.76%,44.06%,52.18%,54.91%。说明条沟草灌带和风水林水土保持效果较优,研究结果为控制红壤区水土流失和揭示相关侵蚀机理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号