首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
工艺措施对猪粪秸秆混合厌氧干发酵产气性能的影响   总被引:7,自引:4,他引:3  
为避免挥发性脂肪酸积累、提高产气效率,研究猪粪单独发酵、猪粪秸秆混合发酵、猪粪秸秆混合原料分层接种和猪粪秸秆混合原料渗滤液回流等工艺措施下,中温(37℃)厌氧干发酵(总固体含量为20%)的产酸及产气性能。结果表明:猪粪秸秆混合原料分层接种厌氧发酵启动快,产气效果最佳,累积挥发性固体含量VS产甲烷量可达139.2mL/g;混合发酵渗滤液回流可有效降低总挥发性脂肪酸(total volatile fatty acids,TVFAs)质量浓度(维持在0.66 mg/g),累积VS产甲烷量比分层接种低16.7%;猪粪秸秆混合发酵与猪粪单独发酵的反应器中TVFAs质量浓度分别达到19.08和19.83 mg/g,前15 d日产甲烷量为0.1 mL/(g·d),基本不产气。通过不同工艺措施对比,获得产气量最高和启动期最快的发酵方式,提高猪粪厌氧干发酵产气效率,为猪粪等高固体含量有机废弃物的资源化处理利用提供参考。  相似文献   

2.
接种物与猪粪秸秆比对初次启动固体酸化过程的影响   总被引:1,自引:1,他引:0  
为优化猪粪和秸秆混合物固体酸化的启动条件,该研究分别以碳氮比为11.9、16.0、17.8和22.2的猪粪、秸秆混合物为原料,消化污泥和活性污泥为接种菌,研究厌氧消化反应启动时污泥种类和碳氮比对固体酸化过程的影响,以探索适于初次启动的产酸相的接种菌和混合比例.结果表明:与消化污泥相比,活性污泥具有较高的降解性能和产酸能力;活性污泥接种条件下,在试验碳氮比范国内,以碳氮比为17.8混合物为原料时,有机酸质量浓度可达14g/L,乙酸、丙酸的质量分数分别在50%和20%左右,挥发性固体降解率达23%,表现出较佳的水解和酸化性能,可以满足初次启动的产酸相的要求.  相似文献   

3.
猪粪秸秆不同物料比对固体产酸发酵效果的影响   总被引:3,自引:2,他引:1  
在沼液回流的条件下,研究猪粪和秸秆固体产酸发酵过程中,不同原料配比(猪粪与秸秆质量比分别为4︰1、2︰1、1︰1、1︰3和0︰1即纯秸秆)对产酸发酵效果的影响。试验结果表明:增加发酵原料猪粪比例有利于调节发酵体系pH值,但酸化液中氨氮质量浓度较高;沼液回流能有效避免体系过酸现象;上述不同原料质量配比产酸发酵产物以乙酸为主,试验周期内,累积产乙酸质量分别占各反应器挥发性脂肪酸(VFAs)总质量的80.8%、81.8%、77.1%、78.3%和73.8%,酸化液中丙酸质量浓度均低于1.6 g/L,累积产生质量分别占各反应器VFAs总质量的4.8%、2.8%、7.2%、6.5%和8.4%。综合分析表明,猪粪与秸秆比为2︰1时,发酵过程中产酸效果优于其他配比试验。  相似文献   

4.
餐厨垃圾与污泥高固体联合厌氧产沼气的特性   总被引:8,自引:3,他引:5  
该文在12%高固体质量分数和中温(35±1)℃条件下,开展了餐厨垃圾与污泥不同比例联合厌氧发酵对产气性能及发酵过程限速步骤影响的研究。结果表明,当餐厨垃圾与污泥二者比例为30∶30时,累积沼气产率、累积甲烷产率、生物转化产甲烷效率和VS(挥发性固体)去除率分别为612、327 mL/g、76.9%和63.6%,皆高于其他原料比例。混合底物中餐厨垃圾为主时,发酵前5 d为产气高峰阶段,甲烷含量在整个发酵期间低于60%,挥发性脂肪酸(VFAs)抑制显著;而混合底物中污泥所占比例较高时,产气的高峰期多出现在第10~25 d,甲烷含量于发酵前5 d迅速上升至50%后,缓慢提高并最终稳定在70%左右。混合底物中污泥所占比例的增加可提升沼气中甲烷含量,亦可明显缓解VFAs抑制作用。累积沼气产率随污泥比例的提高呈先上升后下降的变化。  相似文献   

5.
接种物耐酸驯化对菌糠厌氧干发酵产气的影响   总被引:2,自引:1,他引:1  
为了提高厌氧干发酵体系运行稳定性,使中间产物酸及时转化为甲烷,避免出现酸抑制现象,该研究采用逐步提高乙酸浓度降低pH值的方式对接种物进行驯化,得到了在乙酸浓度10200mg/kg、pH值6.0条件下仍能快速产气的耐酸接种物,并以易水解酸化的菌糠为原料进行了厌氧干发酵试验。结果表明,驯化过程中产甲烷古菌类群的多样性下降,乙酸营养型甲烷八叠球菌丰度大幅提高,乙酸转化率和甲烷浓度逐渐提高;耐酸接种物的脱氢酶活性下降,辅酶F420和纤维素酶活性升高;添加耐酸接种物可以加快菌糠厌氧干发酵启动速度,避免酸抑制现象的发生;接种物含有75%耐酸接种物的试验组甲烷产量提高了56.1%。该研究成果能够为有效解决厌氧干发酵过程酸抑制现象提供一定的理论指导。  相似文献   

6.
不同有机负荷下混合蔬菜废物厌氧消化性能分析   总被引:1,自引:0,他引:1  
为优化蔬菜废物厌氧消化工艺,提高蔬菜废物厌氧消化处理效率,该文以混合蔬菜废物为原料,通过逐级提高厌氧反应的有机负荷,分析研究了蔬菜废物在不同有机负荷下的厌氧消化性能及相应的物质转化规律。试验在有机负荷率OLR 1.0、1.5、1.75、2.0、2.25、2.5、3.0、3.25、3.5 g/(L·d)条件下共运行170 d。研究结果表明:最优有机负荷率为2.75 g/(L·d),极限有机负荷率为3.5 g/(L·d);在2.75 g/(L·d)条件下有机负荷产气率达到最高,达到0.54 L/(g/(L·d)),甲烷体积分数稳定在51%~59%。有机负荷2.75和3.0 g/(L·d)条件下挥发性固体去除率最高达66.81%。有机负荷率在1.0~3.25 g/(L·d)时,挥发性有机酸质量浓度在409~481 mg/L,乙醇浓度在380~490 mg/L,属乙醇型发酵。该研究结果可为提高蔬菜废物厌氧消化处理效率提供理论依据,具有重要意义。  相似文献   

7.
稻草与鸡粪配比对混合厌氧消化产气率的影响   总被引:9,自引:5,他引:4  
为获得稻草与鸡粪混合厌氧消化较佳的原料配比,以稻草和鸡粪为原料,在初始挥发性固体(VS)负荷为6%和中温(37℃)条件下,考察不同的稻草与鸡粪VS配比(0:1、1:2、1:1、2:1、1:0)对混合厌氧消化过程的影响。结果表明,不同配比条件下厌氧消化均没有出现挥发性有机酸或氨氮抑制,整个发酵过程的pH值稳定在6.8~8.2;与稻草和鸡粪单独厌氧消化相比,混合厌氧消化能够显著提高原料产气率;在稻草与鸡粪VS比分别为0:1、1:2、1:1、2:1、1:0时,实际挥发性固体甲烷产率分别为212.43、240.45、250.28、206.09和178.03mL/g,实际平均甲烷体积分数分别为58.8%、50.5%、50.8%、49.2%和50.1%;C/N在11.2~47.5,甲烷产率和沼气产率的实际值与理论值之比(Ya/Ym)呈现先上升后下降趋势,在C/N为17.8时,Ya/Ym达最大值。在中温厌氧消化工程应用中,建议稻草与鸡粪VS比为1:1,或控制配比后混合原料的C/N约为17.8,设计发酵停留时间为23d,挥发性固体产气率为446mL/g。  相似文献   

8.
猪粪与马铃薯皮渣混合厌氧发酵产氢特性   总被引:4,自引:0,他引:4  
刘爽  李文哲 《农业工程学报》2012,28(16):197-202
为了提高厌氧产氢菌利用复杂物料的产氢能力和稳定性,该文研究了猪粪与马铃薯皮渣混合质量比对厌氧发酵产氢的比产氢率、挥发性固体去除率、液相末端产物组成等发酵特性的影响。试验结果表明,底物组成显著影响产氢发酵的发酵类型。以单纯马铃薯皮渣为底物时,体系的比产氢率最高达31.55mL/g,挥发性固体去除率为29.43%,发酵类型为丁酸型;当猪粪在发酵底物中的质量比从10:70提高至40:40后,体系的发酵类型由丁酸型转变为乙酸型,同时维持了较高的比产氢率(22.48~24.18mL/g)和挥发性固体去除率(28.31%~32.93%)。但是当猪粪逐渐变为主要发酵底物(猪粪与马铃薯皮渣质量比为50:30、60:20、70:10、80:0)时,发酵逐渐受到抑制,系统的比产氢率和挥发性固体去除率都明显下降。采用Modified Gompertz模型可以很好地拟合累积产氢量随时间的变化,其动力学参数最大产氢量、最大产氢速率和停滞时间可以作为混合物料产氢发酵代谢过程的重要评价指标。该研究为优化混合物料厌氧产氢发酵过程提供参考和依据。  相似文献   

9.
采用不同浓度的乙酸和丙酸在中高温下进行厌氧发酵批次试验,采用修正的Gompertz模型和产甲烷的一级动力学模型分析,研究酸浓度和温度对发酵产气动力学的影响。研究表明,当乙酸和丙酸浓度较低时降解较快,高浓度酸抑制产气。乙酸在中温条件下降解较快,质量浓度为5 000 mg/L时中温反应有最大产甲烷速率101 mL/d;质量浓度为10 000 mg/L时高温条件下有最大产甲烷速率77 mL/d,随酸浓度增加,最大产甲烷速率减小,高温反应器对酸的耐受度较高。丙酸在高温条件下更易降解,浓度为4 000 mg/L时,中高温反应均有最大产气速率:78 mL/d(中温)和96 mL/d(高温)。另外,高浓度乙酸和丙酸厌氧降解产气具有滞后性,且随酸浓度的增加滞后期延长,降解过程受到抑制,一级动力学常数减小。温度对厌氧降解的影响大于酸浓度对厌氧降解的影响。  相似文献   

10.
在中温条件下(35℃),研究了稻草中添加猪粪对厌氧消化过程的影响,分析了消化过程中日产气量、累积产气量、甲烷含量、pH、挥发性脂肪酸以及硝态氮和氨态氮的变化。结果表明,将猪粪与稻草混合厌氧消化产沼气可以顺利进行,混合物的Vs产气量为330.14L·kg^-1 VS,沼气中甲烷含量为62.88%,添加猪粪对稻草产气量和有机酸的影响不明显,但对发酵过程中可能出现的酸积累有一定的缓冲作用。添加猪粪可以大幅提高发酵液中NO3-N含量,较稻草的处理提高34.53%,对提高消化液的肥料价值有重要意义。因此,将稻草与猪粪混合厌氧消化产沼气是完全可行的。  相似文献   

11.
厌氧发酵产沼气是中国绿色农业发展过程处理农业废弃物的重要手段,该文以玉米秸秆为研究对象,开展液态、固态厌氧发酵产气性能、微生物系统多样性及演替规律的比较研究,得出如下结论:固态发酵总固体(TS)产气率及甲烷转化率略低于液态发酵,发酵结束后,前者沼液中N、P、C的含量要低于后者;乙酸是两发酵体系挥发性脂肪酸(VFAs)的主要组成,占总VFAs的70%以上。高通量测序结果发现,2个发酵系统中细菌主要以Bacteroidetes、Firmicutes、Proteobacteria、Cloacimonetes、Synergistetes及Verrucomicrobia为主,这6类菌群占总克隆数的80%以上。而Methanosaeta,Methanospirillum,Methanocorpusculum以及Methanoculleus是两系统优势古菌,并且随消化过程的进行,古菌群落呈现由乙酸型向氢营养型转变的趋势。发酵结束后,上述2类古菌在群落中的占比基本持平。对微生物多样性的聚类分析结果显示,在发酵第4天和第8天后,2个系统中细菌与古菌群落结构的差异逐渐明显。进一步分析表明,影响玉米秸秆液态发酵微生态结构的主要环境因子为乙酸,秸秆纤维素水解可能是制约物能转化率的关键过程;总磷(TP)是影响固态发酵系统微生态结构的关键环境因子,而如何增加产甲烷古菌的生物量是提高原料产气率的关键。该研究结果为调控玉米秸秆厌氧发酵过程、提高其生物降解效率提供了科学依据。  相似文献   

12.
该文采用生物反应器模拟生活垃圾填埋降解过程,跟踪测试了垃圾在厌氧消化过程中产甲烷进程及渗滤液特性,并探索两者之间的关系,旨在筛选出可以预测垃圾厌氧消化产甲烷进程的指标。结果表明渗滤液pH值、TOC/TN(total organic carbon/total nitrogen)、乙酸/戊酸(HAc/HVa)的变化对系统产甲烷进程及稳定性有一定的指示作用。消化系统产甲烷初期,渗滤液pH值稳定在5.77~5.91。产甲烷高峰期,渗滤液pH值会迅速升高达到峰值。渗滤液中TOC/TN≥11时,垃圾厌氧发酵系统稳定,产甲烷正常。而当渗滤液中TOC/TN11时,发酵系统因氨积累失稳,产气量小。戊酸在垃圾厌氧消化过程中生成与转化较为活跃,HAc/HVa变化较大且有明显的拐点,拐点处可预测消化系统进入产甲烷期。此外,采用16S r RNA基因标记技术对反应器中3个阶段的垃圾渗滤液样品(水解酸化期A、产甲烷高峰期B、产甲烷末期C)以及试验结束时垃圾样品和覆盖土样品进行群落评估。聚类树分析得出生活垃圾(municipal solid wastes,MSW)样品与渗滤液样品其微生物种类及丰度都较为接近,有较近的亲缘关系,且反应期越长相似度越高。测定渗滤液样品的微生物群落组成可一定程度反映出系统内垃圾的群落结构。覆盖层是系统进行硝化反应的主要场所。垃圾厌氧消化末期,系统中氨积累抑制产甲烷菌活性,是导致系统产甲烷能力下降的主要原因。  相似文献   

13.
为有效提高厌氧发酵过程中乙酸转化率和甲烷产量,将CD-2(Clostridium sordellii)、ZY-3(Clostridium bifermentans)和ZQ-1(Clostridium butyricum)3株利用不同底物的产乙酸菌混合培养,人工构建一个高效产乙酸复合菌系Th3,通过试验确定其最佳发酵条件为:初始pH值为7.0-8.0,按ZQ-1、ZY-3、CD-2顺序接种,CD-2:ZY-3:ZQ-1接种比例(体积比)为1:2:1,总接种量6%,30°C静置培养,乙酸产率达0.65g/(L·d)。经过代谢稳定性测定,Th3连续培养10代,乙酸产量维持稳定。复合菌系Th3应用于室内沼气发酵,(26±1)°C,在发酵初期和中期加入复合菌系Th3均能显著提高沼气日均产气量和产气率,初期添加可缩短发酵启动时间2~3d。在发酵末期加入复合菌剂对整个发酵产气过程没有显著影响。该研究不仅为构建高效微生物菌剂、提高厌氧发酵效率和发酵过程优化提供基础参数,而且表明该复合菌在沼气生产中有一定的应用价值。  相似文献   

14.
为了解接种率及尿素添加量对农村生活垃圾厌氧发酵产甲烷的影响,选取3个水平的接种率(0.3、0.5、1.0)和3个水平的尿素添加量(1%、3%、5%)进行农村生活垃圾厌氧发酵实验。结果表明,在相同尿素添加量的条件下,接种率(0.3~1.0)越高越有利于甲烷产生,同时挥发性脂肪酸降解速率越快;而在相同接种率的条件下,随尿素添加量(1%~5%)的增加,甲烷产量呈先升高后降低的趋势。Gompertz动力学模型拟合结果表明,在接种率为1.0、尿素添加量为3%的条件下,厌氧发酵产甲烷延滞期较短(12 d),70 d累积甲烷产量最高(0.44 L·g~(-1)TS),发酵过程未发生酸化现象。  相似文献   

15.
基于PCR-DGGE技术研究芦苇秸秆氢气-甲烷厌氧联产过程中,细菌微生物群落结构特征和演替规律。结果表明,厌氧联产过程中细菌群落结构分布存在明显的阶段性差异。产氢阶段初期,细菌群落相似性较小,随着厌氧联产的进行,细菌种类逐渐增多并在产氢高峰期保持稳定,群落相似性较高,戴斯系数(Cs)为83.6%(第12、24小时,泳道H3和H4)。产甲烷高峰期Cs值达到87.4%(第210、258小时,泳道M6,M7),群落结构稳定,产甲烷末期Cs值降低至51.5%(第210、432小时,泳道M6,M9)。序列分析表明,Enterobacter aerogenes产气肠杆菌是具有高效产氢潜力的兼性厌氧细菌,Sedimentibacter产氢产乙酸菌是产氢阶段的优势微生物。Clostridium thermocellum嗜热纤维素菌是厌氧联产过程的优势微生物,具有降解纤维素功能,对芦苇秸秆的能源化利用起到重要作用。  相似文献   

16.
为研究产甲烷菌群对秸秆低温厌氧消化的生物强化作用,试研究将长期驯化的低温产甲烷菌群投加至秸秆厌氧消化体系中,对比不同添加剂量(3%、6%、9%、12%、15%和18%)对低温(20℃)批式厌氧消化性能的影响。对产甲烷性能、中间代谢产物进行统计学和动力学分析,评价生物强化效果,确定最佳剂量,结合微生物群落分析揭示生物强化作用机制,结果表明:生物强化可促进秸秆低温厌氧消化,提高甲烷率1.27~2.24倍,促进乙酸和丙酸的降解,避免酸抑制,相比对照组缩短厌氧消化时间(T80)12~19d;动力学分析表明:生物强化可缩短厌氧消化的延滞期;统计学分析表明:强化甲烷产量的最佳剂量为12%,单位质量菌群强化甲烷产量的最佳剂量为6%;微生物群落分析显示生物强化促进低温厌氧消化的主要原因是提高了产甲烷菌Methanothrix和Methanosarcina相对丰度。  相似文献   

17.
利用全自动甲烷潜力测试仪(AMPTSII),通过猪粪中温批式厌氧发酵试验,比较了不同含固率(4%、6%、8%)和接种比(r_(I/S)=1.5、2.0、3.0)对猪粪产气特性的联合影响。结果表明,含固率和接种比对产气速率及累积甲烷产量均有显著影响,且含固率对厌氧消化产气特性的影响大于接种比。在试验研究参数范围内,单位底物累积甲烷产量随接种比的增加而增大,随含固率的提高呈现先增加后减小的趋势,在含固率为6%,接种比为3时,获得最大累积沼气产量和甲烷产量,分别为469.1m L·g~(-1)VS和333.2m L·g~(-1)VS。在本试验研究条件下,含固率越低,接种比越高,越有利于提高日平均产甲烷速率,缩短反应迟滞期。动力学模型参数表明,First-order模型较修正的Gompertz模型能更好地模拟猪粪厌氧发酵产甲烷规律,且在一定程度上,接种比例越大,含固率越高,First-order模型对试验数据的拟合精度越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号