首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 183 毫秒
1.
环境CO2浓度增加对玉米生育生理及产量的影响   总被引:9,自引:0,他引:9  
研究了盆栽玉米在700、600、500和350ppm的CO2浓度处理下,生育、生理及产量形成的动态变化和反应。结果表明,CO2浓度增加促进了玉米的生长和发育,物候期提前,光合速率增大,蒸腾系数减少,加快了根、茎、叶等干物质积累,提高了生物产量和经济产量。实验还表明:从苗期、抽雄、吐丝、乳熟到收获的各生育阶段,CO2浓度对玉米的影响有所不同,以抽雄阶段影响最大;对植株的产量性状影响程度也不一致(穗>茎叶>根),收获指数也随CO2浓度增加而有所提高。此外,CO2浓度增加还可增强玉米抗短期高温(>40℃)和低光(常量的1/2)胁迫的能力。  相似文献   

2.
黄淮地区涝渍胁迫影响夏玉米生长及产量   总被引:8,自引:2,他引:6  
在黄淮平原,夏玉米常因降水过多遭受涝渍害而减产,确定其能忍受的涝渍胁迫天数,可为该区减轻涝渍引起的夏玉米产量损失和农业生产防灾减灾管理提供依据。该研究在田间条件下以玉米品种浚单20为试验材料,分别于玉米拔节期和抽雄期设置持续淹水(3和5 d)和渍水(5、7和10 d)处理,旨在研究黄淮地区夏玉米拔节期和抽雄期持续涝渍胁迫对其生长及产量的影响。结果表明:玉米拔节期连续淹水3 d或拔节期、抽雄期连续渍水5 d夏玉米产量开始降低,产量损失率随涝渍时间延长而增加:拔节期淹水3 d、抽雄期淹水5 d,其产量损失率分别为28.4%和42.8%;拔节期或抽雄期渍水5 d的产量损失分别为13.8%和5.5%(2011年)和3.0%和3.4%(2012年);拔节期淹水5 d产量损失是淹水3 d的3.1倍;拔节期或抽雄期渍水10 d产量损失分别为渍水5 d的1.3和3.0倍(2011年)、2.4和3.2倍(2012年)。淹水天数相同时,拔节期淹水产量损失率大于抽雄期淹水。所有淹水处理都会降低每平方米有效株数,而抽雄期淹水5 d还影响秃尖比,拔节期淹水5 d影响所有测定指标如收获指数、果穗性状等。不同于淹水处理,所有渍水处理都不影响每平方米有效株数,但影响果穗长和秃尖比、收获指数(抽雄期渍水5 d除外)。涝渍胁迫的后续影响与胁迫生育期、及涝渍天数有关,如抽雄期淹水3~5 d和抽雄期渍水5 d只影响乳熟期地上部分干质量累积,而抽雄期渍水7 d会影响所有生育期干质量累积。拔节期淹水5 d和渍水10 d使玉米后期(吐丝后25~35 d)灌浆速度降低59.6%和28.9%。因此在玉米实际生产中出现连续强降水天气时,建议尽快采取排涝降渍措施减少以避免玉米拔节期连续淹水3 d或抽雄期连续渍水5 d,从而降低涝渍胁迫对玉米生长及产量的影响。  相似文献   

3.
施氮对不同基因型夏玉米干物质累积转移的影响   总被引:17,自引:4,他引:13  
在黄土高原南部的红油土上,以陕单16、陕单9号、户单4号、陕资1号、掖单19号、中单2号、豫玉22号、陕单902号、农大108号和户单2000等10个当地常用的夏玉米品种为试材进行田间试验;在低氮(0 kg/hm2)和高氮(240 kg/hm2)水平下研究了不同夏玉米品种在子粒灌浆成熟期间干物质累积、转移及分配规律的差异。结果表明,夏玉米干物质累积及其转移效率受品种与氮素调控共同影响。不论施氮与否,各器官干物质量在不同品种间差异显著,施氮能明显提高各器官的干物质量,且其提高幅度因品种不同而明显差异。各个器官的干物质转移量、干物质转移效率和转移量对子粒的贡献率因品种和施氮量不同而异。不施氮处理下叶和茎转移量最大的是户单2000,转移量分别达到53.2和28.2 g/株,叶转移量最小的是中单2号,茎转移量最小的是陕资1号;施氮后叶转移量最高的是掖单19号,转移量分别达到54.7 g/株,茎转移量最高的是中单2号,转移量为52.4 g/株。不施氮处理下,除豫玉22号和陕资1号外,其它品种子粒干物质中50%以上来自于开花前期储存同化物的再转移;施氮后则所有品种的子粒干物质中50%以上均来自于开花前期储存同化物的再转移。干物质转移量对子粒的贡献率不施氮处理下穗部(苞叶和穗轴)大多数为负值,施氮后则为正值。对子粒的建成,叶干物质转移量贡献最大,其次为茎,穗部(穗轴和苞叶)最小。总体来说,干物质转移量、干物质转移率和干物质转移量对粒重的贡献率在不同品种间的差异大于施氮处理间的差异,施氮后的转移因品种而异。  相似文献   

4.
针对如何利用作物生长模型定量解析区域夏玉米生物量动态变化的热点问题,该文在沿东海岸的江苏省盐城市大丰区设置大田夏玉米生物量估测试验,在构建夏玉米生物量过程模拟模型的基础上,对夏玉米多个生育阶段的生物量(指地上部生物量)及其变化特征进行分析,并结合试验实测数据探讨利用实测叶面积指数和生物量数据调整生物量模拟模型参数的可行性。结果表明:夏玉米生物量过程模拟模型可以对夏玉米从出苗到灌浆期间的多个生育阶段生物量动态变化进行估测。出苗到拔节前的生长阶段,生物量积累主要来源于叶片形成,模拟模型可以对生物量进行有效预测,预测值与实测值之间的均方根差(root mean square error,RMSE)为18.31 kg/hm~2,相对误差为3.35%。拔节到抽雄前的生长阶段,由于茎节伸长与节数增加,生物量积累加快,预测值与实测值之间的差异较大。拔节初期生物量预测值为535.5 kg/hm~2,实测值为480 kg/hm~2,相对误差11.56%。抽雄前生物量预测值为7 036.46 kg/hm~2,实测值为5 794 kg/hm~2,相对误差21.44%。拔节到抽雄前生长阶段预测值与实测值之间的RMSE为825.94 kg/hm~2。经过模型参数调整,抽雄前生物量预测值为6 036 kg/hm~2,与实测值较为接近,RMSE为219.43 kg/hm~2,相对误差4.18%。利用参数调整后的模拟模型继续对抽雄到灌浆前生长期间生物量进行预测,预测值与实测值较为一致,灌浆期生物量预测值为11 156 kg/hm~2,实测值为10 785 kg/hm~2,相对误差3.44%,而参数调整前预测值为12 492 kg/hm~2,相对误差15.83%。在玉米拔节期进行模型参数调整,对拔节到抽雄和抽雄到灌浆2生长阶段的生物量预测效果较好。该研究可为县域夏玉米不同生长阶段生物量及其动态变化预测提供参考,可辅助县域农业管理部门进行适时生产措施调整。  相似文献   

5.
干旱对夏玉米碳素同化、运转与分配的影响研究   总被引:11,自引:0,他引:11  
试验研究全生育期干旱对夏玉米光合特性及C素同化、运转及分配的影响结果表明,水分胁迫对夏玉米各生育期C素代谢的自身规律影响较小,主要是改变C素同化、运转、分配的绝对量和分配率。水分胁迫下夏玉米干物质及其各器官干物质累积速率降低,总量减少,且不同器官干物质转移率、转移量及其对雌穗重的贡献发生改变,叶面积系数、叶绿素含量和光合速率减少,分配、转移到生殖器官的同化物减少。充分供水处理具有最大的干物质累积量和正常的C素代谢,合理的水分供应促进玉米植株生育前期总生物量的积累以及生育后期干物质从营养体向籽粒的转移,成熟期营养器官中的非结构性碳水化合物滞留少,向籽粒中的运转彻底,可获得较高籽粒产量。  相似文献   

6.
种植密度对川中丘陵夏玉米茎秆性状及产量的影响   总被引:9,自引:2,他引:7  
以玉米品种‘正红505’为材料,设置4.50万株·hm~(-2)、5.25万株·hm~(-2)、6.00万株·hm~(-2)、6.75万株·hm~(-2)、7.50万株·hm~(-2) 5个密度处理,研究种植密度对川中丘陵夏玉米茎秆性状及产量的影响。结果表明:随种植密度的增加,株高、穗位高、节间长、茎节长粗比逐渐增加,茎粗、茎粗系数、节间干重、单位茎长干物质重、茎秆压碎强度和外皮穿刺强度逐渐减小,除穗位高外,其余各性状均存在显著性差异;其中,当种植密度增加到7.50万株·hm~(-2)时,第1、3、5茎节的外皮穿刺强度分别较4.50万株·hm~(-2)显著降低27.10%、22.78%和30.80%。在本试验设置的密度范围内,玉米产量随密度的增加而先增后减,在6.00万株·hm~(-2)处获得最大值,与4.50万株·hm~(-2)相比,6.00万株·hm~(-2)显著增产12.02%。随种植密度增加,玉米穗长、穗粗、成穗率、穗粒数和千粒重显著降低,有效穗数和秃尖长显著增加。相关分析表明,茎秆压碎强度与外皮穿刺强度呈极显著正相关(r=0.93**),且茎秆压碎强度和外皮穿刺强度分别与茎粗、茎粗系数、节间粗、节间干重和单位茎长干物质重呈显著或极显著正相关,而与株高、节间长和茎节长粗比呈负相关或极显著负相关。其中,茎秆农艺性状与茎秆压碎强度的相关性更好。单株产量与茎粗、茎粗系数、节间粗、节间干重、单位茎长干物质重、茎秆压碎强度和外皮穿刺强度呈显著或极显著正相关,与节间长和茎节长粗比呈显著负相关。逐步回归分析表明,茎粗系数和单位茎长干物质重对茎秆压碎强度的影响最大。综上所述,种植密度是影响玉米茎秆性状和产量的重要因素,适当增加种植密度可以显著增加玉米群体产量,茎粗系数和单位茎长干物质重可以作为评价玉米茎秆抗倒伏能力的重要农艺指标。  相似文献   

7.
干旱对玉米穗发育及产量的影响   总被引:6,自引:2,他引:6  
干旱作为影响玉米产量的环境因素之首,对玉米植株形态、物质积累、生理作用、性器官发育等方面产生影响,最终降低穗粒数、粒重,导致产量降低。以雌雄穗发育为研究重点,本文综述了不同时期干旱对雌雄穗性状及开花吐丝间隔期的影响。玉米开花前遭遇干旱,延缓雌雄穗发育进程,减少分化小花数,增加籽粒败育,导致穗粒数降低;抽雄吐丝期间遭遇干旱,导致雄穗抽出困难、吐丝延迟,使开花吐丝间隔期拉长,严重时导致花粉、花丝超微结构发生改变,影响玉米授粉、受精过程,最终导致秃尖形成,穗粒数降低;灌浆期遭遇干旱导致叶片早衰,光合产物积累不足,籽粒灌浆受阻,粒重降低,最终均会导致产量下降。从源库关系角度分析,玉米灌浆期前干旱导致玉米产量降低的主要原因是穗粒数降低导致的库强不足;而灌浆期干旱主要是叶片早衰等营养器官发育受阻,限制同化物的积累及转运,此时源不足限制了产量的增加。  相似文献   

8.
基于改进最大值法合成NDVI的夏玉米物候期遥感监测   总被引:6,自引:2,他引:4  
利用遥感技术监测农作物物候期,能够及时有效地评估作物生长趋势、提高农情信息化管理水平。本研究利用2016年MODIS 8天合成数据,提出改进的最大值合成法,结合S-G滤波和Logistic函数拟合重构夏玉米生长曲线,最后利用曲率法提取夏玉米的拔节期和成熟期,利用动态阈值法提取夏玉米的出苗期和抽雄期。结果表明:采用本文提取的夏玉米物候期与实测物候期相比,平均误差为2.76 d,其中在抽雄期的绝对误差为1.06 d,运用改进的最大值合成提取作物NDVI时序数据可有效去除连续云雾对植被指数的影响,提高监测作物物候期的准确性,为精准农业提供技术支撑。  相似文献   

9.
不同生育期积水对夏玉米生长和产量的影响试验   总被引:10,自引:0,他引:10  
通过对拔节期和抽雄期田间不同积水深度和积水时间的试验,模拟研究夏玉米对不同洪涝灾害程度的耐受力和洪涝灾害对产量构成因素及最终产量的影响。结果表明:积水对夏玉米密度、绿叶数、果穗长、果穗粗和实产的影响较明显,而对发育期出现早晚和百粒重的影响不明显。拔节期积水5d以上,抽雄期积水7d以上,夏玉米基本绝收。玉米苗越小,耐洪涝的能力越弱。  相似文献   

10.
水肥配合对夏玉米养分吸收及根系活性的影响   总被引:6,自引:0,他引:6  
研究不同水肥条件对夏玉米养分吸收及根系活性的影响,解释水肥配合下夏玉米养分吸收规律和根系活跃吸收面积的变化特征。采用管栽试验,研究不同水肥条件对夏玉米不同生育期养分积累特征和根系吸收面积的影响。夏玉米干物质积累量与植株全量N、K的积累量变化趋势基本一致,植株内全量N、K积累量以拔节-大喇叭口阶段最多,P素积累主要集中于抽雄-成熟阶段。不同生育期根系活跃吸收面积与总吸收面积变化均呈单峰式曲线,峰值分别出现在大喇叭口期和抽雄期。在玉米生长季水肥充足条件下,根系活跃吸收面积对植物体内干物质和养分的积累起主导作用。施肥促进了根系活跃吸收能力,养分吸收积累量增多;生育期灌水也能促进根系生长和对养分的吸收。不同生育时期均以W2F1处理的干物质量和N、P、K积累量最高。  相似文献   

11.
本研究采用田间小区的试验方法研究了不同氮、磷、钾用量下玉米各组分的干物质积累及其随时间的动态变化规律。结果表明,不同氮、磷、钾肥用量下玉米的各组分干物质积累随生育期的延续呈现有规律的动态变化:叶片、茎秆、营养体干物质积累自拔节期后呈直线上升,至灌浆期干物质积累达到最大值,之后便呈缓慢下降趋势;籽粒的干物质积累在灌浆期之前缓慢增加,之后呈直线上升;总生物产量在苗期缓慢增长,中期呈直线上升,到了后期由于营养体干物质的下降以及籽粒干物质的显著上升,也稳定增长。营养体、籽粒干物质和总生物产量的积累随时间的动态变化,均可用Logistic方程Y=a/(1+bexp(ct))来描述;在各个氮、磷、钾处理中,以N240、P225、K240处理各组分干物质积累最大速率较大,出现日期较早。籽粒和总生物产量之间的关系可用回归方程Y=exp(a+bx)描述。在氮、磷、钾各用量下,氮以N240、磷以P225、钾以K240处理籽粒产量最高,收获系数最大,因此比较适宜的N、P2O5、K2O用量分别为240、150、240 kg hm-2。  相似文献   

12.
  【目的】  适宜的水氮管理是提高关中平原夏玉米产量的关键。研究水、氮减量及其交互作用对夏玉米养分积累和转运以及氮素利用的影响,为关中平原夏玉米高产高效栽培提供理论依据。  【方法】  于2018—2019年,在陕西杨凌设置水、氮二因素裂区田间试验。3个灌溉处理为传统灌水量800 m3/hm2 (W2)、减量50%灌水 (400 m3/hm2,W1)和无灌溉(W0)。每个灌溉量下设传统施氮量的100% (300 kg/hm2, N300)、–25% (225 kg/hm2, N225)、–50% (150 kg/hm2, N150)、–75% (75 kg/hm2, N75)和不施氮(N0) 5个水平,W2N300为传统水氮管理模式对照。分析夏玉米籽粒产量、氮磷钾养分积累与转运特征,计算氮肥利用效率。  【结果】  与W2N300相比,W2N225、W1N225、W1N150处理的夏玉米产量和产量构成因素无显著差异。W1N225显著提高了玉米抽雄后干物质积累,显著提高了玉米抽雄后氮、磷、钾养分积累和所占比例,W2N225、W1N300则与W2N300无显著差异。与W2N300相比,W1N225处理可以显著提高干物质和氮磷钾养分转运量,分别比W2N300处理的干物质和氮磷钾转运量提高了11.67%、16.28%、19.80%、18.95%。相关分析结果表明,玉米抽雄前后氮、磷、钾素积累量与籽粒产量均呈显著或极显著正相关,且抽雄后的氮、磷、钾积累量与产量的相关性高于抽雄前。  【结论】  在传统灌水量和施氮量基础上,减少50% 的灌水量,减少25%的氮素投入量可显著提高玉米抽雄后养分积累,促进养分转运量和抽雄后转运养分对籽粒贡献率的协同提高,进而提高了玉米产量和氮肥利用效率。综合考虑夏玉米产量,氮、磷、钾养分积累与其转运特征以及氮素利用效率等因素,在关中平原灌溉区,以灌水减量50% (即400 m3/hm2)、施氮减少25% (即 225 kg/hm2)的模式较为适宜。  相似文献   

13.
不同灌溉处理对夏玉米氮素吸收及转移的影响   总被引:5,自引:1,他引:4  
通过田间试验, 研究了两个生长季夏玉米4 个不同水分处理(灌溉1 水、灌溉2 水、灌溉3 水、灌溉4 水)对其各个生育阶段氮素吸收、分配、转移的影响。结果表明, 拔节抽雄期灌水可以增加夏玉米茎叶的氮素积累量和氮分配比, 生育后期灌水各处理之间单株氮素积累量无显著差异; 穗部的氮素积累75%来源于扬花后期氮素同化吸收, 25%来自营养器官茎叶的氮素转移, 说明灌浆至成熟期穗部氮素主要吸收利用土壤中的氮, 充足的水分可以保证营养器官积累更多的氮素, 但后期同化氮素比率随着灌水的增加而减小。因此, 灌浆至成熟期需要维持适中的水分条件, 在保证吸收利用土壤氮素的同时, 增加储存在茎叶中的氮素向籽粒的转移, 从而提高氮素利用效率。  相似文献   

14.
以“浚单29”夏玉米为试验材料,于2014年和2015年在山东泰安农业气象试验站进行3个播期的播种试验,3个播期分别为6月5日(M−10处理)、6月15日(M处理)和6月25日(M+10处理),分析播期对夏玉米生育阶段、籽粒脱水过程和干物质积累以及产量的影响。结果表明:随着播期的推迟,夏玉米全生育期持续时间缩短,其中抽雄−成熟期的变化幅度最大,M−10处理较M和M+10处理缩短了7~10d。提前播期(M−10)下,夏玉米的籽粒含水率、籽粒干物重均高于晚播,生理成熟前早播的夏玉米比晚播处理脱水慢,而生理成熟后早播的夏玉米比晚播脱水快。不同播期使夏玉米处于不同的气象条件下,显著影响了产量及产量构成因素。与当地常年正常播期(6月15日)相比,播期提前(M−10处理)增加夏玉米百粒重和收获指数,减少秃尖比;与晚播(6月25日)相比,提前播期下夏玉米穗粒数显著提高4.5%(2014年)和7.8%(2015年),百粒重显著提高12.3%(2014年)和16.8%(2015年),秃尖比显著降低21.4%(2014年)和12.5%(2015年),可见,播期越晚,产量越低。因此,夏玉米“浚单29”在黄淮海地区可以适当早播,而播种过迟容易导致生育期延后,易遭遇低温,严重影响产量。  相似文献   

15.
关中平原夏玉米临界磷浓度稀释曲线构建与磷营养诊断   总被引:1,自引:1,他引:0  
  【目的】  通过分析不同施磷水平下夏玉米地上部生物量与其植株磷浓度的变化关系,构建临界磷浓度稀释曲线模型,为夏玉米磷素优化管理及磷营养诊断提供理论基础。  【方法】  2019—2020年在陕西关中平原,以两个玉米品种郑单958和豫玉22为试验材料进行田间定位试验。共设4个施磷量处理 (P2O5):0、60、120、180 kg/hm2。在夏玉米拔节期、抽雄期、灌浆期和成熟期进行地上部取样,分析夏玉米地上部干物质量、全磷含量以及产量。利用2019年试验数据构建夏玉米临界磷浓度稀释曲线模型和磷素营养指数,利用2020年数据对模型进行验证。  【结果】  增施磷肥能显著提高夏玉米产量、地上部生物量和植株磷浓度,两个品种之间没有显著差异。随施磷水平的提高,夏玉米产量表现为先增加后减少,P120处理可获得最高产量,产量效应方程显示两年两个品种夏玉米平均理论最高产量对应的施磷量为110.2 kg/hm2。由产量构成要素看出,施磷对穗数没有显著影响,但能显著提高穗粒数和百粒重,且施磷对玉米穗粒数的影响大于对百粒重的影响。地上部生物量表现为P0c) 变化曲线:Pc = 8.11DM?0.22 (R2 = 0.886)。模型拟合的植株磷浓度和2020年玉米实际磷浓度线性相关,稀释曲线模型的RMSE和n-RMSE分别为1.146和18.23%,说明模型具有较好的稳定性。基于临界磷浓度稀释曲线计算磷营养指数 (PNI),各生育时期PNI值随磷肥用量增加而增大,随生育进程推进呈现先升高后降低趋势。PNI与相对吸磷量 (RPupt)、相对地上部生物量 (RDW) 和相对产量 (RY) 均呈极显著相关。  【结论】  本研究建立的夏玉米临界磷浓度稀释曲线和磷营养指数 (PNI)模型能够很好地预测植株不同生育时期的磷素盈亏状况,对指导夏玉米生长季磷素营养诊断及最佳磷肥施用量具有可行性。  相似文献   

16.
为了探讨干物质生产及分配模型在西北地区温室环境不同水分处理的使用性,以番茄为材料,于2013-2015年在陕西省杨凌区温室内进行亏水处理试验,设置全生育期充分灌水处理、仅苗期亏水50%处理、苗期开花期连续亏水50%和全部亏水50%共4种水分处理,通过2013-2014年温室试验分析不同水分处理条件下番茄茎、叶、果实和根系的动态变化,建立了基于番茄耗水量、地上部和根系分配指数、地上部各器官分配指数的番茄干物质生产及分配模型;利用2014-2015年试验数据对干物质生产及分配模型进行验证。结果表明,利用累积辐热积与干物质总量进行拟合得到的关系式,可以利用累积辐热积较为准确地模拟不同水分处理下番茄干物质总量。番茄干物质总量受累积辐热积和水分影响较大,而干物质总量在地上部、根系及地上部各器官的分配指数只随辐热积变化,不随灌水量发生显著的变化。运用番茄耗水量、累积辐热积、经验公式和经验系数得到的干物质生产及分配模型,通过该模型估算不同水分处理番茄茎、叶、果实和根系干物质的预测值和实测值拟合度较高,其绝对误差为0.24~9.46 g/株,均方根误差为0.35~10.01 g/株和决定系数为0.78~0.89,可以用该模型预测肥料充分条件下各水分处理温室番茄各器官的干物质生产及分配,为温室番茄不同水分条件下番茄生产提供理论依据。  相似文献   

17.
秸秆还田与氮肥施用对夏玉米物质生产的影响研究   总被引:22,自引:1,他引:22       下载免费PDF全文
试验研究秸秆还田与N肥施用对夏玉米干物质生产的影响结果表明,秸秆还田与N肥施用对夏玉米干物质生产有促进作用,且在一定程度上延缓夏玉米叶片衰老,延长叶片功能期,并促进夏玉米干物质由茎秆向籽粒的转运。  相似文献   

18.
综合农艺管理提高夏玉米产量和养分利用效率的潜力   总被引:2,自引:2,他引:0  
【目的】综合农艺管理影响夏玉米的生长、产量形成和氮磷钾的高效利用。本文从夏玉米种植密度、播期、收获期和施肥几个方面,在优化管理基础上进一步进行了优化,为实现产量和养分利用效率协同提高提供理论依据和科学指导。【方法】试验于2013—2017年在山东农业大学作物生物学国家重点实验室和泰安市大汶口进行,以玉米杂交种郑单958为试验材料,进行了随机区组田间试验。试验设置4个处理:常规对照采用秸秆覆盖,免耕 (CK);优化处理 (Opt-1),在CK基础上,增加种植密度,延迟收获,减少施氮量并增加施肥次数;最高产量管理模式 (HY),基于高产创建经验,实现当地最大田间产量;在优化处理 (Opt-2),在HY基础上,降低种植密度和施氮量,以期实现产量效率协同提高。后三个处理的耕作方式均为秸秆还田,浅旋耕。测定夏玉米产量、干物质重和氮磷钾利用效率等指标。【结果】所有测定指标五年试验处理间差异趋势一致、稳定,显示了综合农艺措施对产量影响的稳定性。与CK和Opt-1相比,Opt-2处理产量分别提高了27.6%~37.9%和19.2%~31.9%;抽雄期干物质重分别提高了22.8%~25.0%和13.2%~20.3%;成熟期干物质重分别提高了24.0%~31.9%和8.2%~16.4%。Opt-2处理花前干物质转运效率和贡献率显著低于Opt-1和HY处理,但花后积累量较CK和Opt-1处理提高了28.7%~36.8%,且与HY处理无显著差异。Opt-2处理的籽粒氮、磷和钾积累量分别为146.0~171.4 kg/hm2、75.6~92.7 kg/hm2和40.0~43.8 kg/hm2,氮积累量分别比CK和Opt-1高20.5%~68.4%和12.5%~29.2%,但是比HY处理低13.2%~19.0%;磷积累量显著高于其他处理;钾积累量分别比CK和Opt-1处理高38.4%~58.9%和16.3%~32.6%。Opt-2处理的平均氮肥偏生产力分别比CK和HY处理高62.0%和125.2%,磷肥偏生产力表现相似趋势;Opt-2处理的平均钾肥偏生产力较CK和Opt-1处理下降了64.0%~66.8%。【结论】在播期和收获期不变的前提下,再优化模式通过增加种植密度10%,氮肥用量增加15%,由一次追施改为两次,显著增加了夏玉米整个生育期干物质和氮磷钾养分积累量,特别是增加了花后干物质积累量,增产27.6%~37.9%,氮、磷肥效率提高47.5%~67.6%,实现了产量和肥料效率的协同提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号