首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diphenylamine metabolism and ethylene action were evaluated as factors influencing the development of 'Braeburn' apple internal browning and cavitation during cold storage. Apples treated with the antioxidant diphenylamine (DPA) and/or the ethylene action inhibitor 1-methylcyclopropene (1-MCP) were held at 1 degrees C for up to 6 months in air or a controlled atmosphere (CA) containing 1 kPa of O2 and 3 kPa of CO2. Cortex tissues from fruit without disorders as well as from symptomatic and asymptomatic areas of fruit with disorders were analyzed for DPA and DPA derivative content. Internal browning and cavities developed in control and 1-MCP-treated fruit stored in CA, whereas air-stored and CA fruit treated with DPA or with DPA and 1-MCP prior to storage did not develop disorders. Depending on the storage regimen and duration, less DPA was detected in 1-MCP-treated fruit. The 4-hydroxydiphenylamine (4OHDPA) content of control fruit decreased during air storage duration but increased between 2 and 4 months in CA storage. 4OHDPA content in 1-MCP-treated fruit increased with storage duration in CA but not air. N-Nitrosodiphenylamine (NODPA) was detected after 2 months in control fruit stored in air or CA and in 1-MCP-treated fruit stored in CA, and NODPA content in control fruit was higher compared to that in 1-MCP-treated fruit. Accumulation of 4-methoxydiphenylamine (4MeODPA) in control fruit stored in air increased with storage duration, but 4MeODPA content did not change in 1-MCP-treated fruit stored in air or CA. 2-Nitrodiphenylamine content was reduced by prestorage treatment with 1-MCP, but storage environment and duration had no effect on its accumulation. The results indicate that CA storage increases the risk of disorder development in 'Braeburn' apples, that DPA can prevent disorder development, and that the content of DPA and DPA derivatives is influenced by storage environment and ethylene action. A clear relationship between DPA derivative formation and storage conditions that promote internal browning was not apparent.  相似文献   

2.
d'Anjou cv. pear fruit (Pyrus communis L.) exposed at harvest to 0, 0.42, 4.2, or 42 micromol m(-)(3) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C were stored at 1 degrees C for up to 8 months. After storage, half of the fruit was continuously exposed to ethylene (0.45 or 4-18 mmol m(-)(3)) for 7 days at 20 degrees C. All fruit treated with 1-MCP had lower respiration and ethylene production compared to untreated controls. Fruit quality changes were delayed following 1-MCP treatment, as was development of superficial scald and peel yellowing. The duration of 1-MCP-induced responses was dependent on 1-MCP treatment concentration. When 1-MCP-treated fruit began to ripen, softening and production of volatile compounds proceeded similar to that of untreated fruit. Post-storage ethylene exposure did not consistently stimulate ripening of fruit previously treated with 1-MCP. Efficacy of ethylene treatment depended on 1-MCP concentration and storage duration.  相似文献   

3.
The emission of volatile compounds by Fuji apples following short- or long-term exposure to high CO(2) was studied. The production of ethanol, methyl and ethyl esters, octanal, nonanal, and decanal was enhanced while the production of C(3)-C(6) alcohols, propyl, butyl, pentyl, and hexyl esters and butanal decreased in fruit exposed to 10 kPa O(2) + 20 kPa CO(2) at 20 degrees C for up to 12 days. The impact of high CO(2) exposure on volatile production was dependent on fruit maturity at harvest. Apples stored for 8 months in an ultralow O(2)-controlled atmosphere (CA) (0.5 kPa O(2) + 0.05 kPa CO(2)) or high CO(2) CA (1.5 kPa O(2) + 3 kPa CO(2)) at 0.5 degrees C had reduced production of most volatiles, especially butyl and hexyl esters, as compared to fruit stored in air. Two exceptions were ethanol and ethyl acetate for which the production was enhanced by both CA regimes. Treatment with the antioxidant diphenylamine prior to storage prevented most of the high CO(2)-induced and ultralow O(2)-induced changes in volatile production. The results of this study do not indicate that changes in volatile production following the exposure of Fuji apples to high CO(2) are causally related to the development of CO(2) injury.  相似文献   

4.
Mondial Gala apples were harvested at commercial maturity and stored at 1 degrees C under either air or controlled atmosphere (CA) conditions (2 kPa O2/2 kPa CO2 and 1 kPa O2/1 kPa CO2), where they remained for 3 or 6 months. Data on emission of selected volatile esters, alcohol precursors, and activity of some aroma-related enzymes in both peel and pulp tissues were obtained during subsequent shelf life of fruit and submitted to multivariate analysis procedures. CA storage caused a decrease in the emission of volatile esters in comparison to storage in air. Results suggest that lessened ester production was the consequence of modifications in activities of alcohol o-acyltransferase (AAT) and lipoxygenase (LOX) activities. For short-term storage, inhibition of lipoxygenase activity in CA stored fruit possibly led to a shortage of lipid-derived substrates, resulting in decreased production of volatile esters in spite of substantial ester-forming capacity that allowed for some recovery of fruit capacity for ester emission during the shelf life. For long-term storage, strong inhibition of AAT activity in CA stored fruit in combination with low LOX activities resulted in unrecoverable diminution of biosynthesis of volatile esters.  相似文献   

5.
Pink Lady apples were harvested at commercial maturity and stored at 1 degrees C and 92% relative humidity under either air or controlled atmosphere conditions (2 kPa O 2:2 kPa CO 2 and 1 kPa O 2:1 kPa CO 2) for 27 weeks. Data on the emission of volatile compounds and on the activity of some related enzymes in both skin and flesh tissues were obtained during subsequent shelf life at 20 degrees C. Major effects of storage atmosphere and poststorage period were observed on the emission of volatile esters and their precursors. Changes in the production of volatile esters were partly due to alterations in the activity of alcohol o-acyltransferase, but the specific esters emitted by fruit after storage also resulted largely from modifications in the supply of the corresponding substrates. Samples stored under air were characterized by higher availability of acetaldehyde, whereas those stored under CA showed enhanced emission of the alcohol precursors ethanol and 1-hexanol (2 kPa O 2) and 1-butanol (1 kPa O 2), with accordingly higher production of ethyl, hexyl, and butyl esters. Multivariate analysis revealed that a large part of the observed differences in precursor availability arose from modifications in the activity of the enzymes considered. Higher pyruvate decarboxylase activity in air-stored fruit possibly accounted for higher acetaldehyde levels in these samples, while storage under 1 kPa O 2 led to significantly decreased lipoxygenase activity and thus to lessened production of 1-hexanol and hexyl esters. Low acetaldehyde availability together with enhanced hydroperoxide lyase and alcohol dehydrogenase levels in these fruits are suggested to have led to higher emission of 1-butanol and butyl esters.  相似文献   

6.
The rapidly ripening summer apple cultivar Anna was treated with 0.1 micro L(-1) and 1 microL L(-1) 1-methylcyclopropene (MCP) at harvest and kept at 20 degrees C, or stored for 5 weeks at 0 degrees C and then transferred to 20 degrees C. Total volatiles were not reduced by treatment with 0.1 microL L(-1) MCP, but were 70% lower in fruits treated with 1 microL L(-1) MCP than in untreated fruits. Ethylene production was 50% and 95% inhibited by 0.1 microL L(-1) and 1 microL L(-1) MCP, respectively. The volatiles produced by fruit at harvest were predominantly aldehydes and alcohols, with some acetate esters as well as 2-methyl butyl acetate and beta-damascenone. During ripening, the acetate and butyrate esters increased greatly and alcohols and aldehydes decreased. MCP-treated apples retained more alcohols, aldehydes, and beta-damascenone volatiles than did untreated apples. Sensory evaluation found that control and 0.1 microL L(-1) treated apples developed more fruity, ripe, and overall aromas, but the preference was for the 1 microL L(-1) treated apples with a less ripe aroma.  相似文献   

7.
8.
Apple (Malus x domestica Borkh., cv. Gala) fruit treated with 0.5 microL x L(-1) 1-methylcyclopropene (MCP) or air (non-MCP) for 12 h at 20 degrees C were exposed to gamma radiation at doses of 0, 0.44, 0.88, or 1.32 kGy at 23 degrees C and then stored at 20 degrees C. Production of volatile compounds was measured on the day of irradiation and 1, 3, 7, 14, and 21 days after irradiation. Both MCP treatment and irradiation inhibited ethylene production. MCP treatment reduced production of all volatile esters and alcohols detected, whereas irradiation inhibited production of most, but not all, esters and some alcohols by non-MCP-treated fruit. The inhibition of volatile production following irradiation increased with dose. Production of methyl and propyl esters was inhibited more than that of other esters following irradiation or MCP treatment. The impact of irradiation on production of esters and alcohols by MCP-treated fruit was minimal. Non-MCP-treated fruit irradiated at 0.44 kGy produced the most esters during the 21-day period at 20 degrees C following irradiation, and the ester production rate in these fruit was comparable to that of the nonirradiated fruit 21 days after irradiation. Fruit treated with doses higher than 0.44 kGy did not recover their ability to produce volatile compounds. These results indicate both MCP and ionizing radiation inhibit production of many aroma compounds produced by ripening apple fruit.  相似文献   

9.
1-Methylcyclopropene (1-MCP) is a new technology that is applied commercially to inhibit ethylene action in apple fruit, but its interactions with existing technologies such as diphenylamine (DPA) for control of superficial scald development in fruit during and after storage is unknown. To investigate possible interactions between 1-MCP and DPA, Delicious apples were untreated or treated with 2 g L(-1) DPA, and then with or without 1 microL L(-1) 1-MCP. Ethylene production and respiration rates of fruit were measured immediately following treatment, and fruit was stored at 0.5 degrees C for 12 weeks. Internal ethylene concentrations (IEC), alpha-farnesene and conjugated trienol (CTol) concentrations, activities of peroxidase and polyphenol oxidase (PPO), and DPA levels in the skin of the fruit were measured at intervals during storage. 1-MCP reduced the rate of DPA loss from peel tissue so that by 12 weeks of storage concentrations of the chemical were 25% higher than in untreated fruit. 1-MCP, with and without DPA, markedly inhibited ethylene production and respiration rates, maintained low IEC and alpha-farnesene and CTol concentrations, while DPA had little effect on these factors except inhibition of CTol accumulation. Treatment effects on peroxidase and PPO activities were inconsistent.  相似文献   

10.
Conference pears (Pyrus communis L.) were treated with 25 and 50 nL L(-1) 1-methylcyclopropene (1-MCP) at -0.5 degrees C for 24 h, then stored for up to 22 weeks in air (NA) and controlled atmosphere (CA). After 7 and 14 weeks of storage, fruits were retreated with 1-MCP. After 7, 14, and 22 weeks of storage, fruits were kept for up to 7 days at 20 degrees C in air for poststorage ripening. The effects of 1-MCP treatment declined with duration of storage in both storage atmospheres, indicating that retreatments had little additional effects on subsequent ripening. Ethylene production was lower and firmness was higher in 50 nL L(-1) fruits, while the 25 nL L(-1) dose was not very different from the control. Development of superficial scald was not prevented by 1-MCP treatments, but the severity of the symptoms was influenced. The 1-MCP effects were perceivable on texture (juiciness) and flavor. Control fruit and 25 nL L(-1) fruit reached their best sensory quality after 14 weeks of storage, while 50 nL L(-1) fruit reached the same sensory quality later, keeping a fresh flavor when the quality of control fruit declined and became watery or grainy. The fresh flavor in 50 nL L(-1) fruit was probably due to the presence below the odor detection threshold concentrations of the volatile compounds responsible for the "ripe pear" aroma, mainly of butanol and ethyl butanoate. CA prolonged or enhanced the effects of 1-MCP; 1-MCP cannot substitute for CA but can reinforce the CA effects.  相似文献   

11.
The ripening of Jonagored Jonagold apple fruit (Malus x domestica Borkh.) during development was manipulated with preharvest applications of ReTain or a combination of ReTain plus Ethrel. The fruits, harvested preclimacteric at approximately the same stages of maturity, were stored in refrigerated air (RA) for 45 days or in controlled atmosphere (CA) for 180 days at 0 degrees C. Volatile evolution, ethylene production, and respiration of stored fruit were studied during poststorage holding at 22 degrees C. ReTain reduced volatile production by 19%, but application of Ethrel to ReTain-treated fruit increased production to control levels. The inhibition of volatile production by ReTain appears to be independent of respiration but may be related to the ethylene-producing capacity of the fruit. Although ReTain reduced flavor-related volatile esters, it did not affect levels of the compound responsible for the typical spicy flavor in Jonagored Jonagold fruit, 4-methoxy-2-propenylbenzene. The CA-stored fruit had a much reduced production of volatile compounds compared to RA-stored fruit, with more discernible effects in ReTain-treated fruit. Ethrel application to ReTain-treated fruit improved the volatile production intermediate between the ReTain alone and control in CA-stored fruit. The data collectively suggest that ReTain may have some promise for better scheduling of harvest of apples with no appreciable loss in RA-stored fruit quality. Reduction in production of alpha-farnesene by ReTain may also reduce the potential for scald development in CA-stored fruit.  相似文献   

12.
Apricots of two varieties, Ceccona with strong aroma and San Castrese with low aroma but good firmness, were treated with 1 microL L(-)(1) 1-methylcyclopropene (1-MCP) for 12 h at 20 degrees C and then kept for shelf life at 20 degrees C and 85% relative humidity. 1-MCP treatment strongly inhibited ethylene production in apricots of both varieties, and softening was delayed. Fruit softening started before the rise of ethylene in air-treated apricots, which softened even when the rise of ethylene production was inhibited by 1-MCP. The softening reduction was more significant in Ceccona apricots than in San Castrese. Pectinmethylesterase (PME) activity declined in Ceccona fruit regardless of the treatment; in San Castrese, PME of air-treated fruit slightly increased, whereas in 1-MCP-treated apricots the activity declined. alpha-d-Galactosidase (alpha-gal) and beta-d-galactosidase (beta-gal) activities in Ceccona apricot were significantly reduced by 1-MCP treatment, whereas in San Castrese apricot no difference in activities was observed between air- and 1-MCP-treated fruit. The pattern of beta-d-xylosidase (xyl) activity in San Castrese apricot was similar to that of beta-gal, showing a peak on day 4 without difference between treatments. alpha-d-Mannosidase (alpha-man) activity of air-treated apricots of both varieties rose slightly, and 1-MCP treatment decreased the enzyme activity in both varieties. alpha-d-Glucosidase (alpha-glu) decreased in air-treated apricots in both varieties, and 1-MCP maintained higher activity in Ceccona fruit but not in San Castrese. Acidity decreased during postharvest ripening regardless of the treatment, whereas soluble solids content (SSC) increased in Ceccona apricot and slightly diminished in San Castrese ones without any effect by 1-MCP treatment. 1-MCP did not show any effect on apricot color; in contrast, it affected the volatiles profile, especially in Ceccona apricot, reducing the synthesis of lactones and promoting the rise of terpenols.  相似文献   

13.
Five experimental coatings with different resistance to gas exchange were used with freshly harvested and 20-week commercially stored apples of Delicious, Fuji, Braeburn, and Granny Smith varieties. The coated or noncoated apples were held at 20 degrees C for up to 4 weeks. The gas partial pressures inside the fruits with the various coatings ranged from 1 to 25 kPa CO(2) and from 20 to 1 kPa O(2). Volatile evaporation rates were measured, as also were the volatiles compositions in the fruit. The coatings with intermediate gas resistance (carnauba-shellac mixture and candelilla) gave intermediate values of CO(2) and O(2) in the internal atmosphere in Delicious, Fuji, and Braeburn apples and the highest concentrations of butyl acetate and 2-methylbutyl acetate in the fruits. The coatings with the highest gas resistance (shellac and shellac-protein) caused high internal CO(2) and low O(2), resulting in anaerobic fermentation in Braeburn and Granny Smith apples and relatively high amounts of low-molecular-weight ethyl esters trapped within the fruit. A small portion of the alcohols were evaporated from fruits compared to esters, this attributed to their high Henry's law coefficients.  相似文献   

14.
Mature green bananas were treated with the ethylene antagonist 1-methylcyclopropene (1-MCP) at intervals during the 24 h period after initiation of ripening with propylene. Following 1-MCP treatment, the fruits were ripened in either air or propylene while ethylene, carbon dioxide, and volatile production and composition were monitored at regular intervals. The application of 1-MCP significantly delayed and suppressed the onset and magnitude of fruit respiration and volatile production. The 1-MCP treatments also caused a quantitative change in the composition of the aroma volatiles, resulting in a substantial increase in the concentration of alcohols and a decrease in their related esters. The results showed that ethylene has a continuing role in integrating many of the biochemical processes that take place during the ripening of bananas.  相似文献   

15.
Effects of stripped (alpha-tocopherol < 5 mg L(-)(1)) corn oil on flesh firmness, skin color, acidity, soluble solids content (SSC), scald, and fruit volatiles during 6 months at 0 degrees C were studied using Golden Supreme and Delicious apples. Treatment with 10% oil emulsion reduced production of ethylene, alpha-farnesene, and major volatile esters in the first 3 months of storage, but this trend reversed after 5 months. After 6 months at 0 degrees C plus 7 days at 20 degrees C, oil-treated fruit were firmer and greener and had higher levels of titratable acidity than the controls. In addition, control fruit developed 27% and 42% scald in Golden Supreme and Delicious apples, respectively, whereas oil-treated fruit were free from scald. Soluble solids content and ethanol production were unaffected by oil treatment.  相似文献   

16.
The effect of 1-methylcyclopropene (1-MCP) at three different doses (0.25, 0.50, and 0.75 microL L(-1)) on the ripening processes of a climacteric, cv. Santa Rosa, and a suppressed climacteric type, cv. Golden Japan, plum was studied. For both cultivars, positive effects were observed in terms of inhibition of ethylene production and delays of the physical, chemical, and biochemical changes associated with ripening. 1-MCP-treated plums were firmer with lower weight loss, reduced degrees Brix/titratable acidity ratios, and lower color changes during cold storage and subsequent shelf life at 20 degrees C than controls. For most factors, the effectiveness of 1-MCP was dose-dependent in Santa Rosa but dose-independent for Golden Japan.  相似文献   

17.
Climacteric Fuji apples were treated with 10 microL x L(-1) MCP (1-methylcyclopropene), 2 mmol x L(-1) MJ (methyl jasmonate), or a combination of 10 microL x L(-1) MCP and 2 mmol x L(-1) MJ. Fruit were kept at 20 degrees C for 15 days after treatment. Production of ethylene and other volatile compounds was measured prior to and 3, 7, 11, and 15 days after treatment. Ethylene production decreased 3 days following MJ treatment and then increased. MCP treatment alone or in combination with MJ inhibited ethylene production. MJ and MCP inhibited production of many volatile alcohols and esters. The production of individual alcohols and esters appears to be differentially inhibited by MJ or MCP. MJ and MCP inhibited not only production of alcohols but also formation of esters from alcohols.  相似文献   

18.
To understand the role of ethylene in regulating the overall flavor of apple fruits, ethylene production or action was reduced using transgenic apple trees suppressed for ACC-synthase or ACC-oxidase enzyme activity or by the addition of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor. Flavor components were differentially regulated in response to the suppression of both ethylene biosynthesis and action. Headspace analysis of aroma production, an ethylene-associated event, showed a reduction in ester and alcohol production in the ethylene-suppressed lines and in the apples treated with 1 microL L(-1) 1-MCP for 20 h at 20 degrees C. However, no major differences were observed in the concentrations of aldehyde volatiles. Other flavor metabolites that showed an ethylene-dependent pattern were organic acids and sugars. Malic acid degradation was significantly reduced under ethylene-suppressed conditions, showing a recovery after the fruit was exposed to ethylene. Sucrose and fructose concentrations were influenced by suppression or enhancement of ethylene. Total phenolics as well as individual phenolic compounds showed an ethylene-dependent regulation only in response to the suppression of ethylene biosynthesis, but not when ethylene action was inhibited.  相似文献   

19.
1-Methylcyclopropene (MCP) was used to evaluate the role of ethylene in development of apple (Malus x domestica Borkh.) physiological disorders during storage. Granny Smith, Red Chief Delicious, and Fuji apple fruit were treated with MCP at a concentration of 1 microL L(-)(1) for 12 h at 20 degrees C. For all varieties stored at 0 degrees C, ethylene production and respiration rates were reduced for several months following MCP treatment, and firmness and titratable acidity of treated fruit were higher compared to controls. Apples treated with MCP did not develop superficial scald or peel greasiness through 6 months storage plus ripening at 20 degrees C for 7 days. Core flush was not observed in MCP-treated fruit until 6 months after treatment when the incidence was still lower compared to control fruit. MCP delayed the rise in production of alpha-farnesene and reduced accumulation of its oxidation products.  相似文献   

20.
The fruit ripening traits of pawpaw [ Asimina triloba (L.) Dunal] were examined after harvest and after cold storage at -2, 2, 4, and 6 degrees C for up to 12 weeks. Generally, fruits stored at 2-4 degrees C for 4 weeks ripened normally, but those stored at -2 degrees C did not ripen normally, those stored at 6 degrees C were overripe, and by 6-8 weeks those stored at 2-4 degrees C had a lower respiration rate and ethylene production, lower firmness, and lower pH than fruit cold-stored for 4 weeks or less. These changes, and the occasional development of brown discoloration in the pulp once the fruits were moved back to room temperature, were evidence of chilling injury by 6 weeks. After harvest and through 4 weeks of cold storage, the main volatile compounds produced by fruit were methyl and ethyl octanoates and hexanoates. Volatile production significantly increased >5-fold in fruit ripened for 72 h after harvest or after removal from up to 4 weeks of cold storage. Fruit cold-stored for 6 weeks or more produced fewer total volatiles and esters but increased levels of such off-flavor compounds as ethyl acetate, ethyl propionate, and hexanoic and decanoic acids. Alcohol acyltransferase (AAT) activity declined in cold-stored fruit but was not correlated with either total volatile production or total ester production. Alcohol dehydrogenase activity did not change during ripening after harvest or cold storage. Lipoxygenase activity was highest just after harvest or after 2 weeks of cold storage, but was low by 4 weeks. Thus, ripening of pawpaw fruit seems to be limited to 4 weeks at 2-4 degrees C with loss of ability to continue ripening and chilling injury symptoms evident at colder temperatures and after longer periods of cold storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号