首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Examination of rhizosphere products of wheat seedlings using a variety of Chromatographie techniques established that 2-ketogluconic acid was the only acid present in significant amounts. Elemental analysis of crystallized potassium 2-ketogluconate isolated from the rhizosphere products and data obtained by X-ray diffraction, i.r. spectrometry and specific rotation determinations confirmed the identification of the 2-ketogluconic acid. Spectrophotometric and specific rotation measurements showed that 2-ketogluconic acid represented about 20% of the rhizosphere products. Furthermore, the 2-ketogluconic acid was present in fractions of rhizosphere products shown to release phosphate from calcium phosphates. Pure 2-ketogluconic acid released phosphate from apatite rock, di- and tri-calcium phosphates. In each case there was an associated decrease in pH of the suspensions compared with controls.About 38% of the rhizosphere products was carbohydrate, and glucose and fructose were the dominant free sugars present. Since 2-ketogluconic acid is known to be a product of microbial action on glucose and the organisms involved occur in the rhizosphere it is likely that the 2-ketogluconic acid was produced from glucose in the rhizosphere.  相似文献   

2.
利用盆栽试验研究了几种人工合成磷源在轻粘质潮土根际和本体土壤中的形态转化及配施不同形态氮肥对其形态转化的影响,结果表明,作物耗竭引起根际所有形态无机磷不同程度的下降.施入土壤的DCP(CaHPO4*2H2O)、OCP(Ca8(PO4)6)、Al-P(AlPO4*nH2O)等大部分转化为其它形态无机磷,而Fe-P(FePO4*nH2O)和FA(Ca10(PO4)6F2)大部分以自身形态存在,尤其是FA很少向其它形态转化,根际条件促进了它们向其它无机磷形态的转化.Al-P和FA等的形态转化明显受氮肥形态的影响,Al-P配施NO-3-N下,绝大部分转化为磷灰石,NH+4-N配施下促进了FA向其它形态的转化,在所有的磷源处理中,根际和本体磷酸铁都有显著地增加,NH+4-N和CO(NH2)2处理下存在磷酸铁的根际累积;其次是磷酸二钙和磷酸铝也有明显地增加,二者存在根际的亏缺.不同磷源的形态转化规律与其有效性大小相一致.  相似文献   

3.
Background: The phosphate concentration of the soil solution is generally low, allowing sufficient plant nutrition only for a few days. Therefore, supply from various fractions of bound phosphate is essential to meet plant demand. It is known that plants have developed strategies to acquire phosphorus (P) from phosphates adsorbed on clay minerals or oxides, from organically bound phosphates, and from calcium phosphates. However, it is generally assumed that occluded phosphate is not plant‐available. Results: In a pot experiment, two plant species, namely maize (Zea mays L.) and white lupin (Lupinus albus L.), differing in acquisition efficiency, were used to investigate whether Al oxide‐occluded and Fe oxide‐occluded phosphates can be acquired. Artificially prepared Al oxide‐occluded phosphate or Fe oxide‐occluded phosphate, respectively, was added to a subsoil low in available phosphates. It is shown that both plant species were not able to acquire P from Al oxide‐occluded phosphate. Also, maize was incapable of using Fe oxide‐occluded phosphate. In contrast, white lupin took up significant amounts of P from Fe oxide‐occluded phosphate. Conclusion: It is concluded that the strategy to form cluster roots together with their reducing power may allow white lupin to destabilize Fe oxides that occlude phosphates and to mine the soil for this additional phosphate fraction.  相似文献   

4.
Abstract

Based on the problems that arises from the presence of cationic impurities in rock phosphates for fertilizer production, a greenhouse experiment consisting of two consecutive corn crops was conducted in order to evaluate the plant availability of phosphorus (P) in the fraction soluble only in neutral ammonium citrate (NAC) and also in the NAC+H2O fraction of acidulated phosphate fertilizers produced from Brazilian raw materials with different amounts of cationic impurities. The experiment was conducted with samples of a Red‐Yellow Latosol (Typic Hapludox) in a completely randomized design with four replications. Four acidulated phosphates obtained by sulfuric acid (H2SO4) solubilization of different Brazilian raw materials were studied. Monocalcium phosphate [Ca(H2PO4)H2O] (MCP) was included as a standard source of P as well as samples which were previously leached to remove the water‐soluble P, and therefore, contained essentially the NAC‐soluble fraction. The fertilizers were thoroughly mixed with the whole soil in the pots (mixed application), or with only 1% of its volume (localized application), at the rates of 50 and 100 mg P kg‐1, based on the calculated content of P soluble in NAC+H2O. Corn (Zea mays L.) was the test crop grown in two sequences of 35 days. After each 35‐day period, dry matter yield and P accumulated in the plant tops were determined. Results were evaluated by analysis of variance considering the factors, (i) acidulated phosphates, (ii) rate of P application, (iii) leaching, and (iv) methods of application. In a second analysis, the leached phosphates were considered as additional levels of the phosphate factor as well as for MCP. The Tukey test at the 0.05 significance level was utilized for mean separation. Results from this study clearly demonstrated that increasing the amounts of cationic impurities in the raw materials decreased the concentration of water‐soluble P and NAC+H2O‐soluble P as well as water‐soluble P and NAC+H2O‐soluble P ratio of the fertilizer obtained. From the results in the first corn cropping, the P in the NAC fraction for the studied Brazilian phosphate was not as available to plants as was the P in the NAC+H2O fraction or in the pure MCP. The NAC+H2O method was not an adequate index for evaluating the P availability of the studied sources. No interaction between P sources, leaching, and method of application was found in the second corn cropping.  相似文献   

5.
The mineral forms of phosphorus in three urban sewage sludges were characterized using high-resolution solid-state phosphorus-31 nuclear magnetic resonance (NMR) coupled to a sequential extraction. The sludges studied were an anaerobically-digested and heat-treated sludge (Paris-Achères), an activated sludge (Briare) and an anaerobically-digested sludge (Nancy). NMR observations were conducted using both single-pulse and cross-polarization sequences in order to distinguish between 31P nuclei far from 1H nuclei, and 31P located within a fraction of a nanometre of 1H. This approach showed that a complex mixture of P species was present in these sludges. A mixture of hydrogenated octocalcium phosphates and apatites was observed in the three samples. Monetite was present in the anaerobically-digested sludge and brushite in the activated sludge. Dehydrogenated condensed calcium phosphates (compounds with a Ca:P ratio higher than 1.0 such as fluorapatite or tricalcium phosphate) and dehydrogenated pyrophosphates were also probably present in the anaerobically-digested sludge. A poorly-ordered wavellite was observed in the three sludges after the HCl extraction. However, results were inconclusive as to whether this mineral was present in the three sludges, or had been precipitated during the sequential extraction.  相似文献   

6.
We studied the effect of bacteria involved in rock phosphate (four isolates), iron phosphate (two isolates), and aluminium phosphate (two isolates) solubilization, and two phytate-mineralizing bacteria in terms of their interaction with two Glomus spp. on Pueraria phaseoloides growth and nutrition. The plant —Rhizobium sp. — mucorrhiza symbiosis system may increase in yield and nutrition in association with specific rhizosphere bacteria that solubilize calcium, iron, and aluminium phosphates. No benefit from phytate-mineralizing bacteria was found under these experimental conditions. P. phaseloides growth responses were influenced in different ways by specific combinations of the selected bacteria and arbuscular mycorrhizal fungi. Considerable stimulation of nutrient uptake was observed with fungus-bacteria combinations of Azospirillum sp. 1, Bacillus sp. 1 or Enterobacter (spp. 1 or 2) associated with G. mosseae. The fact that Bacillus sp. 1, a calcium-phosphate solubilizing isolate, positively interacted with G. mosseae and negatively with G. fasciculatum is an indication of specific functional compatibility between the biotic components integrated in the system. From our results, the interactions between bacterial groups able to solubilize specific phosphate and mycorrhizal fungi cannot be interpreted as occurring only via P solubilization mechanisms since no generalized effect was obtained. Iron-phosphate solubilizing microorganisms were more active alone than in dual associations with Glomus sp., but the aluminium-phosphate dissolving isolates positively interacted in mycorrhizal plants. Further work is needed in this area in order to elucidate the mechanisms that affect rhizosphere microorganism interactions. G. mosseae was more effective but less infective than G. fasciculatum in most of the combined treatments.  相似文献   

7.
ABSTRACT

Dissolution of phosphate rocks (PR) in soils requires an adequate supply of acid (H+) and the removal of the dissolved products [calcium (Ca2 +) and dihydrogen phosphate (H2PO4 ?)]. Plant roots may excrete H+ or OH? in quantities that are stoichiometrically equal to excess cation or anion uptake in order to maintain internal electroneutrality. Extrusion of H+ or OH? may affect rhizosphere pH and PR dissolution. Differences in rhizosphere acidity and solubilization of three PRs were compared with triple superphosphate between a grass (Brachiaria decumbens) and a legume (Stylosanthes guianensis) forage species at two pH levels (4.9 and 5.8) in a phosphorus (P)-deficient Ultisol with low Ca content. The experiment was performed in a growth chamber with pots designed to isolate rhizosphere and non-rhizosphere soil. Assessment of P solubility with chemical extractants led to ranking the PRs investigated as either low (Monte Fresco) or high solubility (Riecito and North Carolina). Solubilization of the PRs was influenced by both forage species and mineral composition of the PR. The low solubility PR had a higher content of calcite than the high solubility PRs, which led to increased soil pH values (> 7.0) and exchangeable Ca, and relatively little change in bicarbonate-extractable soil P. Rhizosphere soil pH decreased under Stylosanthes but increased under Brachiaria. The greater ability of Stylosanthes to acidify rhizosphere soil and solubilize PR relative to Brachiaria is attributed to differences between species in net ion uptake. Stylosanthes had an excess cation uptake, defined by a large Ca uptake and its dependence on N2 fixation, which induced a significant H+ extrusion from roots to maintain cell electroneutrality. Brachiaria had an excess of anion uptake, with nitrate (NO3 ?) comprising 92% of total anion uptake. Nitrate and sulfate (SO4 2 ?) reduction in Brachiaria root cells may have generated a significant amount of cytoplasmic hydroxide (OH?), which could have increased cytoplasmic pH and induced synthesis of organic acids and OH? extrusion from roots.  相似文献   

8.
利用盆栽试验研究了几种人工合成磷源在轻粘质潮土根际和本体土壤中的形态转化及配施不同形态氮肥对其形态转化的影响 ,结果表明 ,作物耗竭引起根际所有形态无机磷不同程度的下降。施入土壤的DCP(CaHPO4 ·2H2 O)、OCP(Ca8(PO4 ) 6 )、Al P(AlPO4 ·nH2 O)等大部分转化为其它形态无机磷 ,而Fe P(FePO4 ·nH2 O)和FA(Ca10 (PO4 ) 6 F2 )大部分以自身形态存在 ,尤其是FA很少向其它形态转化 ,根际条件促进了它们向其它无机磷形态的转化。Al P和FA等的形态转化明显受氮肥形态的影响 ,Al P配施NO- 3 N下 ,绝大部分转化为磷灰石 ,NH 4 N配施下促进了FA向其它形态的转化 ,在所有的磷源处理中 ,根际和本体磷酸铁都有显著地增加 ,NH 4 N和CO(NH2 ) 2 处理下存在磷酸铁的根际累积 ;其次是磷酸二钙和磷酸铝也有明显地增加 ,二者存在根际的亏缺。不同磷源的形态转化规律与其有效性大小相一致。  相似文献   

9.
Radish (Raphanus sativus L.) exhibits a high efficiency in the utilization of sparingly‐soluble phosphates. A greenhouse experiment was designed to investigate the growth response of radish to different phosphorus (P) sources and the nutrient status of the rhizosphere associated with radish growth and nutrient absorption. Radish plants were grown in pots with the roots confined in rhizobags, in such a manner that the concentration of roots was very high within the rhizobag. The rhizosphere soils and non‐rhizosphere soils were analyzed separately for active silicon (Si), aluminum (Al), iron (Fe), and manganese (Mn) using Tamm's solution and for “available”; P using the Bray P1 extraction reagent. The radish growth response was mostly attributable to phosphate amount and availability, and the lime level used in the experiment. Concentrations of active Fe, Si, Al, and Mn were reduced in the rhizosphere, especially when lime and rock phosphate (Ps) were added. Available soil P was accumulated in the rhizosphere under lime and Ps addition, whereas its concentration was reduced with the zero lime treatment. Phosphorus utilization, characterized by P accumulation in shoots, was in accordance with the concentration pattern for “available”; P in the rhizosphere, but not with the growth response of radish itself. The calcium (Ca) concentration of the shoot followed the same trend as the radish growth. There was an antagonism between potassium (K) and Ca absorption as well as between Ca and magnesium (Mg) absorption. With the addition of P, shoot Mn concentration increased, while shoot Fe and Al concentrations increased with no lime addition but decreased with lime addition. The high P efficiency of radish is discussed from the view of rhizosphere chemistry. The high Mn efficiency of radish may be influenced by the same rhizosphere processes that are involved in its high P efficiency. It was concluded that rhizosphere processes and the status of nutrients determined the nutrient efficiency of radish and thus influenced its growth response and nutrient uptake.  相似文献   

10.
VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响   总被引:12,自引:0,他引:12  
用32P示踪法研究了VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响。结果表明,VA菌很真菌显著增加了玉米吸收肥料和土壤的磷量。菌根植物和非菌根植物都可不同程度地吸收利用土壤中的Ca2-P、Ca8-P、Fe-P和Al-P,VA菌根真菌增加了玉米对它们的吸收。试验结果还表明,施Ca10-P时接种VA菌很真菌对玉米生长的促进作用比施用其它磷酸盐明显,但Ca10-P不能直接被玉米植株所利用。说明VA菌根真菌能提高土壤中的有效性磷(Ca2-P和Al-P)和缓效性磷(Ca8-P和Fe-P)的有效性。  相似文献   

11.
ABSTRACT

Phosphate-solubilizing microbes (PSM) are widely distributed in the rhizosphere and helps plant to acquire phosphates from soil. The availability of phosphates in soil are governed by several factors among which the proton exchange capacity has been regarded to be the most important factor involved in cation complex formations with soluble phosphates making them unavailable to plants, thereby disturbing the phosphorus cycling events found in arable soils. PSM solubilizes the cation complexes and thereby improves the functioning of phosphorus cycle in soil. In addition to involvement in biogeochemical cycling events, PSM have been also found to have antagonistic potential against several plant phytopathogens. These biocontrol microbes represent the most abundant groups of soil microflora. Among which some nutrient solubilizers have been used for effective biocontrol of important plant diseases. This review article shows contributions of different plant growth promoters used in nutrient and disease management practices in agriculture.

Abbreviations: P (phosphorus), PSM (phosphate-solubilizing microbes), PSB (phosphate-solubilizing bacteria), PSF (phosphate-solubilizing fungi), PGPM (plant growth-promoting microbes), PGPB (plant growth-promoting bacteria), SAR (systemic acquired resistance), ISR (induced systemic resistance), TCP (tri-calcium phosphate), HCN (hydrogen cyanide), IAA (indole-3-acetic acid), aPhosphorus [(SSP) single super phosphate, RP (rock phosphate), PM (poultry manure) and FYM (farm yard manure)], PAL (phenylalanine ammonia lyase), ESI-MS (electrospray ionization mass spectrometry), DAPG (2,4-diacetylphloroglucinol) and NMR (1H nuclear magnetic resonance).  相似文献   

12.
Techniques for observing phosphorus mobilization in the rhizosphere   总被引:2,自引:0,他引:2  
Summary The techniques described here were developed to visualize the dissolution of sparingly soluble calcium phosphate and the presence of root-borne phosphatase in the rhizosphere. Newly formed calcium phosphate precipitate was suspended in agar containing other essential nutrients. The agar was poured into Petri dishes and acrylglass boxes and was used as a growth medium for seedlings of wheat, rape, buckwheat, and rice. With NH 4 + applied as the N source, the precipitate dissolved in the root vicinity and this was attributed to acidification. No dissolution occurred with NO 3 as the N source. The release of a neutral phosphatase from roots was verified by embedding the roots of young seedlings in agar at pH 7 containing phenolphthalein phosphate. After pH was raised to the alkaline range by adding sodium hydroxide, the agar around the roots turned purple, especially around the roots of P-deprived plants. The most intensive phosphatase activity was found in apical root regions.  相似文献   

13.
Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.  相似文献   

14.
Influence of long-term application of different P-fertilizers on phosphate availability in the rhizosphere of rape The residual P effect was investigated in soils from a 10 years' lasting field trial (North of Hessia, Alfisol-Udalf, pH 5.7) in which different P-fertilizer types had been applied with a rate of 111 kg P2O5 ha?1 a?1. Soil analysis showed that basic slag phosphate had increased the content of CAL-, H2O- and EUF extractable P in the soil to a higher extent than Novaphos (partially acidulated phosphate rock) or Hyperphos (phosphate rock). In the latter treatment the highest content of DL soluble P was found as compared with the other P-fertilizer types. Pot experiments with rye-grass, rape and maize showed that P recovery was highest from the soil with the basic slag treatment and lowest in the treatment with Hyperphos, Novaphos taking an intermediate position. This finding demonstrates that the DL-method does not provide a reliable information on the P-availability of a soil, if treated with rock phosphate. The level of water soluble P in the rhizosphere of rape was investigated with a particular technique (Kuchenbuch and Jungk, 1982). It could be shown that the P level in the rhizosphere of the Hyperphos treatment was only slightly higher than the P level of the P0 treatment (without P fertilizer) while in the Novaphos – and particularly in the basic slag treatment much higher levels of soluble P were found. It thus becomes evident that even in the rhizosphere the solubility of Hyperphos was poor. The levels of water soluble P in the rhizosphere followed a depletion curve. The steepest gradient was found for basic slag, followed by the Novaphos-, Hyperphos- and the P0 treatment.  相似文献   

15.
Tea (Camellia sinensis L.) is generally grown in highly weathered acidic Ultisols of the humid tropics. The low pH, large P fixing capacity and moisture content of these soils favour the dissolution of phosphate rock. Plant species differ widely in their ability to take up P from phosphate rock, and we have compared phosphate mobilization in the rhizosphere of tea with that under calliandra (Calliandra calothyrsus L.), Guinea grass (Panicum maximum L.) and bean (Phaseolus vulgaris L.) by studying the changes in the concentration of P fractions at known distances from the root surface in an acidic (pH in water 4.5) Ultisol from Sri Lanka treated with a phosphate rock. Plants were grown in the top compartment of a two-compartment device, comprising two PVC cylinders physically separated by a 24-μm pore-diameter polyester mesh. A planar mat of roots was formed on the mesh in the top compartment, and the soil on the other side of the mesh in the lower compartment was cut into thin slices parallel to the rhizosphere and analysed for pH and P fractions. All plant species acidified the rhizosphere (pH [water] difference between bulk and rhizosphere soils was 0.17-0.26) and caused more rock to dissolve in the rhizosphere (10–18%) than in the bulk soil (8–11%). Guinea grass was most effective, though the rate of acidification per unit root surface area was least (0.02μmol H+ cm?2) among the four species. Tea produced the largest rate of acidification per unit root surface area (0.08μmol H+ cm+2). All species depleted P extracted by a cation–anion exchange resin and inorganic P extracted by 0.1 M NaOH. All except tea depleted organic P extracted by 0.1M NaOH in the rhizosphere. The external P efficiencies (mg total P uptake) of Guinea grass, bean, tea and calliandra in soil fertilized with phosphate rock were 4.82 ± 0.42, 4.02 ± 0.32, 1.06 ± 0.02 and 0.62 ± 0.02, respectively, and the corresponding internal P efficiencies (mg shoot dry matter production per mg plant P) were 960 ± 75, 1623 ± 79, 826 ± 33 and 861 ± 44. This study showed that the various crops cultivated in tea lands differ in their rates of acidification, phosphate rock dissolution and P transformation in the rhizosphere. This requires testing under field conditions.  相似文献   

16.
The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc mine in Shaoxing, Zhejiang province of China, which has been treated with three phosphates, i.e., calcium magnesium phosphate (CMP), phosphate rock, and single super-phosphate (SSP) for 6 months in a field study. The ferrous sulfate (FeSO4) at 20 g kg?1 was then amended to the soil samples and incubated for 8 weeks in a greenhouse. The solubility and bioaccessibility tests were used to assess the effectiveness of the in situ immobilization. The result showed that phosphates addition decreased the concentrations of CaCl2-extractable Pb; however, the concentrations of water-soluble As increased upon CMP and SSP addition. With the iron addition, the water-soluble As concentrations decreased significantly, but CaCl2-extractable Pb concentrations increased. The bioaccessibility of As and Pb measured in artificial gastric and small intestinal solutions decreased with phosphate and iron application except for the bioaccessibility of As in the gastric phase with SSP addition. Combined application of phosphates and iron can be an effective approach to lower bioaccessibility of As and Pb, but has opposing effects on mobility of As and Pb in contaminated soils.  相似文献   

17.
Abstract

An investigation was conducted to study the effect of humic (HA) and fulvic acid (FA) on the dissolution of aluminum phosphate (AlPO4) and iron phosphate (FePO4), to analyze the dissolution products, and assess their availability to plants. The rate of dissolution was determined by shaking 10 mg of Al‐ or FePO4 with 0 to 800 mg L‐1 of HA or FA solutions at pH 7.0 for 0 to 192 hours. The phosphorus (P) concentration was measured in the extracts by spectrophotometry, whereas the nature of P‐humic acid complexes was determined by 31P NMR analysis. Availability of dissolution products was studied by growing corn plants in aerated hydroponic solutions receiving treatments of 50 mg Al‐ or FePO4 and 0 to 800 mg L‐1 of HA or FA at pH 5.0. The results indicated that the amount of P released by HA or FA increased with time. Humic acid was more effective than FA in dissolving the metal phosphates. The 31P NMR analysis showed that the dissolution products contained free orthophosphates and minor amounts of P‐humic acid complexes. This confirms the role of HA as a powerful chelator of Al and Fe, liberating in this way the orthophosphate anions. Corn plants grown in hydroponics, with AlPO4 or FePO4 as the source of P, exhibited better growth performance when HA or FA are present.  相似文献   

18.
 The phosphate-solubilizing potential of the rhizosphere microbial community in mangroves was demonstrated when culture media supplemented with insoluble, tribasic calcium phosphate, and incubated with roots of black (Avicennia germinans L.) and white [Laguncularia racemosa (L.) Gaertn.] mangrove became transparent after a few days of incubation. Thirteen phosphate-solubilizing bacterial strains were isolated from the rhizosphere of both species of mangroves: Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus atrophaeus, Paenibacillus macerans, Vibrio proteolyticus, Xanthobacter agilis, Enterobacter aerogenes, Enterobacter taylorae, Enterobacter asburiae, Kluyvera cryocrescens, Pseudomonas stutzeri, and Chryseomonas luteola. One bacterial isolate could not be identified. The rhizosphere of black mangroves also yielded the fungus Aspergillus niger. The phosphate-solubilizing activity of the isolates was first qualitatively evaluated by the formation of halos (clear zones) around the colonies growing on solid medium containing tribasic calcium phosphate as a sole phosphorus source. Spectrophotometric quantification of phosphate solubilization showed that all bacterial species and A. niger solubilized insoluble phosphate well in a liquid medium, and that V. proteolyticus was the most active solubilizing species among the bacteria. Gas chromatographic analyses of cell-free spent culture medium from the various bacteria demonstrated the presence of 11 identified, and several unidentified, volatile and nonvolatile organic acids. Those most commonly produced by different species were lactic, succinic, isovaleric, isobutyric, and acetic acids. Most of the bacterial species produced more than one organic acid whereas A. niger produced only succinic acid. We propose the production of organic acids by these mangrove rhizosphere microorganisms as a possible mechanism involved in the solubilization of insoluble calcium phosphate. Received: 21 April 1999  相似文献   

19.
Abstract

A greenhouse pot culture study was conducted to evaluate the agronomic efficiency of two rock phosphates from Mussoorie (MRP) and Purulia (PRP) in two acidic soils from Dapoli (Maharashtra) and Aruvanthklu (Karnataka), India, by growing maize (cv. Ganga) as the test crop and using 32phosphorus (P) single superphosphate (32P=SSP) as a tracer (A‐value technique). Dry‐matter yield and P uptake increased significantly with the application of P fertilizers compared to control treatment (without P) in both the soils. There was no significant difference with respect to dry‐matter yield among the P fertilizer treatments. However, P uptake by the shoots was found to be significantly higher in the PRP treatment in only Dapoli soil compared to other P fertilizer treatments. Phosphorus derived from fertilizer decreased in rock phosphate treatments compared to standard 32P‐SSP treatment in both the soils, indicating an excess availability of P from the rock phosphates. A‐values of soil and rock phosphate indicate a relatively higher P availability from Aruvanthklu soil compared to Dapoli soil; A‐values for the rock phosphates were in the order PRP>MRP. The substitution ratio showed that the availability of P from both the rock phosphates were less than SSP in both the soils.  相似文献   

20.
Rhizosphere processes strongly influence the availability of phosphorus (P) to plants. Organic ligands that are exuded from the root surface mobilize phosphorus by dissolution of P minerals or by desorption of adsorbed phosphate. We developed a mechanistic model to study the mobilization of phosphate sorbed on goethite by the exudation of citrate and consequent uptake of phosphate by the root. The use of a model allows the effects of the organic anion and pH on P desorption to be separated. The model is also used to predict concentration profiles developing around the root for phosphate, citrate (with or without accounting for degradation) and pH, providing insight into the processes that occur in the rhizosphere. Results of model calculations show that with larger rates of citrate exudation, greater P availability is predicted. Exudation at a rate of 0.5 μmol citrate m–1 root day–1, which is in the range found for P-deficient plants, increased P availability almost 2-fold at fairly large phosphate loading of goethite (1.9 μmol m–2) and almost 30-fold at small phosphate loading (1.3 μmol m–2). Competitive adsorption causes a much greater relative increase in the phosphate concentration in solution at small than at large phosphate loading, which explains this result. Simultaneous acidification of the rhizosphere results in a smaller P mobilization than at a fixed pH of 5, as a result of the pH dependence of phosphate adsorption in the presence of citrate. Sorption of citrate increases its persistence against microbial decay, and hence has a positive effect on the mobilization of adsorbed phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号