首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
From the polar extracts of Origanum vulgare L. ssp. hirtum 19 compounds have been isolated. The structures and relative stereochemistry have been elucidated by spectroscopic analysis and determined as apigenin, luteolin, chrysoeriol, diosmetin, quercetin, eriodictyol, cosmoside, vicenin-2, caffeic acid, p-menth-3-ene-1,2-diol 1-O-beta-glucopyranoside, thymoquinol 2-O-beta-glucopyranoside, thymoquinol 5-O-beta-glucopyranoside, thymoquinol 2,5-O-beta-diglucopyranoside, 12-hydroxyjasmonic acid, 12-hydroxyjasmonic acid 12-O-beta-glucopyranoside, lithospermic acid B, rosmarinic acid, 10-epi-lithospermic acid, and epi-lithospermic acid B. The three latter products display unusual stereochemistry of the 3,4-hydroxyphenyllactic acid unit(s), which to the authors' best knowledge has never been reported before in similar compounds. Moreover, lithospermic acid B (and its stereoisomers), p-menth-3-ene-1,2-diol 1-O-beta-glucopyranoside, 12-hydroxyjasmonic acid, and 12-hydroxyjasmonic acid 12-O-beta-glucopyranoside were isolated for the first time from Origanum species.  相似文献   

2.
Biotransformation of alpha-terpineol by the common cutworm (Spodoptera litura) larvae was investigated. alpha-Terpineol was mixed in an artificial diet, and the diet was fed to the larvae (fourth-fifth instar) of S. litura. Metabolites were isolated from the frass and analyzed spectroscopically. Main metabolites were 7-hydroxy-alpha-terpineol (p-menth-1-ene-7,8-diol) and oleuropeic acid (8-hydroxy-p-menth-1-en-7-oic acid). Intestinal bacteria from the frass of larvae did not participate in the metabolism of alpha-terpineol. alpha-Terpineol was preferentially oxidized at the C-7 position (allylic methyl group) by S. litura larvae.  相似文献   

3.
Glycosidically bound volatile compounds in different parts (leaves and buds) of Laurus nobilis L. were investigated. After isolation of extracts obtained by Amberlite XAD-2 adsorption and methanol elution, glycosides were analyzed after enzymatic hydrolysis by GC-MS or directly after trifluoroacetyl (TFA) derivatization by GC-MS in EI and NCI mode. In the leaves most of the glycosidically bound volatiles occur as beta-D-glucopyranosides. Among the disaccharides, primeverosides are predominant; smaller amounts of alpha-L-arabinofuranosyl-beta-D-glucopyranosides, rutinosides, and vicianocides could also be identified. Major aglycons comprised benzyl alcohol, some linalool-diols, 2-hydroxy-1,8-cineole and its derivatives such as 2,3-dehydro-1,8-cineole, sobrerols, and menthadien-8-ols. Among the identified nor-carotenoids, 3-oxo-alpha-ionol, the corresponding 7,8-dihydro derivative, and vomifoliol are predominant in leaves. 3-Hydroxy-beta-damascone and 3-hydroxy-7,8-didehydro-beta-ionol, precursors of the sensorially active damascenone, were identified only in the buds.  相似文献   

4.
A methanolic extract from dill (Anethum graveolens) herb was subjected to XAD-2 adsorption chromatography. The methanolic eluate was fractionated with the all liquid chromatographic technique of multilayer coil countercurrent chromatography (MLCCC). After acetylation of MLCCC subfractions and flash chromatography, final purification of dill herb constituents was achieved by preparative and/or analytical HPLC. Nine compounds were obtained in pure form, including the beta-D-glucopyranosides of 9-hydroxypiperitone, p-menth-2-ene-1,6-diol, and 8-hydroxygeraniol. Structure elucidation is based on electrospray ionization ion trap multiple mass spectrometry (ESI-MS/MS) as well as one- and two-dimensional nuclear magnetic resonance spectroscopy.  相似文献   

5.
Glycosidically bound compounds were isolated from the methanol extract of fresh rhizomes of smaller galanga (Alpinia officinarum Hance). Nine glycosides (1-9) were finally obtained by reversed-phase HPLC and their structures were elucidated by MS and NMR analyses. They were the three known glycosides, (1R,3S,4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside (1), benzyl beta-D-glucopyranoside (3), and 1-O-beta-D-glucopyranosyl-4-allylbenzene (chavicol beta-D-glucopyranoside, 4); and the six novel glycosides, 3-methyl-but-2-en-1-yl beta-D-glucopyranoside (2), 1-hydroxy-2-O-beta-D-glucopyranosyl-4-allylbenzene (5), 1-O-beta-D-glucopyranosyl-2-hydroxy-4-allylbenzene (demethyleugenol beta-D-glucopyranoside, 6), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-2-hydroxy-4-allylbenzene (demethyleugenol beta-rutinoside, 7), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-4-allylbenzene (chavicol beta-rutinoside, 8), and 1,2-di-O-beta-D-glucopyranosyl-4-allylbenzene (9). Compounds 2-9 were detected for the first time as constituents of galanga rhizomes.  相似文献   

6.
Free and glycosidically bound volatiles obtained from the fruit pulp of Sicana odorifera by liquid-liquid extraction and by chromatography, followed by enzymatic hydrolysis with Rohapect D5L, respectively, were analyzed by capillary gas chromatography (HRGC), HRGC-mass spectrometry (HRGC-MS), and HRGC-Olfatometry (HRGC-O) analyses. A total of 37 free volatiles was detected, with the major components being 3-methyl-2-butanol, 3-hydroxy-2-butanone, ethyl 3-hydroxybutanoate, and (Z)-3-hexenol. Among the 22 detected glycosidically bound compounds, 4-hydroxybenzyl methyl ether, 4-hydroxybenzyl alcohol, and 2-phenylethanol were found to be the major constituents. Additionally, two glucoconjugates were isolated in pure form by multilayer coil countercurrent chromatography (MLCCC) of the glycosidic extrac and further purification. Their structures were elucidated by MS and NMR analyses to be the novel [4-(beta-D-glucopyranosyloxy)benzyl] 2,3-dihydroxy-3-methylbutanoate 2, and the known 4-(beta-D-glucopyranosyloxy)benzyl alcohol 1. Compounds 1 and 2 are precursors of 4-hydroxybenzyl alcohol, one of the major volatiles generated by enzymatic hydrolysis of the glycosidic fraction.  相似文献   

7.
The formation of volatile compounds from precursors or through chemical rearrangement during heat treatment of bacuri pulp at fruit natural pH were studied using simultaneous distillation/extraction (SDE) technique. An increase of the quantities of oxygenated and hydrocarbon terpenes and, to a lesser degree, aldehydes, was observed after SDE at pH 3, relative to the other extraction methods used, SDE at neutral pH and solid phase extraction (SPE). More particularly, linalool, linalool furanoxides, alpha-terpineol, hotrienol, nerol oxide, nerol, and geraniol were isolated in more important quantities after the first treatment than after the others. These results can be partially explained by the hydrolysis of glycosidically bound compounds previously identified in bacuri. Other pathways such as polyol rearrangements were also involved. The formation of linalool and alpha-terpineol was probably the result of the rearrangement of 2,6-dimethyloct-1-ene-3,7-diol. Moreover, it was assumed that oxidation reactions occurred during SDE at pH 3; more particularly, linalool pyranoxides partially resulted from nonenzymatic oxidation of linalool. When SDE was performed at pH 3, an increase of furfural and 4-methoxy-2,5-dimethyl-3(2H)-furanone was noticed. The modifications of the concentration of aliphatic aldehydes, known as lipid oxidation compounds, and of fatty acid esters were in good agreement with the observed decrease of palmitic and linoleic acid concentrations during this treatment. Moreover, important amounts of 2-acetyl-1-pyrroline were found in the SDE extract recovered at pH 7.  相似文献   

8.
A new pentasubstituted oxiranyldecene, named viridenepoxydiol, has been isolated (0.9 mg/L) from the culture filtrate of a strain of Trichoderma viride showing in vitro and in vivo antagonistic activity against Sclerotium rolfsii, which is the causal agent of crown and stem rot of artichoke. Viridenepoxydiol was characterized as 3,5,9-trimethyl-2-oxiranyl-dec-8-ene-2,5-diol (3) using spectroscopic methods. It showed inhibitor effect on mycelial growth of S. rolfsii and its minimum inhibitory concentration (over 90% inhibition) was found to be 396 mug/mL. This is the first time that viridenepoxydiol was reported.  相似文献   

9.
Aroma volatiles are derived from precursors, such as amino acids, fatty acids and carotenoids in tomato fruit. Volatiles enhance the main flavor components in the fruit, particularly sugars. Abscisic acid (ABA) is derived from the carotenoid pathway and there may be an indirect connection to this pathway. Therefore, the purpose of this study was to examine the influence of ABA on tomato fruit volatiles. This study identified five flavor volatile compounds that were consistently present in “Mt. Fresh Plus” tomato fruit tissue. They were 2-methyl furan, (E)-2-hexeanl, 1-hexanol, hexenal, and 6-methyl-5-hepten-2-one. ABA treatments did not have an effect on volatile concentrations in “Mt. Fresh Plus” tomato fruit. Majority of the volatiles identified did not differ between the ABA treated plants and the ABA control plants. However, ABA treatments did significantly decrease (E)-2-hexenal. These results indicated that ABA treatments did not have a major effect on the aroma volatile profile of the fruit.  相似文献   

10.
Variations of fatty acid compositions, glycosides precursors, and lipoxygenase and glycosidase enzymatic activities were used simultaneously to differentiate for nine genetically different cultivated teas, four seasonal changes, and the affect of leaf maturity. The muscatel flavor of second-flush teas was associated with increased activities of glycosidase and several terpenes, phenolics, and aliphatic compounds bound to glycosides, whereas high levels of fatty acids and lipoxygenase activity biosynthesized more green volatiles in monsoon teas. Sequential hydrolysis of lipids and lipoxygenase-mediated reactions, during withering and rolling, showed a 3-fold increase of hexenol, hexenal, and related volatiles, but they decreased to the levels of fresh leaf during drying. However, a 4-fold increase of the floral bend of volatiles found in black tea developed due to the hydrolysis of the glycoside precursors throughout processing stages. About 45 key volatiles were monitored for flavor superiority among different clones. Various parameters affecting yield of volatiles were optimized and recommended.  相似文献   

11.
Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCIMS) was employed for the identification of eight lutein monoesters, formed by incomplete enzymatic saponification of lutein diesters of marigold (Tagetes erecta L.) by Candida rugosa lipase. Additionally, the main lutein diesters naturally occurring in marigold oleoresin were chromatographically separated and identified. The LC-MS method allows for characterization of lutein diesters occurring as minor components in several fruits; this was demonstrated by analysis of extracts of cape gooseberry (Physalis peruviana L.), kiwano (Cucumis metuliferus E. Mey. ex Naud.), and pumpkin (Cucurbita pepo L.). The assignment of the regioisomers of lutein monoesters is based on the characteristic fragmentation pattern: the most intense daughter ion generally results from the loss of the substituent (fatty acid or hydroxyl group) bound to the epsilon-ionone ring, yielding an allylic cation. The limit of detection was estimated at 0.5 microg/mL with lutein dimyristate as reference compound. This method provides a useful tool to obtain further insight into the biochemical reactions leading to lutein ester formation in plants.  相似文献   

12.
New dammarane-type saponins from the galls of Sapindus mukorossi   总被引:2,自引:0,他引:2  
Five new dammarane-type saponins, 3beta,7beta,20(S),22-tetrahydroxydammar-24-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 3beta,7beta,20(S),22,23-pentahydroxydammar-24-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 3beta,7beta,20(S),22,25-pentahydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, 25-methoxy-3beta,7beta,20(S),22-tetrahydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, and 25-methoxy-3beta,7beta,20(R)-trihydroxydammar-23-ene-3-O-alpha-l-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside, named sapinmusaponins A (1), B (2), C (3), D (4), and E (5), respectively, together with three known phenylpropanoid glycosides (6-8), were isolated from the galls of Sapindus mukorossi. The structures of these saponins were elucidated on the basis of spectroscopic analyses and chemical methods. Preliminary bioassay data revealed that saponins 1 and 3-5 showed moderate cytotoxic activity (ED50 approximately 9-18 microg/mL) against human tumor cell lines (Hepa59T/VGH, NCI, HeLa, and Med) and that 1-5 were inactive in vitro against HIV replication in H9 lymphocytes.  相似文献   

13.
The free volatiles, as well as those released from the glycosidically bound forms by enzyme hydrolysis, have been analyzed to chracterize young Tannat wines from two successive vintages. The Tannat wine showed some aroma profile peculiarities detected in the free forms but, above all, in the bound fraction for the level and profile of the norisoprenoidic fraction. Among the free volatile compunds, a rather low content of C(6) alcohols with a prevalence of cis-3-hexen-1-ol on the trans form and sometimes a remarkable level of trans-2-hexen-1-ol seem to be typical for the variety. C(13)-norisoprenoidic and monoterpenic volatiles made up approximately 42% of the total level of the volatiles observed in the glycosidase enzyme-released fraction. The other volatiles were C(6) alcohols (6%) and benzenoid compounds (51%). The dominating monoterpene alcohols were the cis and trans isomers of 3,7-dimethyl-1,6-octadiene-3,8-diol (8-hydroxylinalool). The C(13)-norisoprenoid pattern was composed by 3-hydroxy-beta-damascone, 3-oxo-alpha-ionol, vomifoliol, 4-oxo-beta-ionol, 3-oxo-7,8-dihydro-alpha-ionol, 4-oxo-7,8-dihydro-beta-ionol, grasshopper ketone, and 7,8-dihydrovomifoliol.  相似文献   

14.
Consumption of berries from various sources including the genus Ribes has been associated with diverse potential health benefits. The 14 examined cultivars of European gooseberry (R. grossularia L.) contained in various proportions the 3-glucoside (3), 3-rutinoside (4), 3-xyloside (7), 3-O-beta-(6' '-E-caffeoylglucopyranoside) (8), and 3-O-beta-(6' '-E-p-coumaroylglucopyranoside) (10) of cyanidin and the 3-rutinoside (6) and 3-glucoside of peonidin (5). Pigments 3, 4, delphinidin 3-rutinoside (2), delphinidin 3-glucoside (1), and minor amounts of 6, 7, and 10 were found in red flowering currant (R. sanguineum Pursh). Golden currant (R. aureum Pursh) contained 3, 4, and trace amounts of 1, 6, and 7, while alpine currant (R. alpinum L.) contained 3, 4, and trace amounts of 10. The major anthocyanins in two cultivars of jostaberries (R. x nidigrolaria Bauer), 1-4, 8, and 10, reflected that this hybrid contained the major anthocyanins of both parents, black currant and gooseberry. This is the first complete identification of 8 and the ring size of the sugar of 10. Pigment 9 was tentatively identified as cyanidin 3-(6' '-Z-p-coumaroylglucoside). This new pigment occurred in minor amounts (<2%) in all R. grosssularia and R. x nidigrolaria cultivars. No commercially available berries have been reported to contain such high proportions of aromatic acylated anthocyanins as found in the gooseberry cultivars "Sams?", "Hinnom?ki Red", "Taastrup", "Lofthus", and "Glendal", which are in this context the most obvious candidates for consumption, colorant, and breeding programs.  相似文献   

15.
During our screening of plant materials to find new natural fragrance and flavor ingredients, we discovered two series of 3-sulfanylalkyl alkanoates in a peel extract of fruits of wild-growing Poncirus trifoliata (L.) Raf. (Rutaceae), a species closely related to Citrus. The two series belong to alkanoates of 3-methyl-3-sulfanylbutan-1-ol and 3-sulfanylhexan-1-ol, respectively, and thus are members of a family of natural molecules having in common a 1,3-positioned O,S moiety. The alkanoate residues comprise all even-numbered saturated fatty acids from C2 (acetate) to C18 (octadecanoate). Among the 20 sulfur-containing compounds identified, 14 are described for the first time as naturally occurring in a botanical species. Several cysteine-S-conjugates were synthesized as hypothetical precursors of the new volatile sulfur-containing constituents, where after S-(3-hydroxy-1,1-dimethylpropyl)-L-cysteine, S-[3-(acetyloxy)-1,1-dimethylpropyl]-L-cysteine, and S-[1-(2-hydroxyethyl)butyl]-L-cysteine were identified in the fruit peel. No cysteine-S-conjugates were detected in the fruit juice.  相似文献   

16.
The purpose of this study was to understand why some canned orange juices are not perceived as orange juice. Sensory flavor profile data indicated that the primary odor (orthonasal) attributes were tropical fruit/grapefruit, cooked/caramel, musty, and medicine. By comparison fresh-squeezed juice lacked these odor attributes. GC-O analysis found 43 odor-active components in canned juices. Eight of these aroma volatiles were sulfur based. Four of the 12 most intense aroma peaks were sulfur compounds that included methanethiol, 1-p-menth-1-ene-8-thiol, 2-methyl-3-furanthiol, and dimethyl trisulfide. The other most intense odorants included 7-methyl-3-methylene-1,6-octadiene (myrcene), octanal, 2-methoxyphenol (guaiacol), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (homofuraneol), (E)-non-2-enal, (E,E)-deca-2,4-dienal, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and alpha-sinensal. Odorants probably responsible for the undesirable sensory attributes included grapefruit (1-p-menth-1-ene-8-thiol), cooked [2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), and 3-(methylthio)propanal (methional)], musty [7-methyl-3-methylene-1,6-octadiene and (E)-non-2-enal], and medicine (2-methoxyphenol). The canned juices also lacked several aldehydes and esters normally found in fresh orange juice.  相似文献   

17.
A total of 19 naturally occurring bromophenols, with six new and 13 known structures, were isolated and identified from the methanolic extract of the marine red alga Rhodomela confervoides. The new compounds were identified by spectroscopic methods as 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (1), 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-diol (2), 5-(aminomethyl)-3,4-dibromobenzene-1,2-diol (3), 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (4), 2-methoxy-3-bromo-5-hydroxymethylphenol (5), and (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (6). Each compound was evaluated for free radical scavenging activity against DPPH (α,α-diphenyl-β-dipicrylhydrazyl) and ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] radicals. Most of them exhibited potent activities stronger than or comparable to the positive controls butylated hydroxytoluene (BHT) and ascorbic acid. The results from this study suggest that R. confervoides is an excellent source of natural antioxidants, and inclusion of these antioxidant-rich algal components would likely help prevent the oxidative deterioration of food.  相似文献   

18.
Postharvest diseases of mango fruit (Mangifera indica L.) cause economic losses during storage and can be controlled by chemical, physical, or biological methods. This study investigated the effects of different physical and/or chemical disease control methods on production of volatiles, color development and other quality parameters in ripe 'Kensington Pride' mango fruit. Hard mature green mango fruit were harvested from an orchard located at Carnavon, Western Australia. The fruit were heat-conditioned (8 h at 40 +/- 0.5 degrees C and 83.5 +/- 0.5% RH), dipped in hot water (52 degrees C/10 min), dipped in prochloraz (Sportak 0.55 mL x L(-1)/5 min), dipped in hot prochloraz (Sportak 0.55 mL x L(-1) at 52 degrees C/5 min), dipped in carbendazim (Spin Flo 2 mL x L(-1)/5 min), and dipped in hot carbendazim (Spin Flo 2 mL x L(-1) at 52 degrees C/5 min). Nontreated fruit served as control. Following the treatments, the fruit were air-dried and kept in cold storage (13 +/- 0.5 degrees C) for three weeks before being ripened at 21 +/- 1 degrees C. The ripe pulp of the fruit that was treated with hot prochloraz or carbendazim at ambient and high temperatures showed enhanced concentrations of volatiles, while heat conditioning and hot water dipping did not significantly affect the volatile development. Ripening time, and color development were measured daily while disease incidence and severity, weight loss, firmness, and concentrations of soluble solids, titratable acidity, ascorbic acid, total carotenoids, and volatiles were determined at the eating soft ripe stage. Hot water dipping or fungicide treatments (at ambient or at a high temperature) reduced postharvest diseases incidence and severity. Fruit quality (soluble solids concentration, titratable acidity, ascorbic acid and total caretonoids) was not substantially affected by any of the treatments.  相似文献   

19.
The bulbs of the Easter lily ( Lilium longiflorum Thunb.) are regularly consumed in Asia as both food and medicine, and the beautiful white flowers are appreciated worldwide as an attractive ornamental. The Easter lily is a rich source of steroidal glycosides, a group of compounds that may be responsible for some of the traditional medicinal uses of lilies. Since the appearance of recent reports on the role steroidal glycosides in animal and human health, there is increasing interest in the concentration of these natural products in plant-derived foods. A LC-MS/MS method performed in multiple reaction monitoring (MRM) mode was used for the quantitative analysis of two steroidal glycoalkaloids and three furostanol saponins, in the different organs of L. longiflorum. The highest concentrations of the total five steroidal glycosides were 12.02 ± 0.36, 10.09 ± 0.23, and 9.36 ± 0.27 mg/g dry weight in flower buds, lower stems, and leaves, respectively. The highest concentrations of the two steroidal glycoalkaloids were 8.49 ± 0.3, 6.91 ± 0.22, and 5.83 ± 0.15 mg/g dry weight in flower buds, leaves, and bulbs, respectively. In contrast, the highest concentrations of the three furostanol saponins were 4.87 ± 0.13, 4.37 ± 0.07, and 3.53 ± 0.06 mg/g dry weight in lower stems, fleshy roots, and flower buds, respectively. The steroidal glycoalkaloids were detected in higher concentrations as compared to the furostanol saponins in all of the plant organs except the roots. The ratio of the steroidal glycoalkaloids to furostanol saponins was higher in the plant organs exposed to light and decreased in proportion from the aboveground organs to the underground organs. Additionally, histological staining of bulb scales revealed differential furostanol accumulation in the basal plate, bulb scale epidermal cells, and vascular bundles, with little or no staining in the mesophyll of the bulb scale. An understanding of the distribution of steroidal glycosides in the different organs of L. longiflorum is the first step in developing insight into the role these compounds play in plant biology and chemical ecology and aids in the development of extraction and purification methodologies for food, health, and industrial applications. In the present study, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (22R,25R)-spirosol-5-en-3β-yl O-α-l-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside, (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)-β-d-glucopyranoside, and (25R)-26-O-(β-d-glucopyranosyl)furost-5-ene-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1→2)-α-l-xylopyranosyl-(1→3)-β-d-glucopyranoside were quantified in the different organs of L. longiflorum for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号