首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
六盘山华北落叶松林坡面的土壤含水量时间稳定性   总被引:3,自引:2,他引:1  
在宁夏六盘山选择华北落叶松林坡面,利用TRIME-PICO土壤水分测定仪,在2015年5—11月对48个测点分12次测定了不同厚度土层(0—20,0—40,0—60cm)的体积含水量的时间动态,并采用累积概率函数、相对偏差及Spearman秩相关系数等方法,分析评价了坡面土壤体积含水量的时间稳定性。结果表明:土壤体积含水量在时间和空间上均存在中等变异,且变异程度随土层加厚而逐渐降低,表现为0—40,0—60cm土层体积含水量的累积概率在干旱和湿润2种极端条件下的变化均小于0—20cm土层。0—20,0—40,0—60cm土层体积含水量的平均相对偏差的变化范围分别为(-43.5%)~(47.9%),(-42.9%)~(49.9%)和(-46.9%)~(40.0%);平均相对偏差的标准差(SDRD)呈现出随土层加厚而逐渐降低的变化趋势,在0—20,0—40,0—60cm土层依次为11.1%,8.3%,7.8%。在整个研究期间,Spearman秩相关系数在不同土层厚度条件下始终保持较高水平(0.7以上),且呈极显著相关,坡面上不同土层的体积含水量具有较高的时间稳定性。基于土壤含水量的时间稳定性特征,确定了研究坡面上不同土层厚度的体积含水量平均值的代表性测点,可利用这些代表性测点的土壤体积含水量测定值估计相应土层厚度的坡面平均值。  相似文献   

2.
六盘山华北落叶松林坡面的土壤水分时间稳定性   总被引:2,自引:0,他引:2       下载免费PDF全文
在宁夏六盘山选择华北落叶松林坡面,利用TRIME-PICO土壤水分测定仪,在2015年5—11月对48个测点分12次测定了不同厚度土层(0—20,0—40,0—60cm)的体积含水量的时间动态,并采用累积概率函数、相对偏差及Spearman秩相关系数等方法,分析评价了坡面土壤体积含水量的时间稳定性。结果表明:土壤体积含水量在时间和空间上均存在中等变异,且变异程度随土层加厚而逐渐降低,表现为0—40,0—60cm土层体积含水量的累积概率在干旱和湿润2种极端条件下的变化均小于0—20cm土层。0—20,0—40,0—60cm土层体积含水量的平均相对偏差的变化范围分别为(-43.5%)~(47.9%),(-42.9%)~(49.9%)和(-46.9%)~(40.0%);平均相对偏差的标准差(SDRD)呈现出随土层加厚而逐渐降低的变化趋势,在0—20,0—40,0—60cm土层依次为11.1%,8.3%,7.8%。在整个研究期间,Spearman秩相关系数在不同土层厚度条件下始终保持较高水平(0.7以上),且呈极显著相关,坡面上不同土层的体积含水量具有较高的时间稳定性。基于土壤含水量的时间稳定性特征,确定了研究坡面上不同土层厚度的体积含水量平均值的代表性测点,可利用这些代表性测点的土壤体积含水量测定值估计相应土层厚度的坡面平均值。  相似文献   

3.
为探究不同坡度(5°,10°,20°,30°)条件下,不同质地砒砂岩土壤(灰白色、混合色、紫红色)的水分入渗特征及最优入渗模型。通过室内模拟土柱法对土壤的水分入渗特征和拟合结果进行对比分析。结果表明:(1)研究区不同坡面土壤容重在1.513~1.737 g/cm3,30°坡面下的灰白色砒砂岩土壤入渗能力较强,5°坡面下的紫红色砒砂岩土壤入渗能力较弱。(2) 在砒砂岩土壤一维垂直 入渗过程中,初始入渗率为2.000~8.600 cm/min,入渗时间3.500~5.000 min后达到稳定入渗率(0.160~1.800 cm/min)。入渗率、湿润锋运移速率与时间呈幂函数递减关系。坡度的大小、砒砂岩的质地均影响砒砂岩土壤入渗能力,坡度越小、颜色越深, 入渗率、累计入渗率越低,湿润锋运移越慢;且初始入渗速率、稳定入渗速率、初始湿润锋运移速率、稳定湿润锋运移速率的值均随着坡面坡度的减小、砒砂岩土壤颜色的加深呈现减小趋势。(3)Kostiakov模型、Philip模型对于砒砂岩区土壤水分入渗结果拟合较好,决定系数均在0.900以上。Kostiakov模型 决定系数的平均值0.948拟合效果最优;Philip模型决定系数的平均值0.937拟合效果其次;Horton模型决定系数的平均值0.688拟合效果较差。通过平均绝对误差(MAE)、均方根误差(RMSE)、偏差百分比(PBIAS)、纳什效率系数(NSE)验证Kostiakov模型和Philip模型模拟值与实测值的差异性小、两者吻合程度高。  相似文献   

4.
为了探究涌泉根灌水肥一体化灌溉在不同土壤初始含水率下水氮运移特性,通过室内肥液入渗试验,研究了不同土壤初始含水率(4.13%,7.21%,8.77%,11.06%,14.01%)条件下入渗特性、湿润锋运移、土壤水分以及铵态氮和硝态氮的运移特性,建立了涌泉根灌累积入渗量、各向湿润锋运移距离与不同土壤初始含水率之间的关系,提出了不同初始含水率下涌泉根灌累积入渗量、各向湿润锋运移距离的经验模型。结果表明:累积入渗量、各向湿润锋运移距离以及湿润体内水分和氮素的分布、转化等均不同程度地受到土壤初始含水率的影响。同一时刻条件下,累积入渗量随着土壤初始含水率的增大而减小,而湿润锋运移距离却呈现出增大的趋势;土壤初始含水率越大,湿润体体积越大,湿润体内水分、铵态氮和硝态氮的分布范围越广泛;距离灌水器出水孔越近,土壤中的铵态氮和硝态氮含量越高。入渗系数K随着土壤初始含水率的增大而减小,入渗指数α随着土壤初始含水率的增大而增大;水平湿润锋拟合参数a、b均随土壤初始含水率的增大而增大,竖直向下湿润锋运移指数c随着土壤初始含水率的增大而增大,入渗指数d随着土壤初始含水率的增大而减小。随着土壤水分再分布的持续进行,湿润体内水分分布越加均匀,采用克里斯琴森均匀系数Cu评价灌水结束、再分布1,3天条件下湿润体内水分分布均匀度依次为61.99%,74.27%和83.60%;湿润体内铵态氮含量逐渐减小,但铵态氮的分布区域基本无变化;湿润体内硝态氮分布区域变大,平均值呈增大,最值区域有下移趋势。研究成果为进一步研究涌泉根灌水氮高效利用技术奠定了基础。  相似文献   

5.
野外模拟崩岗崩积体坡面产流过程及水分分布   总被引:3,自引:3,他引:3  
为研究崩岗崩积体坡面产流特征及土体水分分布特征,采用人工模拟降雨方法,在广东五华县莲塘岗崩岗选择7个不同部位的崩积体,进行28场人工模拟降雨,测定降雨过程中坡面产流时间及水分分布。结果表明:1)坡面产流时间与降雨强度呈负指数幂函数关系;2)老崩积体坡面产流时间与10 cm深处土体初始含水率呈负对数函数关系,其他深度土体初始含水率,以及新崩积体各土层初始含水率与坡面产流时间关系不密切;3)根据土体初始含水率和降雨强度,可以应用三维曲面模型预测崩积体坡面产流所需时间;4)当降雨强度≥3.5 mm/min时,崩积体坡面产流时间与坡度呈现出负相关关系,即随着坡度增大,产流时间变短;5)崩积体坡面产流后,新、老崩积体10 cm深处土体含水率差异明显,新崩积体土体含水率在20%以下,老崩积体土体含水率在20%以上;6)无论是降雨结束时还是降雨后24 h的水分再分布,新崩积体的湿润锋深度均大于老崩积体,表明在降雨作用下新崩积体的失稳深度大于老崩积体的失稳深度。该研究为崩岗崩积体侵蚀预测和防治提供参考。  相似文献   

6.
黄土区不同土地利用方式坡面土壤含水率的空间变异性研究   总被引:15,自引:0,他引:15  
为掌握不同土地利用方式下坡面土壤含水率的空间分布特征及其变异规律,利用经典统计学方法对黄土高原水蚀风蚀交错带草地和农地坡面土壤含水率的空间变异性进行了对比研究。结果表明:草地和农地的土壤含水率均值在同一土层深度下差异极显著,但二者在垂直方向、坡长方向的变异程度均为中等变异程度;草地和农地坡面土壤含水率的垂直变化特征不同,前者为降低型,后者在100 cm以上为波动型,以下为稳定型;草地和农地坡面土壤含水率均随坡长的增加呈波浪式变化规律,整体上有增加趋势;将坡面划分为5个坡长或将土层划分为4层以后,草地和农地坡面土壤含水率沿垂直方向、坡长方向的总体变化趋势均没有改变,但由于尺度的扩展获得了一些较大尺度上的水分信息。  相似文献   

7.
耕作侵蚀对紫色土坡耕地土壤水分分布的影响   总被引:2,自引:0,他引:2  
通过短期连续耕作45次,模拟长期耕作对土壤水分分布的影响,利用TDR法按冬小麦5个生长期测定对照区与试验区(实施45次强烈耕作)土壤耕层(0-16.5cm)水分。结果表明,试验区土壤含水量比对照区低8.74%~25.49%,而土壤含水量变异性却比对照区高11.9%~399.8%,表明强烈耕作增大了土壤耕层含水量在坡面的变异性。对照区与试验区土壤含水量分布的差异主要表现在坡顶和肩坡,这种差异可能主要是由耕作侵蚀引起的。耕作侵蚀使上坡土壤发生流失,使土壤贮水性下降,导致试验区上坡土壤耕层含水量显著减小;耕作沉积使下坡土壤发生累积,但对试验区下坡土壤耕层含水量无显著影响。  相似文献   

8.
黄土高原雨养区坡面土壤蓄水量时间稳定性   总被引:3,自引:2,他引:1  
分析区域土壤蓄水量(SWS)时间稳定性为准确预测土壤墒情提供了理论保障,同时为植被恢复和重建工作提供帮助。利用中子仪获得黄土高原雨养区六道沟流域坡面2005年10月至2006年9月间剖面SWS,通过时间稳定性分析,研究该区域SWS的时间稳定性特征。结果表明:不同月份SWS均表现为中等变异,干旱条件下的变异系数比湿润条件下小。0~4 m的SWS累积概率比其他土层的变化小,平均相对偏差的变化范围(-39%~53%)及标准差(5.6%)较小,spearman秩相关系数均达到0.8以上且呈现出极显著相关,通过时间稳定性分析可以初步确定研究区平均SWS的代表性测点。SWS变化较大时,spearman秩相关系数较小,而SWS变化较小时,spearman秩相关系数较大。spearman秩相关系数为分析该区域SWS的时间稳定性提供了便捷途径。  相似文献   

9.
西北旱区压砂地土壤水分的时空分布特征   总被引:3,自引:4,他引:3  
以西北旱区有着300多年历史的压砂地为研究对象,利用平均相对偏差、统计回归等方法研究土壤水分的时空稳定性特征。结果表明,表层土壤水分变异性最强,随着土层深度的增大,变异性减弱。0~10 cm土壤水分高低值区差异较明显,图形破碎化程度较大,随着土层深度的增大,土壤水分等值线由密变疏,逐渐趋于平滑,图形的破碎化程度相对减弱,斑块的空间连续性增强。土壤水分在干旱条件下斑块的空间破碎化程度高于湿润条件下,时间稳定性随土层厚度的增加而增强,平均相对偏差及标准差变化范围较小,可以选择代表性测点代表0~10、>10~20、>20~30、>30~50 cm土壤水分平均值的估计值。利用2013年数据建立的统计回归模型对2014年不同土层代表性测点土壤水分进行预测,预测精度较高(相对误差最大为15.42%),表明代表性测点可表征整个研究区土壤水分的均值。以期为该区域合理布设土壤水分监测点和墒情的准确预测提供理论依据。  相似文献   

10.
土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响   总被引:40,自引:11,他引:40  
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内人工降雨试验,研究了土壤初始含水率对坡面降雨入渗、湿润锋运移及土壤水分再分布规律的影响。结果表明:初始含水率越高,产流越快,平均入渗率越小,达到稳定入渗率的时间也越短;当初始含水率均匀分布时,降雨入渗和再分布过程中湿润锋面平行坡面垂直向下整体运移,坡面降雨入渗过程可以简化为一维;当初始含水率非均匀分布时,初始含水率越高,再分布过程中湿润锋的运移速率越大,但在降雨入渗过程中,湿润锋的运移速率与土体的湿润程度和范围有一定的关系;坡面上方来水(径流)虽然对湿润锋运移速率影响不大,但对入渗有一定的促进作用;再分布过程中,土壤水分有沿坡向下运移的趋势。  相似文献   

11.
[目的] 明确微地形改造对(0—50 cm)土壤水分时空动态影响的变化规律,为天山南麓寒旱矿区的土地复垦及生态系统重建提供科学依据和理论支撑。[方法] 以拜城润华煤矿区覆土平台和边坡改造后的微地形为试验对象,监测了2022年5—11月的土壤水分,并进行对比试验分析。[结果] 平台集水坡面和蓄水沟改造土壤含水率分别比对照提高了37.03%和25.85%,提升效果表现为:集水坡面>蓄水沟;蓄水沟和集水坡面改造方式提高了土壤水分的时间稳定性,其作用效果表现为:蓄水沟>集水坡面。边坡反坡梯田和鱼鳞坑改造土壤含水率分别提高了6.48%和13.22%,提升效果表现为:鱼鳞坑>反坡梯田;鱼鳞坑改造方式提高了土壤水分的时间稳定性,反坡梯田改造方式降低了土壤水分的时间稳定性。[结论] 在平台和边坡2种地形条件下,集水坡面改造更有利于受损矿区平台生态治理,鱼鳞坑改造更有利于受损矿区边坡生态治理。  相似文献   

12.
为了深入探究半干旱地区沙丘土壤水分时空变化特征及其与环境因子关系,以科尔沁沙地为研究区,综合运用原位观测、数值模拟和冗余分析等方法,对沙丘土壤水分的时空变化特征、变异性、水平衡及其与环境因子的定量关系进行研究。结果表明:沙丘土壤水分在垂直剖面呈现出由半流动沙丘"镜像S "形逐渐过渡为阴坡固定沙丘" S"形的趋势,在时间尺度上呈"正态分布"形;半流动、半固定和阴坡固定沙丘土壤水分变异性随深度的增加逐渐减弱,半阳坡固定沙丘呈"S"形分布,最大变异系数为75.45%,均属中等变异;半流动和半固定沙丘水分主要消耗于深层渗漏,分别占总水量的57.35%和54.56%,半阳坡固定和阴坡固定沙丘水分主要消耗于植被蒸腾,分别占总水量的77.15%和54.88%;沙丘土壤水分影响因子具有差异性,容重、砂粒含量、粉粒含量和饱和导水率是影响半流动、半固定和半阳坡固定沙丘土壤水分的主要环境因子,而有机质、砂粒含量、粉粒含量和饱和导水率是阴坡固定沙丘土壤水分的主要影响因子。研究表明,半阳坡固定沙丘小叶锦鸡儿易消耗深层土壤水,造成土壤干燥化,草本和半灌木有利于深层土壤水分保持。  相似文献   

13.
基于近邻传播算法的茶园土壤墒情传感器布局优化   总被引:1,自引:0,他引:1  
针对节水灌溉的土壤墒情传感器布局问题,提出了基于近邻传播算法(affinity propagation,AP聚类算法)的优化布局策略。策略在保证茶园传感网络全覆盖的基础上,实时采集试验区各节点的土壤墒情数据,构建节点土壤含水率的相似度矩阵,并迭代计算各节点的吸引度和归属度值,得出聚类数和聚类中心。结果表明,采用AP聚类算法对试验区域传感器进行优化布局,优化了传感器数量和位置,使传感器数量由25个减少到2个。在试验区随机采集土壤相对含水率,经验证,聚类中心节点的土壤相对含水率与试验区平均值相近,相对偏差近为0.76%,表明聚类中心节点的土壤墒情数据具有代表性。该方法有效降低了数据的冗余度,节约了系统成本。  相似文献   

14.
麦田土壤水分时空变异特性及CA-Markov模型模拟预报   总被引:1,自引:1,他引:0  
为揭示农田土壤水分时空变异特征,精准预测土壤墒情,该研究以河北省太行山山前平原井灌区典型麦田为例,在监测土壤水分的基础上,采用时间稳定性指数法、空间自相关性评价法研究土壤水分时空分布规律,构建了适用于模拟预报田间水分时空变化的CA-Markov 模型,并将该模型的模拟预报效果与HYDRUS 模型进行比较。结果表明:随着土层深度的增加,土壤水分等值线由密变疏,变异系数逐渐减小。随着小麦生育期的推移,前期监测的土壤水分稳定性高于后期;在土壤较湿润的情况下,土壤水分空间相关性较强,土壤水分全局Moran''s I 指数随小麦生育期的推移呈现先增大后变小的规律。CA-Markov 模型模拟预报的各土壤相对湿度等级面积误差的平均值为1.61%,比HYDRUS 模型模拟预报的面积误差平均值(10.86%)小9.25个百分点; CA-Markov 模型对研究区4月下旬、5月上旬的土壤水分干旱等级预测的空间分布Kappa 系数分别为 89.31%、91.46%。该模型可综合考虑麦田墒情的时空变化及随机特性,模拟预测土壤墒情的精度较高、效果良好,可以作为麦田水分管理的重要工具。  相似文献   

15.
<正> 目前对土壤水分的研究可以分为两大类:一类是空间变异性问题,即对同一时刻不同位置的土壤水分特征值进行估计,另一类是时间变化问题,即对同一位置不同时刻的土壤水分特征值进行研究。 自1952年Gardner和Kirkham开创性地应用中子探测仪测定土壤水分的变化之后,中子探测仪成为比较通用的野外原状土壤含水量的探测仪器。该仪器能较准确地探测出土壤水分的时间变化过程,因此使得从短期内土壤水分平衡的角度来推算蒸发散量成为可能。 对于土壤性质的空间变异性研究,从本世纪初就已开始,特别是60年代以后,这方面的研究已进一步深入化。研究者们希望了解土壤特征参数在什么条件下才  相似文献   

16.
黄土高原典型切沟土壤水分时空分布特征及其影响因素   总被引:3,自引:0,他引:3  
研究切沟土壤水分及干层时空分布特征,有利于提高地区水资源利用效率及植被恢复效益。以神木市六道沟小流域典型切沟为研究对象,对土壤水分状况进行定位监测,分析沟底、沟缘和沟岸土壤水分时空分布、干层分布特征及其影响因素。结果表明:沟底土壤含水率由沟头至沟口呈明显增加趋势。沟底、沟缘和沟岸0~480 cm剖面土层平均含水率分别为17.1%、13.5%和14.4%。沟底0~480 cm剖面土层平均储水量为80.54 cm,沟缘及沟岸分别为67.49 cm和71.05 cm。地形和土壤质地是影响土壤储水量的主要因素;土壤储水量与距沟头距离、土壤黏粒、粉粒含量呈极显著正相关。沟底、沟缘和沟岸均有干层出现,且主要集中在靠近沟头位置,平均厚度和起始深度分别为243 cm和257 cm,平均含水率为9.5%。沟底、沟缘和沟岸干层平均厚度分别为100 cm、286 cm和331 cm。研究结果可为该区域土壤水资源管理和土壤水库评价提供理论依据。  相似文献   

17.
In this work we analyze the temporal stability of soil moisture at the field and watershed scales in the Little Washita River Experimental Watershed (LWREW), as part of the remote sensing Cloud and Land Surface Interaction Campaign (CLASIC07) during June 2007 in south-central Oklahoma. Temporal stability of surface and profile soil moisture data were investigated for 20 LWREW soil moisture measurement stations. In addition, daily surface and profile soil moisture measurements were obtained in four 800 m by 800 m fields (remote sensing footprint), including two rangeland sites and two winter wheat fields. The work aimed to analyze the temporal stability of soil moisture at the watershed and field scale and to identify stations within the watershed, as well as locations within each field, that were representative of the mean areal soil moisture content. We also determined the relationship between sites found to be temporally stable for surface soil moisture versus those determined stable for average profile soil moisture content. For the unusually wet experimental period, results at the watershed scale show that LWREW stations 133 and 134 provided stable underestimates, while stations 132 and 154 provided stable overestimates of the watershed mean at all depths. In addition, station 136 had very high non-zero temporal stability at the 25 cm and 45 cm depths indicating that it could be used as representative watershed site provided a constant offset value is used to acquire a watershed mean soil water content value. In general, the deeper depths exhibited higher soil moisture spatial variability, as indicated by the higher standard deviations. At the field scale, measured average profile soil moisture was higher in the winter wheat fields than the rangeland fields with the majority of the winter wheat depth intervals having high non-zero temporal stability. Field scale temporal stability analysis revealed that 4 of the 16 sampling sites in the rangeland fields and 3 of the 16 sampling sites in the winter wheat fields either under or overestimated the field means in the 0–5 and 0–60 cm depth intervals. Field sites considered temporally stable for the surface soil moisture were not stable for the profile soil moisture, except for the LW45 field where two sites were stable at both the surface and profile soil moisture. This finding is significant in terms of soil moisture ground-truth sampling for calibrating and validating airborne remotely sensed soil moisture products under extremely wet conditions. In addition, identification of temporally stable sites at the watershed and field scales in the LWREW provide insight in determining future measurement station locations and field scale ground sampling protocol, as well as providing data sets for hydrologic modeling.  相似文献   

18.
古尔班通古特沙漠南缘固定沙丘土壤水分时空变化特征   总被引:10,自引:0,他引:10  
朱海  胡顺军  陈永宝 《土壤学报》2016,53(1):117-126
土壤水分是维系古尔班通古特沙漠荒漠植被发育最主要的制约因子。为了研究古尔班通古特沙漠南缘固定沙丘土壤水分特征,于2012年12月4日至2013年11月4日,采用中子仪法对0~400cm沙层土壤含水率进行了原位观测,分析了沙丘不同部位土壤含水率的时空变化及不同发育阶段梭梭对其根区土壤含水率的影响。结果表明:(1)0~40 cm土层为土壤水分活跃层,40~200 cm土层为土壤水分次活跃层,200 cm以下土层为土壤水分相对稳定层;(2)西坡、坡顶和东坡的土壤含水率差异不显著,丘间地土壤含水率与西坡、坡顶和东坡均存在极显著性差异,且丘间地土壤含水率相对较高;(3)3—5月是土壤水分补给期,6—10月是土壤水分耗损期,11月—翌年2月是土壤水分稳定期;(4)不同发育阶段梭梭根区土壤含水率秋季均显著低于春、夏两季,壮年阶段梭梭根区土壤含水率各季都较低,青年阶段梭梭根区土壤含水率各季相差较大,壮年阶段梭梭和青年阶段梭梭根区土壤含水率春、夏季均存在显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号