首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Euglena gracilis was exposed for 24 hr to concentrationsof copper, nickel, lead and zinc ranging from 0.1 to 2.0 mg L-1 and to pentachlorophenol ranging from 0.1 to 10.0 mg L-1. Photosynthetic efficiency (PE) was inhibited by increasing concentrations of the heavy metals. Nickel was foundto be the least toxic of the metals to E. gracilis, whilethe other three metals exhibited similar levels of toxicity. Treatment with pentachlorophenol caused unusual responses of the photosynthetic apparatus probably due to the especially high toxicity of this substance. Both cell shape and motility turned out to be insensitive physiological parameters for the toxicity testing of the substances studied.  相似文献   

2.
A typical symptom of iron (Fe) deficiency in plants is yellowing or chlorosis of leaves. Heavy metal toxicity, including that of zinc (Zn), is often also expressed by chlorosis and may be called Fe chlorosis. Iron deficiency and Zn toxicity were evaluated in soybean (Glycine max [L.] Merr.) at two levels each of Zn (0.8 and 40 μM), Fe (0 and 20 μM), and sulfur (S) (0.02 and 20 mM). Reduction in dry matter yield and leaf chlorosis were observed in plants grown under the high level of Zn (toxic level), as well as in the absence of Fe. Zinc toxicity, lack of Fe, and the combination of these conditions reduced dry matter yield to the same extent when compared to the yield of the control plants. The symptoms of Zn toxicity were chlorosis in the trifoliate leaves and a lack of change in the orientation of unifoliate leaves when exposed to light. The main symptoms of Fe deficiency were chlorosis in the whole shoot and brown spots and flaccid areas in the leaves. The latter symptom did not appear in plants grown with Fe but under Zn toxicity. It seems that Fe deficiency is a major factor impairing the growth of plants exposed to high levels of Zn. Under Zn toxicity, Fe and Zn translocation from roots to shoots increased as the S supply to the plants was increased.  相似文献   

3.
Complex mixtures of water soluble materials from contaminated soils can move into groundwater and surface water by leaching, percolation, and runoff. We evaluated the potential toxicity of leachable materials from seven soils. Five soil samples were obtained at designated toxic or hazardous waste sites, and two additional soils samples were obtained from a coal storage area and from an agricultural field. Acidified tap water (pH 4.5) was used to extract toxic materials from elution columns filled with soil samples. Extracts were used as complex mixtures to conduct acute toxicity tests using Daphnia and chronic effects tests using aquatic microcosms. Three classes of effects were observed. Three soil leachates showed acute and chronic toxicity at less than 3% leachate. Two of these soils were contaminated by materials used in wood preserving, and the third soil was contaminated with heavy metals and acid. Two soils showed moderate acute toxicity but no chronic toxicity in microcosm tests. One of these soils was contaminated with low levels of chromium while the other soil was from a coal storage area. The remaining two soil samples showed no toxicity in either acute or chronic toxicity tests. One of these soils was from a reference agricultural field while the other soil was contaminated with solvents. The failure to detect toxicity in the solvent contaminated sample was attributed to the hydrophobicity of the toxicity materials. Results of these toxic screenings are in the same range as leachate toxicities estimated using other methods, although other methods use extraction materials that may interfere with some biological tests. Toxicological evaluations of materials from suspected contaminated soil are recommended for prioritizing clean up efforts at waste sites and for determining if toxic materials and contaminated soils have been effectively removed.  相似文献   

4.
This study was conducted to determine how the range of sulfur (S) supply (from deficient to luxuriant) interacted with possible toxic zinc (Zn) levels. Rocket seedlings were grown for 30 d at three Zn (1, 75, and 150 μM) and three S (0.03, 0.5, and 1.5 mM) concentrations in nutrient solution under controlled conditions. Plant leaves did not show symptoms of S deficiency or Zn toxicity, which was confirmed by pigment determination. Treatments affected only leaf area and shoot dry-weight percentage. The accumulation of Zn was greater in roots than in shoots and increased linearly with Zn supply. Shoot S concentration was affected by S deficiency, whereas nitrogen concentration was least at the greatest S and Zn concentrations.  相似文献   

5.
There is growing concern about the fate and toxicity of herbicides to non‐target receptors and an increasing need to measure these analytes sensitively. The responses of cellular and immunological biosensors to four commonly used herbicides (atrazine, diuron, mecoprop and paraquat) were investigated. In combination, these sensors assess toxicity and quantify concentrations of herbicides present in extracts from soil. The bioluminescence response of the lux‐marked bacterial biosensor Escherichia coli HB101 was determined in aqueous extracts from soil to indicate toxicity. Smaller concentrations caused a toxic response for all four herbicides recovered from the Insch series than for those recovered from spiked water samples, but this was not a result of biodegradation of herbicides in the soil. This suggests that intrinsic soil factors may be altering the bioavailable fraction of herbicides, making them more toxic than equivalent concentrations in water. Herbicide concentrations were determined using immunological biosensors consisting of stabilized recombinant single chain antibodies (stAbs) specific for the four different groups of herbicides. These stAb fragments retain functionality in organic solvents such as methanol commonly used in soil extraction. Anti‐atrazine, mecoprop, diuron and paraquat stAbs were successfully used to identify and quantify herbicides present in aqueous and methanol extracts from soil. The amounts recovered from immunoassay analysis were compared with chemical analysis using high performance liquid chromatography, and the two methods correlated. These stAb fragments might provide a more rapid and sensitive means of quantifying trace amounts of herbicides and their metabolites in aqueous and methanol extracts from soil.  相似文献   

6.
Variability in millet stands in West Africa is clearly visible as early as three weeks after planting. The objectives of this study were to determine the influence of pH and chemical toxicities on millet germination and seedling growth and to compare varietal tolerance of toxic conditions. A nutrient solution study was carried out with a series of Hoagland‐based nutrient solutions. Germination percentage was calculated, and root and shoot lengths were measured for one week. Critical values were determined for toxic elements. The only treatment which reduced germination percentage significantly was copper (Cu) concentrations >0.05M. Solution pH values between 5 and 7 resulted in the best root growth, though shoot growth was unaffected by pH. The roots were more sensitive than the shoots to several [aluminum (Al), boron (B), zinc (Zn)] of the elemental toxicities studied. Soil Al and manganese (Mn) levels may be high enough to have toxic effects on millet roots. However, natural soil iron (Fe), Cu, and Zn levels were much lower than the critical levels determined in the nutrient solution study. The improved varieties were more tolerant of Fe and Zn toxicity than the LOCAL variety, but the LOCAL variety was more tolerant of high B concentrations.  相似文献   

7.
Sediments from an eutrophic reference lake (L. HjÄlmaren) and eleven oligotrophic Swedish lakes were analyzed for heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and tested for whole sediment toxicity to Daphnia magna. Whole sediment toxicity, expressed as 48-hr EC50 on a wet weight basis in reconstituted dilution water, ranged from 2.8% (most toxic) to >32% (least toxic). Correlations between bulk sediment heavy metal concentrations and toxicity were significant (P≤0.05) for Hg, Pb, and Zn. However, a causal connection between the concentrations of these metals and toxicity was not supported by the results from metal-spiked sediment toxicity tests. In addition sediment toxicity was not affected by the addition of EDTA, which is a strong chelator known to reduce metal toxicity. After storage for several months test sediments either remained nontoxic, toxic, or increased in toxicity. These results illustrate some of the difficulties in the interpretation of bulk sediment chemistry data and the release of toxic chemicals from sediment samples, highlighting the effect of sediment storage on toxicity.  相似文献   

8.
Background, aim, and scope  It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods  Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e., ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion  Clear concentration–response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi-polar compounds, which are normally not considered in risk assessment of sediment since they are focused on compounds isolated in the hexane fraction. Conclusions  The ranking of the five sediments followed the expected pattern of potential toxicity in both organisms, i.e., sediments with known pollution history caused major effects while reference sediments caused minor effects in the two test systems. Silica gel turned out to be an excellent carrier for exposure of N. spinipes to very hydrophobic and otherwise non-bioavailable sediment extracts. Recommendations and perspectives  Since both test systems demonstrated that a substantial part of the potential toxicity was caused by semi-polar compounds in the acetone fractions, this study enlightens our poor understanding of which compounds are causing adverse effects in environmental samples. Therefore, by investigating potential toxicity (i.e., hazard identification) as a first screening step in prioritizing processes, these implications could be avoided. For proper sediment risk assessment, we however recommend whole sediment toxicity tests to be used for selected sites at following tiers.  相似文献   

9.
Sediment samples from 24 tributaries of the Po River (Italy) were screened for selected trace elements (Cd, Cu, Hg, Pb, and Zn) and extractable organic compounds; a proxy for contamination by organic microcontaminants. The toxicity of sediment extracts was evaluated using a battery of biotests (Dugesia gonocephala, Paracentrotus lividus, and Tamnocephalus platyurus). Contamination by trace elements (including very high Hg pollution – 4 to 16ppm total Hg – in one sub-basin) reached potentially harmful levels only in the sediments of four tributaries; while contamination by organic microcontaminants was present in most sub-basins. Sediments from most study sites did actually show signs of anthropogenic stress and were able to elicit a toxic response. A more detailed evaluation of sediment quality in the Po River tributaries seems to be urgently needed for developing the necessary remediation strategies. Research priorities should include more thorough testing of sediment toxicity, determination of metal background levels in the various sub-basins and a more detailed identification of the organic micropollutants of possible concern.  相似文献   

10.
Barley seedlings were grown in hydroponic culture in the presence of toxic concentrations of cadmium (Cd), molybdenum (Mo), nickel (Ni), and zinc (Zn) and analyzed for element composition [boron (B), calcium (Ca), Cd, iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), and Zn]. In a first survey, heavy metal concentrations were selected which resulted in a similar inhibition of root growth. Toxic concentrations of Cd, Mo, Ni, and Zn revealed both similar and distinct effects on specific leaf and root element contents. Examples for such responses were decreasing contents in root Mn and Mg at elevated levels of all heavy metals, including Mo, in the medium. In contrast, changes in root contents of B were specific for the applied type of heavy metal stress. The heavy metal dependent changes in B, Ca, Mg, and Mn contents were studied in more detail. In some cases, severe heavy metal toxicity caused excessive accumulation or depletion of nutrient elements that may be deleterious to the plants in addition to other primary damages caused by the heavy metal ions.  相似文献   

11.
This nutrient solution experiment investigated the effects of zinc (Zn) and cadmium (Cd) on winter wheat growth and enzymatic activity. Twelve nutrient solution treatments were prepared of four zinc levels (0, 0.5, 5 and 50 mg L?1) and three cadmium levels (0, 5 and 50 mg L?1). Cadmium concentrations ≥5 mg L?1 decreased plant growth, superoxide dismutase activity, and leaf and stem zinc concentrations, but increased plant cadmium concentrations, proline content, and peroxidase and catalase activities. Root activity and zinc concentration were highest in the 5 mg L?1 treatment and lowest in the 50 mg L?1 treatment. Zinc concentrations ≥5 mg L?1 inhibited plant growth, but increased proline content and cadmium concentration in stems and leaves. Low levels of zinc (0.5 mg L?1) increased cadmium-induced toxicity in wheat plants but high levels of zinc (50 mg L?1) reduced. In conclusion, these results indicated that the addition of zinc alleviated cadmium toxicity if the zinc/cadmium ratio was >10/1. Additional study needs to be done to quantify zinc content before zinc is supplied to alleviate cadmium toxicity.  相似文献   

12.
Toxicity of contaminated soils cannot be assessed only by chemical analyses, therefore bioassays are increasingly used. Widely accepted ecotoxicological methods include organisms from all levels of the food-chain but plant-based ones are usually restricted to germination and growth tests. In our study the toxicity of heavy metal contaminated soil samples were examined not only by germination and bacterial tests of their extracts but also by the measurement of physiological parameters of two plant species (cucumber and wheat) that were grown directly on the contaminated substrate. Changes in chlorophyll concentration, stomatal conductance, fluorescence characteristics, and malondialdehyde (MDA) level (showing oxidative damage to lipids in leaves) undoubtedly indicated the mobilisation and toxic effect of contaminants. The results showed that the sensitivity of plant physiological parameters was higher than that of the extract-based ecotoxicological tests. Whereas these latter could not reveal the toxic effect of the highly contaminated soils the plants have reacted in a more complex way and their physiological parameters have changed significantly in all cases validating their use in such studies. The applied measurements also allow quicker and more reliable testing even under field conditions (stomatal conductance) or the detection of a more complex response if detailed analyses is needed (MDA, fluorescence imaging) thus underlining the importance of plant-based methods.  相似文献   

13.
Application of most waste or by‐product material increases the zinc (Zn) concentration in soils markedly. This investigation was conducted to determine if enhanced sulfur (S) supplied as sulfate (SO4) would modify the toxic effects of excess Zn. Soybean (Glycine max [L.] Merf. cv. Rarisorri) was grown for two weeks in nutrient solutions containing ranges in Zn (0.8 to 80 μM) and S (0.02 to 20 mM). Root and shoot conditions were observed, dry weights measured, and Zri concentration determined. Zinc‐toxicity symptoms started about one week after transplanting young plants to nutrient solutions. Symptoms including chlorosis, especially in the trifoliate leaves, and change in orientation of unifoliate leaves were mild in 20 μM‐, intermediate in 40 μM‐, and severe in 80 μM Zn‐containing solutions. Dry weight was reduced in plants exposed to 20, 40, and 80 μM Zn. Plants grown in 40 μM Zn and 20 mM S survived longer than those grown in lower S concentrations and showed alleviation of the chlorosis in trifoliate leaves. The change in the orientation of the unifoliate leaves due to Zn toxicity, however, was not affected by S. Zinc contents in shoots grown at toxic Zn levels were higher in 20 mM‐ than in lower S‐containing nutrient solutions. High S supply (20 mM) increased Zn translocation from roots to shoots. Besides increasing the Zn translocation from roots to shoots, it seems that S nutrition may also be a factor helping the plants to cope with high levels of Zn in their tissues.  相似文献   

14.
The consumption of seaweeds has increased in recent years. However, their adverse and beneficial effects have scarcely been studied. Two extracts from the brown seaweed Fucus vesiculosus containing 28.8% polyphenols or 18% polyphenols plus 0.0012% fucoxanthin have been obtained and studied to determine their toxicity in mice and rats and also their antioxidant activity. Both extracts were shown to lack any relevant toxic effects in an acute toxicity test following a 4 week daily treatment in rats. The extracts exhibited antioxidant activity in noncellular systems and in activated RAW 264.7 macrophages, as well as in ex vivo assays in plasma and erythrocytes, after the 4 week treatment in rats. Our ex vivo results indicated that compounds from extract 2 may be more easily absorbed and that the antioxidants in their parent or metabolized form are more active. These findings support the view that the daily consumption of F. vesiculosus extract 2 (Healsea) would have potential benefits to humans.  相似文献   

15.
On the basis of chronic feeding bioassays with neonate larvae of Spodoptera littoralis reared on an artificial diet, the methanolic leaf and root extracts from Stemona collinsae displayed very high insect toxicity compared to those of two Aglaia species, a commercial Pyrethrum extract, and azadirachtin, whereas S. tuberosa extracts demonstrated low activity in roots and no activity in leaves. Beyond that, in leaf disk choice tests against fifth instar larvae, S. collinsae showed strong antifeedant activity, whereas S. tuberosa was characterized by remarkable repellency. The anti-insect properties of both species were based on pyrrolo[1,2-a]azepine alkaloids, from which didehydrostemofoline (asparagamine A) was the major compound of the roots of S. collinsae, exhibiting the highest toxicity in feeding assays. Saturation and hydroxylation of the side chain in the co-occurring stemofoline and 2'-hydroxystemofoline, respectively, led to an increasing loss of activity. Contact toxicity tests with stemofoline and didehydrostemofoline exhibited even higher activities than those of Pyrethrum extract. Tuberostemonine was the dominating alkaloid in the roots of S. tuberosa, showing outstanding repellency but no toxic effects.  相似文献   

16.
Aluminum toxicity is an important limitation to crop yields in the acid soils of southeastern U. S. and other parts of the world due to its detrimental effects on roots. Soluble organics in soil solution ameliorate Al toxicity, a phenomenon which can be studied employing synthetic chelates. Theoretical models predict that Al will be complexed on nearly a one to one molar basis by nitrilotriacetic acid (NTA) at toxic pH levels found in acid soils (4.0 to 4.5). A series of growth chamber experiments were conducted with NTA at various Al and pH levels to test equilibrium models using sorghum [Sorghum bicolor (L.) Moench] as a bioassay for the uncomplexed Al. At pH 3.5 neither Al nor NTA affected root growth which was very poor, probably because of H+ toxicity. At pH 4.0 and 4.5 root growth was reduced by Al levels, and NTA ameliorated toxicity as predicted by the theoretical model. Root length was reduced at pH 4.0 relative to pH 4.5 indicating that H+ ion was toxic at pH 4.0. The bioassay method was successful in confirming the model for Al-chelate equilibria for NTA. Differential pulse polarography was found to be sensitive to the uncomplexed Al and may have potential in determining toxic Al in soil solution.  相似文献   

17.
The programmed nutrient addition technique was used in a series of 5 experiments to determine the response in growth and micronutrient content of cassava (Manihot esaulenta Crantz) cv. M Aus 10, to 8 supply levels of boron, copper, iron, manganese and zinc respectively. The experiments were of 9 weeks duration and utilized 22 litre pots of nutrient solution. The supply levels for each micronutrient covered the range from severe deficiency to toxicity. Critical tissue concentrations for deficiencies determined by relating total dry matter production to the nutrient concentration in the youngest fully expanded leaf blades were (μg/g): boron 35, copper 6, manganese 50, and zinc 30. Likewise, critical concentrations for toxicities in the same index tissue were (μg/g): boron 100, copper 15, manganese 250, and zinc 120. In the iron experiment, the data were too variable to allow precise determination of critical concentrations for deficiency and toxicity. Critical micronutrient concentrations in the petioles of the youngest fully expanded leaves were also determined, but offered no advantage over the leaf blades.  相似文献   

18.
Pb-Zn交互作用对红壤微生物生物量的影响   总被引:1,自引:0,他引:1  
A laboratory incubation experiment was conducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil. Treatments included the application of lead at six different levels i. e., 0 (background), 100, 200, 300, 450 and 600 g g-1 soil along with each of the four levels of zinc (0, 50, 150 or 250 g g-1 soil). Application of lead or zinc alone to soil significantly (P < 0. 001) affected the soil microbial biomass. The microbial biomass carbon (Cmic), biomass nitrogen (Nmic) and biomass phosphorus (Pmic) decreased sharply in soils contaminated with lead or zinc. Combined application of lead and zinc resulted in a greater biocidal effect on soil microbial biomass, which was significantly higher (P < 0. 001) than that when either lead or zinc was applied alone. Consistent increase in the biomass C: N and decline in the biomass C:P ratios were also observed with the increased metal (Pb and Zn) toxicity in the soil.  相似文献   

19.
Toxicity of various animal wastes, after mixing with deionized water, for 1 and 24 hr, was measured using Photobacterium phosphoreum. The EC50 values determined by the ‘microtox’ toxicity test showed that the aqueous extracts of all animal wastes were toxic and the toxicity increased in the order: cattle, horse, sheep, pig and poultry. The observed toxicity was found not to be influenced by the amount of kjeldahl-N, NO3 or NH4 present in the waste-extract.  相似文献   

20.
《Applied soil ecology》1999,11(2-3):227-243
The uptake and excretion kinetics of cadmium, copper, lead and zinc were studied for Eisenia fetida exposed to mixtures of these metals in field and OECD artificial soil. Body burdens in worms exposed to all contaminated soils increased over the duration of the experiment. Highest accumulation rates were for worms exposed to the most polluted soils. Pronounced differences were found in the uptake and excretion patterns for essential and non-essential elements (particularly in field soils). For cadmium and lead (non-essential), an equilibrium plateau was not reached during the uptake study and slow excretion was found on transfer of worms to clean soil. For copper and zinc (essential), fast initial uptake was followed by equilibrium after only a few days exposure. Rapid excretion was found after transfer to clean soil, with half-lives of less than 1 day for both metals. A previous study of the effects of metals on worms exposed in OECD and field soils had indicated a higher toxicity in the artificial medium. Thus, in the present study, it was anticipated that greater toxicity would be reflected by increased body burdens for worms in OECD soil. This was, however, not the case. Explanations are given that might account for the fact that the greater toxicity in OECD soil is not invariably accompanied by higher metal burdens. These include the presence of high concentrations of very toxic and highly available ions in laboratory tests and potential differences in the importance of soluble and total metal concentration for determining toxicity and body burdens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号