首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Polyphenol oxidase (PPO) was purified and characterized from Chinese cabbage by ammonium sulfate precipitation and DEAE-Toyopearl 650M column chromatography. Substrate staining of the crude protein extract showed the presence of three isozymic forms of this enzyme. The molecular weight of the purified enzyme was estimated to be approximately 65 kDa by gel filtration on Toyopearl HW-55F. On SDS-PAGE analysis, this enzyme was composed of a subunit molecular weight of 65 kDa. The optimum pH was 5.0, and this enzyme was stable at pH 6.0 but was unstable below pH 4.0 or above pH 7.0. The optimum temperature was 40 degrees C. Heat inactivation studies showed temperatures >40 degrees C resulted in loss of enzyme activity. PPO showed activity to catechol, pyrogallol, and dopamine (K(m) and V(max) values were 682.5 mM and 67.6 OD/min for catechol, 15.4 mM and 14.1 OD/min for pyrogallol, and 62.0 mM and 14.9 OD/min for dopamine, respectively). The most effective inhibitor was 2-mercaptoethanol, followed in decreasing order by ascorbic acid, glutathione, and L-cysteine. The enzyme activity of the preparation was maintained for 2 days at 4 degrees C but showed a sudden decreased after 3 days.  相似文献   

2.
Two proteinaceous invertase inhibitors, designated ITI-L and ITI-R, were purified to electrophoretic homogeneity. ITI-L was purified from acetone powder of sweet potato leaves through sequential steps entailing buffer extraction, acid treatment, DEAE-Sephacel ion-exchange chromatography, and Sephacryl S-100 gel filtration. ITI-R was purified from sweet potato tuberous roots by sequentially applying buffer extraction, Con A-Sepharose affinity chromatography, DEAE-Sephacel ion-exchange chromatography, Sephacryl S-200, and Superose 12 gel filtration. The optimal pHs for interaction between ITI-L and ITI-R and acid invertase from sweet potato leaves were 5.5 and 5.0, respectively. The molecular masses of ITI-L and ITI-R were 10 and 22 kDa, respectively, as estimated by both gel filtration and SDS-PAGE. Both inhibitors were thermostable (90% of the activity remained after incubation at 100 degrees C for 20 min), and Western blotting showed them to be immunologically related.  相似文献   

3.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

4.
A hydrolase with chitinase and chitosanase activity was purified from commercial stem bromelain through sequential steps of SP-Sepharose ion-exchange adsorption, HiLoad Superdex 75 gel filtration, HiLoad Q Sepharose ion-exchange chromatography, and Superdex 75 HR gel filtration. The purified hydrolase was homogeneous, as examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited chitinase activity for hydrolysis of glycol chitin and 4-methylumbelliferyl beta-D-N,N',N' '-triacetylchitotrioside [4-MU-beta-(GlcNAc)(3)] and chitosanase activity for chitosan hydrolysis. For glycol chitin hydrolysis, the enzyme had an optimal pH of 4, an optimal temperature of 60 degrees C, and a K(m) of 0.2 mg/mL. For the 4-MU-beta-(GlcNAc)(3) hydrolysis, the enzyme had an optimal pH of 4 and an optimal temperature of 50 degrees C. For the chitosan hydrolysis, the enzyme had an optimal pH of 3, an optimal temperature of 50 degrees C, and a K(m) of 0.88 mg/mL. For hydrolysis of chitosans with various N-acetyl contents, the enzyme degraded 30-80% deacetylated chitosan most effectively. The enzyme split chitin or chitosan in an endo-manner. The molecular mass of the enzyme estimated by gel filtration was 31.4 kDa, and the isoelectric point estimated by isoelectric focusing electrophoresis was 5.9. Heavy metal ions of Hg(2+) and Ag(+), p-hydroxymercuribenzoic acid, and N-bromosuccinimide significantly inhibited the enzyme activity.  相似文献   

5.
尿素氮添加对黑钙土酸化速率及酸中和容量的影响   总被引:1,自引:0,他引:1  
张玉革  李甜  冯雪  刘梦霖  姜勇 《土壤通报》2022,53(1):172-180
[目的]探讨尿素氮添加对草原黑钙土酸化指标的影响及交换性盐基离子的酸缓冲机制.[方法]依托内蒙古额尔古纳草甸草原尿素添加试验,测定了尿素添加(加N量0、2.5、5、10、15、20 gm-2 a-1)4年后的黑钙土酸化参数.[结果]研究发现随尿素氮添加量的增加,表层(0~10 cm)土壤pH和交换性盐基总量(SEB)显...  相似文献   

6.
电极-SBBR对集中型沼液的脱氮除铜研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了处理集中型沼液中过高的氨氮和由饲料添加剂带入的铜,将电极生物膜法与序批式生物膜反应器(SBBR)工艺的优势进行互补,构建电极-SBBR耦合新工艺,以同时去除氮与铜。通过实验室配水与沼液试验,探讨了电极-SBBR体系同步脱氮除铜的工艺参数及其效果。结果表明,集中型沼液电极-SBBR体系的操作工序为:进水→厌氧→曝气→缺氧/厌氧→出水→闲置,运行参数为:水力停留时间7.0h,厌氧0.5h、曝气4.0h、缺氧/厌氧2.5h;电流30~60mA,溶解氧(DO)4.0~5.0mg/L,碳氮比(C/N)>10.0。电极-SBBR体系对沼液中全氮(TN)、Cu2+、化学耗氧量(COD)的去除率分别达到45.79%、86.53%和84.86%,可以作为沼液脱氮除铜的新工艺。  相似文献   

7.
  【目的】  褪黑素可提高作物抗旱性,但容易降解。本研究试图开发具有缓释和抵御光降解能力的褪黑素壳聚糖微粒,并对其抗旱性进行评价。  【方法】  利用壳聚糖与三聚磷酸钠和果胶所产生的静电引力,使三者之间产生交联形成包裹褪黑素的杂化微粒,从而实现褪黑素的缓释和保活。确定投入褪黑素质量为5 mg时制备的褪黑素壳聚糖微粒作为试验材料(MP-MT)。利用扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR),对褪黑素壳聚糖微粒(MP-MT)表面形貌及官能团特性进行表征。采用超高效液相色谱技术,探究MP-MT对褪黑素的缓释性能和抵抗光降解的性能。以两叶一心的小麦幼苗为试材,进行灌根试验。将基质最大持水量的80%设为正常对照(CK1),基质最大持水量的40%设为干旱对照(CK2);在干旱胁迫下,设施用1.0 g/L褪黑素(MT1.0)、壳聚糖微粒(MP)和含褪黑素0.5、1.0、1.5 g/L的褪黑素壳聚糖微粒(MP-MT0.5、MP-MT1.0、MP-MT1.5),共7个处理。在处理后第8天,取样分析小麦幼苗株高、干重、鲜重、叶片SPAD值、根系生长、抗氧化酶活性及丙二醛含量。  【结果】  当褪黑素投入量为5 mg时MP-MT对褪黑素的包封率最稳定,为52.14%,之后的相关试验均以该比例制备的褪黑素壳聚糖微粒(MP-MT)作为试验材料。通过SEM照片发现,MP-MT微粒粒径相较于壳聚糖微粒增加且表面变粗糙。MP-MT微粒FTIR结果同时检测出现了壳聚糖、褪黑素等组分的特征峰,表明褪黑素在微粒中存在。模拟释放试验结果表明,MP-MT在pH 5.0和pH 7.0磷酸缓冲溶液下36 h的释放率分别为65.43%、50.13%。模拟光降解试验表明,可见光照射4 h时MP-MT中褪黑素的光降解率较普通MT降低了143.37%。小麦幼苗干旱胁迫试验结果表明,与MT1.0处理相比,3个MP-MT处理的小麦幼苗干重增加4.50%~22.73%,根系长度增加15.92%~32.56%,过氧化酶活性提高19.56%~20.34%,丙二醛含量降低9.77%~12.30% (P<0.05)。  【结论】  壳聚糖/三聚磷酸钠/果胶的褪黑素封装体系可以实现褪黑素的缓释和保活,显著提高干旱胁迫下小麦幼苗SPAD值,促进根系发育,提高抗氧化酶活性,从而提高小麦幼苗抗旱性。  相似文献   

8.
A chitosanolytic enzyme was purified from a commercial ficin preparation by affinity chromatographic removal of cysteine protease on pHMB-Sepharose 4B and cystatin-Sepharose 4B and gel filtration on Superdex 75 HR. The purified enzyme exhibited both chitinase and chitosanase activities, as determined by SDS-PAGE and gel activity staining. The optimal pH for chitosan hydrolysis was 4.5, whereas the optimal temperature was 65 degrees C. The enzyme was thermostable, as it retained almost all of its activity after incubation at 70 degrees C for 30 min. A protein oxidizing agent, N-bromosuccinimide (0.25 mM), significantly inhibited the enzyme's activity. The molecular mass of the enzyme was 16.6 kDa, as estimated by gel filtration. The enzyme showed activity toward chitosan polymers exhibiting various degrees of deacetylation (22-94%), most effectively hydrolyzing chitosan polymers that were 52-70% deacetylated. The end products of the hydrolysis catalyzed by this enzyme were low molecular weight chitosan polymers and oligomers (11.2-0.7 kDa).  相似文献   

9.
An extracellular γ-glutamyltranspeptidase (GGT) with a specific activity of 683.4 U/mg was purified to homogeneity from a culture filtrate of Bacillus subtilis SK11.004 in three steps and then characterized. The GGT is composed of one large subunit of 40 kDa and one small subunit of 21 kDa that was determined by SDS-PAGE and a molecular mass of 62 kDa that was determined by gel-filtration chromatography. The purified GGT had an optimal pH and temperature of 10 and 37 °C, respectively, and it was stable at pH 4.0-11.0 or <50 °C. The enzyme exhibited the highest affinity to imino acids (L-Pro) and then decreasing affinities for aromatic amino acids, ethylamine and basic amino acids. The K(m) values of hydrolysis and of transpeptidation for L-Gln were 3.16 mM and 0.83 mM, respectively, suggesting that the GGT likely synthesizes valuable γ-glutamyl peptides using L-Gln as γ-glutamyl donor. The effects of inhibitors on the enzyme suggested that the tryptophan residues and hydroxy groups of Ser or Thr are essential to enzyme activity. Based on the biochemical characteristics of the enzyme and lack of homology to previously identified proteins, it can be concluded that the GGT from B. subtilis SK11.004 is a novel enzyme.  相似文献   

10.
  【目的】  针对农田化学氮肥施用量高、利用率低等问题,探究绿肥替代部分化肥氮对玉米产量形成及氮素吸收利用的影响,为优化绿洲灌区玉米的施氮制度提供理论参考。  【方法】  于2019—2021年,在甘肃河西绿洲灌区开展小麦复种绿肥并翻压还田后翌年轮作玉米减施氮肥田间试验。玉米季设传统施氮量(Nck)和绿肥替代10%、20%、30%、40%的化肥氮处理(即N10、N20、N30、N40处理)。分析了各处理玉米产量及其构成和氮素积累量、转运量及利用效率。  【结果】  与Nck相比,N10、N20处理籽粒产量、产量构成因素及叶面积指数无显著差异,玉米植株氮素总积累量、籽粒氮素积累量及转运氮对籽粒氮素的贡献率也无显著差异;2020年N10、N20处理对玉米茎叶的氮素积累量、转运量及转运率无显著影响,2021年N20处理玉米叶片和茎的氮素积累量分别降低5.0%和17.8%,叶片和茎的氮素转运量分别提高5.5%和9.1%,氮素转运率分别提高5.0%和14.1%。相比Nck,N30、N40处理提高了茎叶的氮素积累量,但降低了氮素转运量和转运率,降低了转运氮对籽粒氮素的贡献率以及籽粒和植株的氮素积累量,N30、N40处理籽粒产量分别降低了16.8%~19.0%、27.9%~28.9%。与Nck相比,N10和N20处理氮素利用效率无显著变化,2021年N20处理氮素收获指数显著提高了3.5%,N30和N40处理降低了氮素利用效率与氮素收获指数。绿肥替代化肥氮各处理均显著提高氮肥偏生产力,以N20处理提高幅度最大。  【结论】  小麦–绿肥–春玉米体系下,绿肥翻压替代翌年玉米20%的化肥氮投入能有效协调玉米产量形成和氮素的积累转运,维持玉米籽粒产量及氮素利用效率,提高氮素收获指数与氮肥偏生产力,实现绿洲灌区玉米稳产和减氮的生产目标。  相似文献   

11.
在水溶性引发剂过硫酸钾(KDS)的引发下,用微波辐照使丙烯酸在壳聚糖分子链上接枝聚合,并加入N,N’-亚甲基双丙烯酰胺进行适度交联,制备高吸水性树脂。利用FT-IR对产物结构进行定性表征,结果表明,丙烯酸在壳聚糖的分子链上发生了接枝聚合反应。研究了反应条件对产物吸液性能的影响,并通过正交试验对工艺条件进行优化。在最佳条件下合成产物的吸水倍率为815.0g/g,吸生理盐水倍率为72.2g/g,吸人工尿液倍率为67.5g/g。在微波作用下产物合成速率是传统方法的数十倍,吸液性能明显高于后者,且操作条件容易控制,后处理步骤明显简化,无污染,是一种高效的清洁生产工艺。  相似文献   

12.
The soil physicochemical characteristics and amounts of microbial biomass C, N, and S in 19 soils (10 grassland, 2 forest, and 7 arable soils) were investigated to clarify the S status in granitic regosols in Japan, in order to determine the relationships between biomass S and other soil characteristics and to estimate approximately the annual Sand N flux through the microbial biomass. Across the sites, the amount of biomass C ranged from 46 to 1,054, biomass N from 6 to 158, and biomass S from 0.81 to 13.44 mg kg-1 soil with mean values of 438.8, 85.8, and 6.15 mg kg-1 soil, respectively. Microbial biomass Nand S accounted for 3.4–7.7% and 1.1–4.0% of soil total Nand S, respectively. The biomass C: N, C : S, and N : S ratios varied considerably across the sites and ranged from 3.0–10.4, 32.5–87.7, and 5.0–18.8, respectively. Microbial biomass S was linearly related to biomass C and biomass N. The regression accounted for 96.6% for biomass C and 92.9% for biomass N of the variance in the data. The amounts of biomass C, N, and S were positively correlated with a number of soil properties, particularly with the contents of organic C, total N, SO4-S, and electrical conductivity and among themselves. The soil properties, in various linear combinations showed a variability of 84–97% in the biomass nutrients. Stepwise multiple regression indicated that biomass C, N, and S were also dependent on SO4-S as a second factor of significance which could limit microbial growth under the conditions prevailing at the study sites. Annual flux of Nand S was estimated through the biomass using the turnover rates of 0.67 for Nand 0.70 for S to be approximately 129 kg Nand 9.7 kg S ha-1 y-l, respectively, and was almost two times higher in grassland than arable soils.  相似文献   

13.
The hyphomycete Chalara paradoxa CH32 produced an extracellular beta-glucosidase during the trophophase. The enzyme was purified to homogeneity by ion-exchange and size-exclusion chromatography. The purified enzyme had an estimated molecular mass of 170 kDa by size-exclusion chromatography and 167 kDa by SDS-PAGE. The enzyme had maximum activity at pH 4.0-5.0 and 45 degrees C. The enzyme was inactivated at 60 degrees C. At room temperature, it was unstable at acidic pH, but it was stable to alkaline pH. The purified enzyme was inhibited markedly by Hg(2+) and Ag(2+) and also to some extent by the detergents SDS, Tween 80, and Triton X-100 at 0.1%. Enzyme activity increased by 3-fold in the presence of 20% ethanol and to a lesser extent by other organic solvents. Purified beta-glucosidase was active against cellobiose and p-nitrophenyl-beta-D-glucopyranoside but did not hydrolyze lactose, maltose, sucrose, cellulosic substrates, or galactopyranoside, mannopyranoside, or xyloside derivatives of p-nitrophenol. The V(max) of the enzyme for p-NPG (K(m) = 0.52 mM) and cellobiose (K(m) = 0.58 mM) were 294 and 288.7 units/mg, respectively. Hydrolysis of pNPG was inhibited competitively by glucose (K(i) = 11.02 mM). Release of reducing sugars from carboxymethylcellulose by a purified endoglucanase produced by the same organism increased markedly in the presence of beta-glucosidase.  相似文献   

14.
Pan  Xiaoying  Baquy  M. Abdulaha-Al  Guan  Peng  Yan  Jing  Wang  Ruhai  Xu  Renkou  Xie  Lu 《Journal of Soils and Sediments》2020,20(3):1435-1445
Purpose

To examine the effect of soil acidification on growth and nitrogen (N) uptake by maize in Ultisols.

Materials and methods

A clay Ultisol derived from Quaternary red earth and a sandy Ultisol derived from tertiary red sandstone were used in this study. A pot experiment was conducted with maize growing in the two Ultisols acidified to different pH values. Urea with 15N abundance of 10.11% was used to investigate the distribution of N fertilizer between soil and plant. Total N content and 15N abundance in plant and soil samples were determined by elemental analysis-isotope mass spectrometry.

Results and discussion

Critical soil pHs of 4.8 and 5.0 were observed for maize growing in the clay and sandy Ultisols, respectively. Below the critical soil pH, increasing soil pH significantly increased maize height and the yield of maize shoots and roots (both P < 0.05), but changes in soil pH showed no significant effect on maize growth above the critical soil pH in both Ultisols. Maize growing in the sandy Ultisol was more sensitive to changes in soil pH than in the clay Ultisol. Increase in the pH in both Ultisols also increased N accumulation in maize, the N derived from fertilizer in maize, physiological N use efficiency, and N use efficiency (NUE) by maize. Changes in soil pH had a greater effect on these parameters below the critical soil pH, compared to above. The change in soil pH had a greater effect on N accumulation in maize, the N derived from fertilizer in maize, and NUE in the sandy Ultisol than in the clay Ultisol. The NUE increased by 24.4% at pH 6.0, compared with pH 4.0 in the clay Ultisol, while the NUE at pH 5.0 was 4.8 times that at pH 4.0 in the sandy Ultisol. The increase in soil pH increased the ratio of N accumulation in maize/soil residue N and decreased the potential loss of fertilizer N from both Ultisols.

Conclusions

Soil acidification inhibited maize growth, reduced N uptake by maize, and thus, decreased NUE. To maintain soil pH of acidic soils above the critical values for crops is of practical importance for sustainable food production in acidic soils.

  相似文献   

15.
In this study, the efficiency of chitin and chitosan toward the removal of ethylbenzene from aqueous solutions was investigated. Batch adsorption experiments of ethylbenzene-contaminated waters (5?C200 mg/L) were carried out to evaluate the removal performance. Ethylbenzene uptake was determined from the changes in concentration, as the residual concentration was measured by gas chromatography with mass spectroscopy. The results indicated that the adsorption of ethylbenzene by chitin and chitosan were in agreement with the Langmuir isotherm, for two parameters model, and Redlich?CPeterson isotherm, for three parameters model. A maximum removal percentage of 65% of ethylbenzene can be achieved using chitosan as adsorbent material. The adsorption capacity of ethylbenzene followed the order chitosan?>?chitin. The pseudo-second order rate model described best the adsorption kinetics of ethylbenzene for the two selected adsorbents. The kinetic studies also revealed that the pore diffusion is not the only rate controlling step in the removal of ethylbenzene. Overall, the study demonstrated that chitosan is a potential adsorbent for the removal of ethylbenzene at concentrations as high as 200 mg/L.  相似文献   

16.
A two-step digestion–ultraviolet (UV) spectrophotometry method for total nitrogen (N) determination in solid samples is described in this work. Three influencing factors (amount of hydrogen peroxide, amount of sulfuric acid, and digestion time) of the digestion are optimized, and for digestion of a 0.1-g solid sample, the optimal conditions are 0.5 mL of sulfuric acid, 0.2 mL of hydrogen peroxide, and 40 min of the digestion time. The results of ion chromatography show that under the optimal conditions the organic nitrogen almost quantitatively mineralizes into ammonium in the first digestion. The nitrogen content in six real samples has been analyzed under the optimal conditions, and the nitrogen recovery rates of standard compounds added in the real samples were between 88% and 99%. The results obtained by two-step digestion–UV spectrophotometry method are consistent with those by classical Kjeldahl method (correlation coefficient is 0.9999). The possible degradation pathways of three amino acids were also proposed.  相似文献   

17.
武星魁  施卫明  徐永辉  闵炬 《土壤》2021,53(6):1160-1166
为揭示长期施用不同化肥氮对设施菜地土壤供氮能力的影响,选取连续种植15年不同化肥氮用量下的设施菜地土壤,采用好气密闭培养法研究长期不同化肥氮用量对设施菜地土壤氮素矿化和硝化作用的影响。供试土壤为5个氮施用水平,分别为:不施化肥氮(CK),常规化肥氮(100% N),常规化肥氮上减氮20%(80% N)、40%(60% N)、60%(40% N)。结果表明:与初始矿质氮量相比,培养结束后CK、40% N、60% N、80% N和100% N处理土壤矿质氮变化量分别为38.9、44.7、20.6、-32.7、-87.6 mg/kg;CK、40% N和60% N处理土壤矿质氮变化量分别占各自土壤全氮量的2.7%、2.5%和1.0%,80% N和100% N处理土壤矿质氮量与初始矿质氮量相比下降1.3%和3.1%;CK、40%、60% N、80% N和100% N处理土壤硝化速率分别为19.3、11.2、4.9、5.2、1.2 mg/(kg·d)。长期高量化肥氮(80% N和100% N)投入下,设施菜地土壤氮素矿化和硝化速率显著降低,土壤供氮能力下降,土壤pH降低可能是导致土壤矿化和硝化作用受到抑制的原因之一。鉴于此,设施蔬菜种植体系在现有施氮水平上应减少化肥氮投入,科学优化施肥,维持土壤的供氮能力,确保设施土壤的可持续利用。  相似文献   

18.
Four series of experiments were conducted to determine how pH affects the uptake of ions by spruce (Picea abies). Each series consisted of 12 plants growing in nutrient solutions with pHs of 3.0, 3.5, 4.0 and 5.0, respectively. The uptake of Rb, K and NH4 was studied. The uptake of Rb and NH4 in relation to the uptake of K was pH dependent, plants chose Rb and NH4 before K, the reason explained with the aid of a model including binding energy, hydration energy and the charge on the carrier. This model could explain other patterns of uptake of ions according to changing pH as long as the same carrier is used. Furthermore, our results indicate that coniferous trees growing on low pH soils in areas with a heavy N load from the atmosphere could risk shortage of K. Additional field studies are needed for verification.  相似文献   

19.
Arsenic, lead, and phosphorous contamination in soils represents a health risk. Chitosan (poly-N-acetyl glucosamine) inexpensive by-product derived from chitin has been used as a metals adsorbent. Objectives of this research were to evaluate the effectiveness of chitosan solution for arsenic, lead, and phosphorous extraction from lead-arsenate contaminated soils, and evaluate the effectiveness of protonated chitosan flakes (PCF) and ferric hydroxide chitosan beads (Fe(III)-CB) for water-soluble As removal from these soils. Percentage of arsenic, lead, and phosphorous removed from the soils by chitosan solution ranged from 0.96% to 17%, 1.80% to 31%, and 0.66% to 11%, respectively. Percentage of water-soluble arsenic removed by PCF and by Fe (III)-CB ranged from 12% to 47% and 36% to 77%, respectively. Averaged over soils, Fe (III)-CB removed slightly more arsenic (As) (42 mg kg?1) compared to Mehlich III (40 mg kg?1) extractant. Results indicate potential for the use of chitosan as an extraction for lead-arsenate contaminated soils.  相似文献   

20.
A modified liquid chromatographic method is described for the determination of Gentian Violet (GV) in animal feed. The reliable detection limit is 0.5 ng (reference standards), and 1 ppm GV was reliably determined in feed. The calibration curve was linear between 1 and 40 micrograms/mL. The method, developed in a study by the National Center for Toxicological Research, was modified to use methanol-water (9 + 1) instead of benzene-methanol as the eluting solution in the column cleanup. GV is extracted from feed with methanol-1N HCl (99 + 1), cleaned up on a Sephadex LH-20 column to remove any remaining interferences, separated on a Nova-Pak C18 column fitted with a precolumn filter, and determined at 588 nm. The identity of GV is confirmed by thin-layer chromatography (Rf = 0.47) by comparison with a reference standard. Average recoveries from 3 sets of 5 feed samples containing 2.5, 5.0, and 10.0 ppm GV were 115, 95, and 102%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号