首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
基于CFD的养殖水体固液旋流分离装置数值模拟与验证   总被引:5,自引:5,他引:0  
为探究旋流分离装置对水产养殖水体的分离效果,采用计算流体力学方法对旋流分离装置内部的流动特性进行数值模拟,得到了不同入口流量、不同入口浓度对固液分离性能的影响,通过试验数据对模拟结果进行了验证。模拟结果表明:随着入口流量的增加,分离装置内部流体速度增大,湍流流动增强,不利于固体颗粒的沉降。当入口浓度增加时,筒内流体运动速度降低,滞留在筒体中的颗粒浓度增加,降低了固液分离效率。入口流量和入口浓度的增加均会导致不同粒度颗粒分离效率下降,且随着颗粒粒度的增大,分离效率下降幅度增大。通过与试验数据相比,模拟误差在10%以内,模拟结果可信。该研究可为旋流分离装置在水产养殖领域的应用提供参考。  相似文献   

2.
射流式在线混药装置汽蚀特性数值分析与试验   总被引:1,自引:3,他引:1  
为了解不同压力比下的汽蚀特性,该文采用试验与数值分析相结合的方法,测量不同出口压力下(0.25、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.35 M'Pa)的工作流体、吸入流体与混合流体的质量流量,得到压力比与混药比的特性曲线;采用Mixture模型中的Zwart-Gerber-Belamri汽蚀模型,分析了不同出口压力下的内部静压分布和气相分布;对试验值与仿真值进行拟合分析,拟合优度R~2=0.9618,验证了模型的准确性;研究结果表明,当压力比大于0.6时,混药性能较差,甚至会出现逆流。当压力比在0.4~0.6之间时,混药比与压力比负相关。当压力比小于0.4时,混药比与压力比无关,即达到汽蚀混药比:在工作压力为2.0 MPa,吸入口压力为0下,当出口压力为0.8:MPa(压力比为0.4)时,内部流体发生汽蚀,且出口压力越低,汽蚀现象越严重。该研究为提高装置混药比稳定性能,保障流式混药装置高效运行提供理论依据。  相似文献   

3.
农用无人机超低容量旋流喷嘴的雾化特性分析与试验   总被引:9,自引:5,他引:4  
针对农用植保无人机超低容量喷施作业时,使用液力喷嘴产生的雾滴粒径较大,离心喷嘴结构复杂、价格较高等不足,基于旋流雾化的原理并采用模块化方法,提出了一种超低容量旋流喷嘴结构。通过对旋流喷嘴内流场的流体动力学行为和雾化特性进行数值分析与试验,明确了流体的物理特性和旋流喷嘴的结构参数等对雾化性能的影响规律。研究结果表明,液膜表面的正弦波失稳是导致锥形液膜碎化为雾滴的主要原因,在旋流喷嘴的结构参数中,喷嘴出口直径是喷嘴雾化性能的主要影响因素。当喷嘴出口直径从1增大至1.5 mm,喷雾流量平均增大了46.23%,喷雾角平均增大了29.77%,产生雾滴的索特平均直径平均增大了15%。此外,喷雾流量还与旋流槽数量成比例,旋流槽的螺旋角主要影响喷雾角。喷嘴入口处的流体相对压强则对喷雾角及雾滴粒径有较大的影响,其中喷雾角随着相对压强的增大而增大,而雾滴的索特平均直径随压强的增大呈非线性递减,当流体的相对压强从70增大至160 k Pa时,系列化旋流喷嘴的索特平均直径降低了约25%~35%。此外对于旋流喷嘴而言,流体黏度的增大会导致喷雾角的减小,但适当增加流体的黏度(不超过纯水黏度的200%)可显著降低雾滴的平均粒径,提高喷嘴的雾化质量。该研究可为农用无人机超低容量变量喷洒系统的研发提供参考。  相似文献   

4.
旋流泵含气混输数值计算及涡室流场探针测量   总被引:2,自引:2,他引:0  
为探索旋流泵内部流场及气液两相流混输特性,该文通过32WB8-12型旋流泵外特性试验和泵最优工况流场五孔探针测量,得出泵性能曲线和5个测点静压ps、绝对速度v、圆周速度vu、径向速度vr和轴向速度vz分布情况。针对N-S方程中四项力在气液两相流动中的具体表现特性进行力学分析,说明了泵内部两相流动特点及关联因素之间约束关系。阐明了旋流泵含气混输抽吸和扬程形成的基本原理,及空化和气液两相流混输的不同特点。选择性能试验最优工况,基于改进重组化群k-ε湍流模型(RNG k-ε模型),应用Fluent软件对泵内部流场进行数值模拟,得到了3个轴面静压、速度矢量和含气率分布图。证明泵进口轴向运动为主流,气体主要集中在压力较低的进口区域。气相的引入,其微团与液相尺寸、形状及弹性模量的不同,造成两相流场惯性力、摩擦力和浮力发生变化,由此解释了外特性变化及气液抽吸与内部流动之间定性的因果关系。探讨了旋流泵内部气液两相流动速度场和过流通道发生畸变的基本原理,为建立旋流泵内部气液及空化流动模型提供实例。  相似文献   

5.
离心泵内部非定常压力场的数值研究   总被引:11,自引:8,他引:3  
为研究离心泵内部压力随叶轮旋转的变化,采用FLUENT提供的滑移网格技术对设计工况下离心泵内的非定常流动进行了数值计算,分析了离心泵内部非定常流动的规律。结果表明:离心泵内部流动的非对称特性和非定常特性明显;离心泵出口和叶片进口压力的波动对离心泵性能影响较大;在蜗壳中部截面S2和蜗壳出口截面S3上,静压的波动主要受叶片和蜗舌相对位置的影响,而动压的波动主要受叶片和截面相对位置的影响;两截面上沿蜗壳径向静压增大,动压减小;沿蜗壳周向静压随圆周角的增大而增大,而动压略成下降趋势。该分析为研究离心泵内流现象,降低离心泵的汽蚀、振动和噪声提供了有益的借鉴。  相似文献   

6.
为改善离心通风机的气动性能,该文以一高比转速离心通风机为研究对象,结合试验和全通道数值模拟研究了锥盘及4种不同弧盘叶轮对离心通风机性能的影响,通过对非定常流场及压力脉动信号的分析得到了前盘型线对高比转速离心通风机性能的影响机理。研究结果表明,随着比转速的增大,叶轮前盘型线对离心通风机效率的影响程度增大,比转速为73和120时,弧盘叶轮较锥盘叶轮效率分别提高5%和14.5%。高比转速离心通风机锥盘叶轮在靠近前盘处的流动分离现象过早,并一直延伸至叶轮出口,在无叶扩压器区域沿轴向出现环流,严重阻碍流体流入蜗壳。将锥盘改为弧盘后,叶片负荷和出口气流角增大,流动分离损失降低,出口压力脉动幅值降低。对前盘弧线进一步优化后,弧盘叶轮边界层损失和压力脉动进一步减小,在设计工况(38 205.63 m~3/h)下效率较原弧盘叶轮提升了1%。该研究成果为高比转速离心通风机叶轮的设计以及内部流动特性的研究提供了参考。  相似文献   

7.
为明确舌安放角对旋流泵性能及非定常流动特性的影响,该研究设计了不同隔舌安放角的蜗壳模型,基于Navier-Stokes方程和RNG k-?湍流模型对旋流泵进行了全流场数值模拟,并通过能量性能和压力脉动试验对数值模拟方法进行了验证。能量性能预测结果表明,存在最优隔舌安放角使泵扬程和效率均达到极大值。流场分析结果表明,隔舌安放角对蜗壳隔舌及扩散段的流态具有较大的影响:较小的隔舌安放角会减小蜗壳喉部的过流面积,使无叶腔内流体的旋转运动受阻,致使循环流与隔舌的动静干涉作用增强;过大的隔舌安放角会造成扩散段产生大尺度的漩涡和回流。压力脉动分析表明,隔舌处压力脉动分布特征受安放角和测点位置共同影响:随隔舌安放角的增大,隔舌处的压力脉动先降低后增大,安放角由30°增大至45°时,2倍轴频(fn)的脉动最大降幅约47%,安放角继续增大至50°时,(0.25~0.5)fn的低频脉动最大增幅约86%;随着测点与叶轮轴向距离增大,隔舌处的压力脉动逐渐减小,叶轮一侧的脉动幅值约为泵体进口一侧的2倍。涡量场分析表明:蜗壳隔舌处频率为2fn的压力脉动由入口螺旋状入流发展扩散产生;隔舌处涡核分布的不对称性是导致蜗壳隔舌处压力分布不对称的原因。适当增大隔舌安放角能有效改善旋流泵隔舌处内流的稳定性,并一定程度提升旋流泵扬程和效率。综合各项性能表明该模型泵隔舌安放角45°时性能最优。研究结果可为旋流泵优化设计提供理论参考。  相似文献   

8.
为研究机电一体化轴流泵间隙泄漏流对泵内流场结构的影响规律及机制,该研究基于RNG k-ε湍流模型,利用ANSYS CFX仿真软件对该泵进行不同流量工况(1 674~2 510 m3/h)的全流场瞬态数值模拟。具体分析该泵压力、湍动能和涡量场分布情况,研究转子摩擦损耗和泄漏量随流量变化的关系,并揭示径向速度和叶轮效率的变化规律,明确机电一体化轴流泵的泄漏流流动特性。研究结果表明:在额定工况(2 092 m3/h)下,机电一体化轴流泵电机转子外壁面的机械摩擦损耗扭矩占泵总扭矩的19.1%,且占比随流量的增加而增大;流体流经该泵电机定转子间隙并泄漏回流至叶轮入口,形成射流,使得叶轮入口轮缘位置存在明显的径向流动。该流动导致叶轮流道内径向系数为0.9~1.0的近轮缘位置出现高湍动能、强涡量区域,引起该区域水力损失增大,水力效率降低,且流量越小,影响越为显著。因此,机电一体化轴流泵节能设计的重点在于电机与叶轮协同设计,在满足水力性能的前提下尽可能降低转子摩擦损耗以及间隙泄漏流流动对叶轮进口流场结构的破坏。研究结果可为机电一体化轴流泵的研究及性能提升提供...  相似文献   

9.
为了研究混流泵启动过程的准稳态性能,该文以瞬态外特性试验性能参数为依据,获得了混流泵准稳态计算的外特性曲线和无量纲扬程瞬态性能曲线,通过对3种转速下的压力场、速度矢量分析,总结出准稳态计算混流泵内部流动的一般性规律并与粒子图像测速技术(particle image velocimetry,PIV)测量的瞬态内部流场进行对比。研究发现,准稳态计算扬程呈现直线上升趋势,并随着体积流量的增大逐步偏离试验扬程;3种转速下泵内压力具有相同的分布趋势,叶轮进口截面相对速度矢量近似满足相似定律,并在低转速下出现大尺度的叶顶泄漏涡。与无量纲瞬态性能一致,瞬态PIV测量结果呈现出明显不同于准稳态工况的瞬态效应:在0.75 s时准稳态计算中叶顶泄漏明显,在外缘形成泄漏涡和进口边回流,而瞬态PIV测量中端壁区边界层正从层流向湍流发展;在1.07 s时准稳态计算中叶轮进口速度分布较为均匀,而瞬态PIV测量中流体在惯性力作用下呈现从轮毂向轮缘运动的趋势,卷吸效应较为明显;在1.35 s时准稳态计算结果与1.07 s时的速度场分布较为相似,而瞬态PIV测量中加速的卷吸效应更为显著,外缘高速流动区域随着转速的增加不断增大。该研究可为考证准稳态假设方法的准确度和揭示混流泵启动过程瞬态内部流动特性提供参考。  相似文献   

10.
为了研究箱涵式泵装置无汽蚀、开敞出流和汽蚀条件下压力脉动特性和振动特性,在进水喇叭管和叶轮室进口壁面布置了4只压力脉动传感器和箱体顶部布置了2只振动传感器,对多个工况点压力脉动特性和振动特性进行了动态测量,揭示了轴流泵进水部分不同条件下的压力脉动规律和振动特性。试验结果表明,叶轮室进口压力脉动峰峰值较大,叶轮室监测点主频值均为叶片转频,进水喇叭管除低频脉动外主频主要分布在叶频和转频位置;各工况点叶轮室进口两测点压力脉动有较好的对称性,进水喇叭管南北两侧压力脉动不对称;叶轮室进口压力脉动峰峰值基本都是随着流量的增加而减小;汽蚀条件下和开敞式出流条件下与没有发生汽蚀时相比,频谱图对应性较好,频率分布大体规律基本能够吻合,主要频率对应的幅值比不发生汽蚀时略大,汽蚀条件下频谱分布更广;水平振动位移均在10μm以内,竖直振动位移较大,说明泵装置运行时竖直振动更为明显。振动位移的大小随着流量的增大而减小。汽蚀条件下振动位移较非汽蚀时增大2.4~8.6μm,其中流量越小竖直振动位移增加越大,因此,实际工程中应尽量避免在小流量工况汽蚀条件下运行。该文关于箱涵式泵装置进水部分压力脉动试验研究可为同类泵站优化设计提供参考。  相似文献   

11.
转轮下环间隙对混流式水轮机内部流动特性的影响   总被引:1,自引:1,他引:0  
水轮机转轮间隙内的泄漏涡、泄漏流等复杂的湍流易影响水轮机的性能与稳定性。为了分析下环间隙对混流式水轮机能量特性和内部流态的影响,该文基于N-S方程和SST湍流模型,考虑了0.6 Qd(Qd为设计流量工况)、0.8 Qd、Qd、1.2 Qd共4种流量工况,对5种下环间隙下的混流式水轮机模型机进行三维全流道数值计算。通过对比不同下环间隙方案对混流式水轮机效率与容积损失的影响,结合不同水轮机内部流场特征,分析下环间隙与水轮机性能的关系。计算结果表明:下环间隙由0.4 mm增大到1.3 mm,机组泄漏量增大,水轮机效率整体呈下降趋势。其中,当机组在小流量0.6 Qd工况运行时,间隙对水轮机能量特性影响最为明显,效率下降了4.1个百分点。当机组在小流量0.6 Qd与0.8 Qd工况运行时,下环间隙增大,间隙内部流场与尾水管内部流场呈现小幅度恶化;当机组在大流量1.2 Qd工况运行时,下环间隙增大,转轮叶片吸力面压力分布以及尾水管内部流场均得到改善。该研究可为混流式水轮机结构设计提供有效参考。  相似文献   

12.
微灌离心分离器内部流场分布数值模拟   总被引:1,自引:1,他引:1  
在缺水地区,利用高含沙水作为微灌水源的条件下,低浓度混合多相流模型已不能适用于微灌用离心分离器的数值模拟。该文以高含沙水作为微灌水源,结合离心分离器的结构参数,在流体力学基本方程基础上,通过网格划分和边界条件设定,采用有限体积法进行离散和求解,控制方程采用k-ε模型模拟分析了离心分离器的内部流场特征,并通过试验验证数值模拟成果,模拟值与试验实测值相对误差在10%以内,说明数值模拟采用的算法和模型是合理的。在试验验证的基础上,模拟分析了高含沙水为微灌水源的条件下,离心分离器的速度、湍动能以及静压分布,结果表明:离心分离器内速度分布主要有切向速度、轴向速度和径向速度,沿径向方向具有一定的对称性;离心分离器内湍动能分布具有一定的对称性,由轴中间向器壁两侧逐渐变小;静压分布具有一定的对称性性,由器壁两侧向轴中心逐渐减少。结果可为微灌用离心分离器特性参数的优化提供依据。  相似文献   

13.
微灌旋流网式一体化水砂分离器试验   总被引:1,自引:1,他引:0  
现有研究以及关注的过滤设备多集中于低含砂水水源,对于缺水地区以高含砂水为水源进行微灌的研究较少,该文提出一种新型微灌用网式一体化水砂分离器,并与常规水砂分离器进行试验对比分析,旨在解决以高含沙水为水源进行微灌的堵塞问题。该文在试验对比的基础上,分别计算网式一体化水砂分离器和常规水砂分离器的主要性能参数,包括溢流参数(溢流流量和溢流浓度)、底流参数(底流流量、底流浓度、底流分流比)以及分级分离参数(分离效率和分级效率)。结果表明,网式一体化水砂分离器和常规水砂分离器的溢流流量和底流流量均与进口压力呈正相关关系,而底流分流比与进口压力呈负相关关系;在进口压力为0.26~0.34 MPa时,网式一体化水砂分离器的分割粒度为20.0~25.0μm,分离极限为83.5~89.0μm,分离精度为0.40~0.43;而常规水砂分离器的分割粒度为24.5~27.5μm,分离极限为86.0~95.0μm,分离精度为0.27~0.42。如果以分离效率80%为评价指标,在进口压力为0.26~0.34 MPa时,常规水砂分离器的平均分离粒径为65μm,而网式一体化水砂分离器的平均分离粒径为45μm。研究可为高含砂水微灌用新型过滤器提供了试验方法、试验参数和理论依据。  相似文献   

14.
水轮机槽道内导叶动态绕流水力特性大涡模拟分析   总被引:1,自引:1,他引:0  
为进一步探索水轮机导叶在调节过程中产生强瞬变流时水流和导叶间的非线性流固耦合机理,该文基于大涡模拟和二维瞬态N-S方程,应用ANSYS FLUENT软件中的任意拉格朗日-欧拉动网格技术和非迭代时间推进格式对槽道内导叶的关闭运动过程进行数值模拟,研究导叶绕流后的流场动态变化水力特性及涡激振动特性。结果表明:导叶关闭过程中槽道内的压力场、速度场、涡量场呈现出明显的非定常特征;卡门涡频率约为水轮机转轮转频的0.3倍,极易诱发低频压力脉动,随着关闭时刻的结束导叶后尾迹涡形态呈现出明显的卡门涡脱落过程;关闭过程中转动导叶的升、阻力系数随时间表现出非线性动力响应特征。揭示了低频压力振荡的产生与导叶调节关闭动作后导叶尾部的卡门涡列有关,卡门涡列诱发的非线性流激振动是影响水轮机水力稳定性和上游管道系统水力共振的主要因素。该方法可为有效模拟水力机械瞬态非线性流固耦合问题提供参考。  相似文献   

15.
浓缩风能装置的扩散管结构直接影响浓缩风能型风电机组的输出功率.为提高浓缩风能装置的浓缩效率,以浓缩风能装置为研究对象,采用数值模拟方法,研究扩散管凸缘的几何参数对浓缩风能装置内部流场特性的影响规律;并通过试验验证数值模拟的可靠性.结果表明:扩散管凸缘结构能够明显提高浓缩风能装置对自然风的加速作用和风能利用率;且装置内部流场的流速和风轮扫掠面积上的可利用风能随着凸缘高度L的增加而增大.综合分析可得,带有L为450 mm、凸缘角度α为+9°的扩散管凸缘的浓缩风能装置模型流场流速和可利用风能较高;与原始模型相比,其内部流场最大流速提高了30.738%,可利用风能提高了84.26%,是所研究模型中流场性能较佳的浓缩风能装置结构.  相似文献   

16.
姬忠涛  田德 《农业工程学报》2016,32(21):230-234
通过3D打印技术可以方便快捷地制作出浓缩风能装置风洞试验模型,但必须对其安全性进行分析。该文采用流固耦合分析方法,对利用3D打印技术按1:4.5的比例制作的浓缩风能装置模型用于风洞试验的安全性进行分析。首先通过计算流体力学软件对流体场进行网格无关性分析,然后对流体场进行仿真模拟,得出了浓缩风能装置模型在风洞中的风速分布,其结果表明,浓缩风能装置叶轮安装平面6点风速平均值为流场入口风速的1.40倍,该倍率与参考文献中的实际测量平均倍率1.38倍非常接近,这说明按1:4.5的比例制作的浓缩风能装置模型用于该文所述尺寸风洞按该文中的设置进行模拟计算是正确的。然后将该模型表面风压分布作为载荷加载到此模型上,得到该模型在风洞中所受最大应力为3.5385 MPa,远小于所选3D打印材料的拉伸强度40.2 MPa和弯曲强度67.8 MPa,且最大偏移量仅为1.8675 mm,因此采用文中所选3D打印材料通过3D打印技术制作风洞试验模型是安全的。  相似文献   

17.
用于制造浓缩风能装置的材料直接影响浓缩风能型风力发电机的推广及应用。该文通过流固耦合分析方法,对有机玻璃用于制造浓缩风能装置的可能性进行分析。采用计算流体力学(computational fluid dynamics,CFD)软件对浓缩风能装置在特定风场下进行仿真模拟,得到了不同温度下浓缩风能装置所处流场的风速和风压分布。将不同温度下的流场计算风压分布结果作为载荷加载到对应温度下的浓缩风能装置上,得到该装置在不同温度下所受最大应力。这些不同温度下的最大应力均远小于有机玻璃在对应温度下的断裂应力,如温度为293.15 K时该装置所受最大应力为1.5378 MPa,而该温度下有机玻璃的断裂应力为71.704 MPa,因此有机玻璃在强度上满足浓缩风能装置要求,可以用于制造浓缩风能装置。当选择泊松比、杨氏模量和断裂应力均随温度发生变化的材料作为流体机械备选材料时,该研究过程可以为其可行性研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号