首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
L. M. MARAFA  K. C. CHAU 《土壤圈》2005,15(2):181-188
This research examined nitrogen mineralization in the top 10 cm of soils with a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected, with the in situ core incubation method used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground. In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.  相似文献   

2.
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0--60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.05), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.  相似文献   

3.
Abandonment of agricultural land results in on-and off-site consequences for the ecosystem. In this study, 105 rainfall simulations were carried out in agriculture lands of the Mediterranean belt in Spain(vineyards in Málaga, almond orchards in Murcia, and orange and olive orchards in Valencia) and in paired abandoned lands to assess the impact of land abandonment on soil and water losses. After abandonment, soil detachment decreased drastically in the olive and orange orchards, while vineyards did not show any difference and almond orchards registered higher erosion rates after the abandonment. Terraced orchards of oranges and olives recovered a dense vegetation cover after the abandonment, while the sloping terrain of almond orchards and vineyards enhanced the development of crusts and rills and a negligible vegetation cover resulted in high erosion rates. The contrasted responses to land abandonment in Mediterranean agricultural lands suggest that land abandonment should be programmed and managed with soil erosion control strategies for some years to avoid land degradation.  相似文献   

4.
红壤丘陵地区土地利用的生态学效应   总被引:4,自引:5,他引:4  
Plant biomass and biodiversity,element accumulation and return,water loss and soil erosion,and changes in soil properties were studied for up to 10 years after conversiton of sparse tree-shrubby grass land into the following four land use patterns:masson pine(Pinus massoniana Lamb.) land,beautiful sweetgum(Liquidambar formosana Hance)land,vegetation reservation aldn,and artificial mowing land.Thie annual biomass production of the masson pine land was 5060kg ha^-1,being 4.9,2.1,and 6.0 times that of the beautiful sweetgum land,the vegetation reservation land,and the artificial mowing land,respectively,Compared with the background values,the number of plant species for the vegetation reservation and increased by 10 species after 10 years of land utilization,while for the masson pine and the beautiful weetgum decreased by 4,and for the artifiucial mowing land by 9.For masson pine land,total amount of N,P,K,Ca,and Mg needed for producing 1000kg dry matter was only 3.5kg,annual element return through litter was 22 kg ha^-1,both of which were much lower than those of the other patterns.Vegetation reservation was an effective measure to conserve soil and water and improve soil fertility in the red soil hilly region.Artificial mowing aroused serous degradation of vegetation and soil.Some measures and suggestions for management and exploitation of the red soil hilly region such masson pine planting,closing hills for afforestation,and stereo-agriculture on one hill are proposed.  相似文献   

5.
利用方式和土壤肥力对土壤团聚体和养分的影响   总被引:6,自引:0,他引:6  
The size distribution of water-stable aggregates and the variability of organic C, N and P contents over aggregate size fractions were studied for orchard, upland, paddy, and grassland soils with high, medium, and low fertility levels. The results showed that > 5 mm aggregates in the cultivated upland and paddy soils were 44.0% and 32.0%, respectively, less than those in the un-tilled orchard soil. Organic C and soil N in different size aggregate fractions in orchard soil with high fertility were significantly higher than those of other land uses. However, the contents of soil P in different size aggregates were significantly greater in the paddy soil as compared to the other land uses. Soil organic C, N and P contents were higher in larger aggregates than those in smaller ones. The amount of water-stable aggregates was positively correlated to their contribution to soil organic C, N and P. For orchard and grassland soils, the > 5 mm aggregates made the greatest contribution to soil nutrients, while for upland soil, the 0.25-0.053 mm aggregates contributed the most to soil nutrients. Therefore, the land use with minimum disturbance was beneficial for the formation of a better soil structure. The dominant soil aggregates in different land use types determined the distribution of soil nutrients. Utilization efficiency of soil P could be improved by converting other land uses to the paddy soil.  相似文献   

6.
The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristics of soil fertility of C. chengiana and to compare and investigate differences of soil fertility for six C. chengiana populations and their relationships with vegetation, climate and disturbance. The results of the study at 0-20 cm soil depth showed that 1) significant differences (P〈0.05) existed among populations for soil bulk density, soil total porosity, capillary porosity, maximum water-holding capacity, capillary water-holding capacity and topsoil natural water content; 2) chemical characteristics of soil organic matter, total N, total P, alkali-hydrolyzable N, available P, available K and cation exchange capacity were significantly different among the populations; and 3) based on the significant effect of soil fertility factors on forest growth, soil physical and chemical characteristics could be selected as an integrated fertility index (IFI) for evaluation of different C. chengiana populations. Principal component and cluster analyses showed significant differences probably due to the difference of vegetation conditions, management measurements, human-induced disturbances and environmental factors. In order to protect the soil ecological functions in fragile ecological regions, C. chengiana could be used in programs enclosing the hill for natural afforestation, natural forest protection programs, and programs replacing agriculture with afforestation measures.  相似文献   

7.
Excess calcium(Ca) in soils of semi-arid and arid regions has negative effects on soil structure and chemical properties, which limits the crop root growth as well as the availability of soil water and nutrients. Quantifying the spatial variability of soil Ca contents may reveal factors influencing soil erosion and provide a basis for site-specific soil and crop management in semi-arid regions. This study sought to assess the spatial variability of soil Ca in relation to topography, hydraulic attributes, and soil types for precision soil and crop management in a 194-ha production field in the Southern High Plains of Texas,USA. Soils at four depth increments(0–2, 0–15, 15–30, and 30–60 cm) were sampled at 232 points in the spring of 2017. The Ca content of each sample was determined with a DP-6000 Delta Premium portable X-ray fluorescence(PXRF) spectrometer. Elevation data was obtained using a real-time kinematic GPS receiver with centimeter-level accuracy. A digital elevation model(DEM) was derived from the elevation data, and topographic and hydraulic attributes were generated from this DEM. A generalized least-squares model was then developed to assess the relationship between soil Ca contents of the four layers and the topographic and hydraulic attributes. Results showed that topographic attributes, especially slope and elevation, had a significant effect on soil Ca content at different depths(P 0.01). In addition, hydraulic attributes, especially flow length and sediment transport index(STI), had a significant effect on the spatial distribution of soil Ca. Spatial variability of soil Ca and its relationships with topographic and hydraulic attributes and soil types indicated that surface soil loss may occur due to water or wind erosion, especially on susceptible soils with high slopes. Therefore, this study suggests that the application of PXRF in assessing soil Ca content can potentially facilitate a new method for soil erosion evaluation in semi-arid lands. The results of this study provide valuable information for site-specific soil conservation and crop management.  相似文献   

8.
A total of 400 surface soil(0–15 cm) samples were collected from cultivated soils representing four soil series,namely,Hariharapur,Debatoli,Rajpora and Neeleswaram in Orissa,Jharkhand,Himachal Pradesh and Kerala states of India,respectively,and were analyzed to measure the contents of total and extractable Mn and Fe,to establish the relationship among total and extractable Mn and Fe and soil properties,and to characterize the spatial distribution pattern of Mn and Fe in some cultivated acid soils of India. The contents of total as well as extractable Mn and Fe varied widely with extractants and soil series. However,the amounts of Mn or Fe extracted by diethylene triamine penta-acetic acid(DTPA),Mehlich 1,Mehlich 3,0.1 mol L-1 HCl and ammonium bicarbonate DTPA(ABDTPA) were significantly correlated with each other(P 0.01). Based on the DTPA-extractable contents and the critical limits(2 mg Mn kg-1soil and 4.5 mg Fe kg-1 soil) published in the literature,Mn and Fe deficiencies were observed in 7%–23% and 1%–3% of the soil samples,respectively. The content of soil organic carbon(SOC) had greater influence on total and DTPA-extractable Fe than did soil pH. Geostatistical analysis revealed that total and DTPA-extractable Mn and Fe contents in the acid soils were influenced by soil pH,SOC content,and exchangeable cations like potassium,calcium and magnesium. Spatial distribution maps of total and DTPA-extractable Mn and Fe in soil indicated different distribution patterns.  相似文献   

9.
切沟对沟岸地土壤水分的影响   总被引:1,自引:0,他引:1  
In order to preliminarily look at rules for soil moisture changes in the bank of the gully and to provide some recommendations for vegetative restoration in gully bank regions in the Loess Plateau, changes of soil moisture with depth and distance to the gully edge and their dynamic changes with time were observed to study the soil water characteristics in the bank of the gully. The results showed that soil water content increased with increasing distance from the gully edge, whereas for the same time period, the closer the distance to the gully wall, the greater the water loss; and that the influential distance of side evaporation decreased as depth increased.  相似文献   

10.
地中海生态系统中可溶性有机N研究   总被引:1,自引:0,他引:1  
Dissolved organic nitrogen (DON) in soils has recently gained increasing interest because it may be both a direct N source for plants and the dominant available N form in nutrient-poor soils, however, its prevalence in Mediterranean ecosystems remains unclear. The aims of this study were to i) estimate soil DON in a wide set of Mediterranean ecosystems and compare this levels with those for other ecosystems; ii) describe temporal changes in DON and dissolved inorganic nitrogen (DIN) forms (NH4+ and NO3? ), and characterize spatial heterogeneity within plant communities; and iii) study the relative proportion of soil DON and DIN forms as a test of Schimel and Bennett’s hypothesis that the prevalence of different N forms follows a gradient of nutrient availability. The study was carried out in eleven plant communities chosen to represent a wide spectrum of Mediterranean vegetation types, ranging from early to late successional status. DON concentrations in the studied Mediterranean plant communities (0-18.2 mg N kg-1) were consistently lower than those found in the literature for other ecosystems. We found high temporal and spatial variability in soil DON for all plant communities. As predicted by the Schimel and Bennett model for nutrient-poor ecosystems, DON dominance over ammonium and nitrate was observed for most plant communities in winter and spring soil samples. However, mineral-N dominated over DON in summer and autumn. Thus, soil water content may have an important effect on DON versus mineral N dominance in Mediterranean ecosystems.  相似文献   

11.
[目的]阐明草地植被演替过程中植被生产力、植物多样性等生态学特征与土壤储水量的关系,为探明黄土高原地区植被恢复的生态环境效应提供一定的科学依据。[方法]采用时空互代的方法对宁夏回族自治区固原市云雾山保护区自然恢复3,8,13,46,66,89a的样地进行取样,分析0—100cm土层土壤储水量的分布及其与地上地下植物生物量、物种多样性的关系。[结果]随着草地演替的进行,植被群落盖度、生物量和物种多样性指数在恢复13a之前显著增加,之后渐趋稳定;土壤含水量逐渐增加,容重逐渐降低。植被群落演替对0—40cm土层土壤储水量没有显著影响,但演替后期对40cm以下土层水分有明显消耗。植被群落生物量及物种多样性指标与表层0—10cm水分呈显著正相关。[结论]草地演替过程中,植被群落生物量和物种多样性的增加与表层土壤储水能力的提升密切相关,但深层根系生物量的增加对下层土壤储水的消耗也逐渐增大。  相似文献   

12.
Recent empirical and theoretical studies have shown that magnitude and direction of biodiversity effects on ecosystem functioning can shifts over time. Here, we used species richness and plant abundance (total individual plant stem density) as proxies for species diversity and aboveground biomass for productivity. We used an analytical approach combining both chronosequence and 6 year of vegetation monitoring in a subalpine ecosystem as a model system to assess temporal species richness–abundance–aboveground biomass relationships at different successional stages and spatial scales. We observed that both species richness and plant aboveground biomass increased rapidly early in succession after land abandonment, then after 10 years of abandonment reached a steady state. We found that the relationship between species richness and plant abundance with aboveground biomass was strengthening over successional time. In all successional stages, species richness had stronger positive effects as compared with plant abundance on plant aboveground biomass. Species richness was linearly correlated with aboveground biomass, whereas plant abundance showed a humped‐back relationship with aboveground biomass across all successional stages. Our results showed an increase in the effect of plant diversity over time, and a combination of both plant species richness and abundance is correlated with plant productivity throughout successional time, knowledge that maybe important to managing ecological restoration and conservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
 在综述已有研究的基础上,结合实地调查,初步分析了水土保持对植被演替影响的主要方式,不同水土保持措施(工程措施、人工恢复植被、水土保持生态自我修复)对植被演替所产生的影响。结果表明,水土保持生态自我修复下的植被演替趋向自然演替过程,而人工恢复植被的影响取决于物种选择与营造方式,不当的物种及纯林营造,往往使植物群落结构单一化,植被正常演替中断或逆向发展。反之,则可促进植被正常演替,缩短植被恢复过程。工程措施对植被演替的影响,可能更多地表现其对植物群落空间分布格局方面。但要全面科学地认识和评价水土保持对区域植被演替的影响,仍需系统的调查研究。  相似文献   

14.
In arid regions, afforestation has been considered as a method for ecological revival in terms of vegetation enrichment and soil amelioration. In this study, the effects of afforestation with Haloxylon spp. on vegetation cover and soil properties were measured < 3, 3, 6, and 25 years after planting in an arid desert in Iran. Soil samples were collected at two depths (0-30 and 30-60 cm) under and between shrub canopies. Afforestation succession significantly affected plant community characteristics. In total, 16 species from 8 families and 15 genera were observed along the afforestation successional gradient. Plant species richness and diversity and vegetation cover increased slowly during the succession, and reached the maximum values in the area where Haloxylon had been planted for 25 years. Soil nutrient values gradually increased during the succession, and the levels of organic matter, total nitrogen, available potassium, and available phosphorus were significantly higher under Haloxylon canopies than between them. Afforestation reduced soil pH under and between Haloxylon canopies during the succession, while soil electrical conductivity followed an opposite pattern. Haloxylon planting increased the silt content in the 0-30 cm soil layer. Our results suggest that Haloxylon establishment plays an important role in the reestablishment of desertified ecosystems in arid regions.  相似文献   

15.
 研究根系在植被演替过程中的变化对揭示植被演替的一般规律有重要意义。采用以空间代替时间的方法,对黄土高原不同退耕年限的草地植被根系的动态变化及其垂直分布特征进行研究。结果表明:在根系样品采集方法上,挖掘法比根钻法更有利于真实反映深层根系的分布状况;根系在0~150cm土层的总生物量,随演替时间并不是线性增长,而是呈分阶段的阶梯式的上升趋势;从根系的垂直分布来看,根系生物量与根长密度均表现为随土层的加深而降低,不同土层中,又以表层0~15cm土壤中的根系生物量与根长密度数值最高;拟合不同演替年限的根系垂直分布特征系数后发现,演替初期,根系有向深层土壤分布的趋势,到演替的第10~22a,根系分布趋于向表层土壤集中,演替后期,根系再次趋于向深层土壤分布。  相似文献   

16.
The patterns of plant species diversity in herbaceous vegetation subjected to various human activities were studied in most of the landscape elements in a rural area of Chiba, central Japan. Twenty-eight transects were sampled in four types of human management-regime (cultivation, trampling, mowing, and abandonment) and were grouped into seven vegetation types using TWINSPAN and DCA analyses. The DCA axis 1 arranged all the transects into a successional order along which biomass and the degree of succession increased. Accumulated number of species increased in a stepwise pattern along the DCA axis 1, in which the dominant plant life-forms were replaced from annuals, to perennials and perennials/tree-saplings depending on different management regimes. The unique species which were confined to a certain management regime, were identified in each site. It is suggested that the coexistence of various successional communities under different human management regimes enhance regional species diversity through maintaining these unique species. Among four types of management regime, mowing sites (especially traditional verge meadows) had most abundant unique, rare species specially adapted to regular cutting. It is suggested that maintaining such traditional mown sites is important to conserve the unique biodiversity of the studied area.  相似文献   

17.
黄土区露天煤矿排土场复垦后土壤与植被的演变规律   总被引:17,自引:5,他引:12  
恢复受损的土壤和植被是矿区生态恢复的关键,植被恢复过程的实质是植被-土壤复合生态系统相互作用的过程。该文通过典型小区调查的方法,选择山西平朔州安太堡露天煤矿复垦排土场为研究区,分析了不同复垦年限(3、5、10、12和17 a)土壤环境因子和乔木林地植被生物量的动态演变规律,建立了黄土区露天煤矿排土场复垦土壤环境因子和乔木林地植被生物量Logistic演替模型,并构建了土壤-植被交互影响的偏微分方程组。相关系数及显著性检验表明所建立的土壤各环境因子演变模型和乔木林复垦地的植被生物量演变模型有效,能够很好地反映排土场的土壤因子和植被生物量的动态演变过程;随着复垦年限的增加,研究区土壤环境因子质量不断提升并逐渐接近原地貌,土壤因子和植被生物量都呈S型变化,符合Logistic生长演替模型;土壤环境因子与植被生物量二者交互作用明显,符合Kolmogorov捕食模型。该研究可为黄土区露天矿排土场土地复垦与生态恢复提供理论依据。  相似文献   

18.
《Applied soil ecology》2002,19(1):71-78
Agricultural overproduction has led the European Union to encourage long-term abandonment of agricultural land and the adoption of management practices which enhance transition to semi-natural grassland or forest. This paper reports the results of a field study conducted in newly abandoned agricultural land where the development of the mycorrhizal community was investigated in response to manipulation of the above-ground vegetation. The field site consisted of plots where the plant diversity was managed by (1) sowing 15 plant species, (2) sowing four plant species, and (3) allowing plots to be naturally colonized by plants. The plant mixture contained grasses, legumes and forbs that were all expected to occur on the site following succession. Each of the low diversity replicates contained a different subset of the high diversity mixture, in order to avoid confounding diversity effects with sampling effects. A subset of these plots was inoculated with soil cores from a later successional stage and the experiment was arranged in a randomized block design. The catch plants, Fagus sylvatica, Picea abies and Plantago lanceolata, were planted in the experimental plots and the presence of ecto- or arbuscular mycorrhizal (AM) fungi on their roots was determined. The level of AM colonization of P. lanceolata and the ectomycorrhizal colonization of F. sylvatica was lower in the sown treatments with high and low plant diversity compared to areas that were naturally colonized by plants. The survival of catch plants of the tree species was also higher in the naturally colonized plots. Soil inoculations had no effect on either of the mycorrhizal types or the survival of catch plants. The establishment of non-introduced woody plant species was more successful in the naturally colonized treatments.  相似文献   

19.
Recent changes in agriculture (intensification or abandonment) have resulted in a critical reduction of semi-natural grasslands in Eastern Europe. Subalpine semi-natural grasslands in Transylvania, Romania, harbour a high diversity of plants and invertebrates, including endemics, and are considered refugia for numerous threatened open-land species. We investigated effects of land abandonment by examining species richness, species abundance, proportion of open-land, endemic and threatened vascular plants, gastropods, and diurnal and nocturnal Lepidoptera in extensive hay meadows (initial stage), and three seral stages of succession (early stage of abandoned hay meadow, naturally growing birch forest, and mature forest) in the mountainous region of Baisoara in Transylvania. A total of 626 species (225 vascular plants, 16 gastropods, 68 diurnal and 317 nocturnal Lepidoptera) were found in the 16 study sites (four replicates per successional stage). The four taxonomic groups differed in their response to the abandonment of hay meadows. Each stage of succession harboured the maximum species richness for one taxonomic group: extensive hay meadows for vascular plants, abandoned hay meadows for diurnal Lepidoptera, birch forests for nocturnal Lepidoptera, and mature forests for gastropods. In all four taxonomic groups the complementarity of species composition increased with successional age, whereas the number of characteristic open-land species decreased with successional age. The four successional stages did not differ in proportion of red-listed plant and diurnal Lepidoptera species. In nocturnal Lepidoptera, however, the proportion of red-listed species increased with successional age. Furthermore, successional stages did not differ in number of plant species endemic to the Carpathians and Eastern Europe. Our results indicate the high conservation value of all stages of subalpine grassland succession for the indigenous biodiversity of Transylvania. To prevent losses of characteristic species, we suggest a rotational grassland management program that maintains different successional stages.  相似文献   

20.
Changes in vegetation and soil properties because of agricultural abandonment may affect soil nitrogen (N) and associated processes. We investigated soil N (total N: TN, inorganic N: NH4–N and NO3–N) and denitrification potential in cropland, pine plantations and abandoned agricultural land along a secondary succession sequence (grassland→shrubland→secondary forest) in a headwater catchment in the Qinling Mountains, northwest China. The results show that the soil denitrification potential differed significantly among the five land‐use types with the highest potential in the secondary forest, followed by grassland, shrubland, cropland and plantations. The denitrification potential of the 20‐ to 40‐cm layer was significantly lower compared with the topsoil (0–20 cm) across all land‐use types. TN, soil organic matter (SOM) and NH4–N increased significantly with stand age, whereas there was an opposite trend in soil pH. However, the denitrification potential did not relate to stand age in a linear manner. We conclude that changes in soil TN, SOM and pH during vegetation succession following agricultural abandonment are critical controls on the denitrification potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号