首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
不同双氰胺用量对稻田土壤氮素淋失的影响   总被引:3,自引:0,他引:3  
通过水稻土柱模拟渗滤试验研究了不同双氰胺用量处理(双氰胺用量为施入尿素总量的1%,2%,3%,4%,5%)对水稻产量、氮肥利用率及稻田氮素淋失的影响。结果表明:与农民常规施肥(FP)处理相比,增施双氰胺各处理产量增加幅度为2.48%~39.11%,氮肥利用率提高幅度为1.26%~10.22%,其中,DCD3、DCD4处理的产量、氮肥利用率显著高于其他处理,产量分别达到9 520.79,9 066.06kg/hm2,氮肥利用率分别达到38.50%,36.42%。整个水稻生育期全氮淋失量降低了23.68%~37.94%,铵态氮淋失量降低了30.94%~46.69%,硝态氮淋失量降低了25.46%~39.77%,其中,DCD4处理氮素淋失降低幅度最大。硝态氮是氮素淋失的主要形态,各处理的硝态氮淋失量分别占全氮淋失量的68.46%~74.48%。综合考虑,DCD4用量硝化抑制效果最佳,使得氮肥在生育关键期充分发挥作用,在保证水稻产量的同时降低了氮素淋失,提高了氮肥利用率。  相似文献   

2.
生物炭对引黄灌区水稻产量和氮素淋失的影响   总被引:4,自引:2,他引:2  
为解决宁夏引黄灌区稻田因过量施肥导致的土壤质量降低和养分淋失加剧问题,通过田间小区试验研究了施用外源生物炭对水稻产量、氮素淋失和平衡特征的影响。结果表明:同等施氮条件下,施用生物质炭对水稻子粒产量有显著的影响,生物炭用量达13 500kg/hm~2时水稻增产显著。施用生物炭也提高了氮肥利用率,施用生物炭9 000kg/hm~2和13 500kg/hm~2处理,氮肥利用率分别提高了6.7和7.8个百分点。田面水中总氮(TN)浓度和土体中TN淋失量随着生物炭用量的增加而降低,TN淋失量降幅在8.03%~13.36%之间,施用生物炭处理的氮素表观损失量分别降低了11.8%~45.2%。综合考虑引黄灌区水稻产量和环境效益,生物炭施用量控制在9 000~13 500kg/hm~2效果最佳。  相似文献   

3.
通过大田试验,设计3个不同氮肥水平(0、150、240kgN·hm^-2)和两种不同施肥比例(基肥:分蘖肥:穗粒肥:40%:30%:30%、基肥:分蘖肥:穗粒肥=30%:20%:50%),研究了氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度的影响。结果表明,稻田渗漏液中NH4+-N、NO3--N和总N浓度在施肥后第3d达到最大、随后降低,在施氮后的第7d,分别降为峰值的5.6%~16.9%、13.8%~22.5%、22.5%~34.5%。施氮水平处于0—240kgN·hm^-2时,水稻产量、氮素积累总量(totalNaccumulation,TNA)和稻田渗漏液Nm—N、N0i—N和总N浓度随着氮素水平的提高而显著增加;在较高氮肥水平(240kgN·hm^-2)下,与氮肥前移相比(基肥:分蘖HE:穗粒肥=40%:30%:30%),采用氮肥后移(基肥:分蘖肥:穗粒肥=30%:20%:50%)的施肥比例,水稻产量和成熟期TNA分别增加6.2%和16.4%,稻田渗漏液NO3--N及总N浓度分别降低8.9%和4.8%,而对NHZ—N浓度影响不显著,说明适宜的氮肥运筹可以增加水稻的产量和氮素吸收,减少氮素渗漏损失。  相似文献   

4.
通过田间试验,利用15N自然丰度法,研究了太湖地区水稻土冬季绿肥的固氮量,以及绿肥还田后配施氮肥对水稻产量、稻田土壤供氮能力及土壤氮素淋失特征的影响。试验结果表明,紫云英和蚕豆当季分别能固定氮约32.8和68.8 kg km-2进入稻田生态系统以培肥土壤和供下季水稻利用。蚕豆秸秆还田后基本能满足水稻生长所需的氮,紫云英和蚕豆还田施氮120 kg km-2时,既可保证水稻较高产量,又节约当季化学氮肥45%~55%。紫云英和蚕豆还田不施氮肥处理,整个生长期耕层土壤溶液NH+4-N、NO-3-N和TN浓度均低于配施氮肥的处理;蚕豆还田处理土壤溶液TN浓度高于紫云英还田处理。随氮肥用量增加,NH+4-N、NO-3-N和TN浓度有增加趋势,不同施氮量间差异不显著。绿肥-水稻轮作,紫云英和蚕豆还田土壤氮素淋溶显著降低。配施氮肥增加了土壤氮的淋失量,尤其施氮300 kg km-2处理,土壤淋溶液NH+4-N、TN浓度显著高于施氮0~240 kg km-2的处理。  相似文献   

5.
施肥对设施番茄-黄瓜养分利用与土壤氮素淋失的影响   总被引:14,自引:0,他引:14  
以宁夏引黄灌区设施番茄-黄瓜为研究对象,利用田间定位试验,研究了不同施肥措施对蔬菜产量、养分吸收利用及淋溶水产生和氮素淋失动态的影响,并对氮素淋失量及淋失率进行了分析。结果表明,常规施肥和优化施肥间番茄和黄瓜果实产量差异都不显著,养分吸收量顺序为:K>N>P。两季蔬菜的N、P肥利用率都不到7%,而K肥利用率最高仅12.3%。氮素淋失量与施肥灌水和蔬菜生育时期密切相关。同一施肥处理下,黄瓜季氮素淋失量高于番茄季;氮素淋失以硝态氮为主,占总氮比例70%以上。番茄季总氮、硝态氮淋失率分别为2.95%~6.65%和2.50%~5.56%;黄瓜分别为3.40%~6.96%和2.89%~5.70%。两季蔬菜铵态氮淋失率都低于1%。通过优化化肥用量和施用高C/N比有机肥或秸秆调节土壤C/N,有利于降低氮素的淋失量,从而减少氮素的损失。  相似文献   

6.
稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失   总被引:10,自引:3,他引:10  
在稻田土壤上对水稻的高量施用氮肥常常造成硝态氮(NO3--N)淋溶损失和肥料氮利用率低下的问题。本研究采用土壤渗漏器、微区和田间小区试验,研究了15N标记控释氮肥在稻田土壤上的氮素利用率和硝态氮的淋溶损失。在两年早稻种植期间,一次性全量作基肥施用控释氮肥与尿素分二次施用的相比,两年的早稻产量分别平均提高7.7%和11.6%。在N90 kg hm-2用量下,由差值法测得的肥料氮利用率,按平均计,控释氮肥的N利用率(平均76.3%)比尿素分次施用的(平均37.4%)高出38.9%1。5N同位素法测得的控释氮肥的N利用率(平均67.1%)比尿素分次施用的(平均31.2%)高出35.9%。在早稻种植季节,施用尿素和控释氮肥的NO3--N淋失量分别为9.19 kg hm-2和6.7 kg hm-2,占施尿素N和控释氮肥氮的10.2%和7.4%。控释氮肥的氮淋失量比尿素分2次施用的降低27.1%。本研究结果表明,在稻田土壤上施用控释氮肥能减少氮的淋失量,提高氮素利用率和水稻产量。  相似文献   

7.
利用田间小区试验研究了控释氮肥全量基施对宁夏水稻产量、氮素利用效率和淋洗损失的影响,为控释氮肥全量基施技术在宁夏引黄灌区应用提供技术依据。以"宁粳50号"水稻品种为研究对象,以不施氮肥(CK)为对照,参考农民常规施肥(FP)施氮量,设置了4个控释氮肥减量施用处理:控释氮肥135 kg/hm~2(C-135)、控释氮肥180 kg/hm~2(C-180)、控释氮肥225 kghm~2(C-225)和控释氮肥270 kg/hm~2(C-270)。对水稻产量、氮素吸收和利用效率、水稻生育期不同深度淋溶水浓度和淋失量进行测定和分析。结果表明:C-180处理和C-225处理在氮肥用量分别降低了25%和40%的条件下,水稻籽粒产量没有降低,原因在于提高了水稻的有效穗数和穗粒数。与FP比较,控释氮肥施氮量控制在270 kg/hm~2以下时,控释氮肥全量施用各处理氮肥利用率显著提高,C-135、C-180、C-225处理氮肥利用率分别比FP处理提高了10.22,11.10,12.75个百分点。控释氮肥各处理水稻生育期内田面水和不同土体深度淋溶水中的TN浓度均低于FP处理,且延迟了田面水中TN浓度峰值出现的时间,减少了因稻田排水和径流导致的氮素损失。FP处理全生育期氮素淋洗损失总量为24.57 kg/hm~2,控释氮肥各处理素淋洗损失总量在11.54~17.35 kg/hm~2,其中C-180,C-225处理总氮淋失量分别比常规施肥降低了46.17%和49.40%。综合考虑水稻产量和氮素损失因素,宁夏水稻控释氮肥全量基施适宜施氮量在180~225 kg/hm~2。  相似文献   

8.
不同施肥对春玉米产量、效益及氮素吸收和利用的影响   总被引:16,自引:4,他引:12  
通过田间试验研究了农民习惯施肥、氮肥减量及减量后移、氮肥一次性深施对春玉米产量、效益、花后干物质和氮素积累与转移情况及氮的吸收和利用的影响。结果表明,与习惯施肥处理(N用量 280 kg/hm2,口肥和拔节期追肥比例为1:4,N280/2,)相比,氮肥减量后移处理(N 用量240 kg/hm2,口肥、拔节期和大喇叭口期追肥比例为1:2:2,N240/3)增产3.91%,增收592 元/hm2;氮肥一次性深施处理(N 用量240 kg/hm2,播种时一次深施在15cm处,N240/1)增产11.48%,增收2032元/hm2;氮肥减量后移处理(N240/3)和氮肥一次性深施处理(N240/1)的经济系数、后期干物质和氮的转移量、转移效率及对子粒的贡献率显著提高,氮肥利用率(NUE)、氮肥农学利用率(ANUE)、氮素吸收效率(NUPE)和氮肥偏生产力(PFP)、氮收获指数(NHI)也显著提高。氮肥减量后移处理(N240/3)花后干物质和氮的积累量及占总量的比例最高;氮肥一次性深施处理(N240/1)花后干物质和氮积累量较高,但所占比例较低;习惯施肥处理(N 280/2)干物质和氮积累量较低,但所占比例较高。由于关于一次性施肥存在较多争议,因此尚不能认为氮肥一次性深施方式可以替代农民习惯施肥;而氮肥减量后移处理既获得了较高的产量,也提高了氮效率,是一种科学的施肥方式。  相似文献   

9.
不同氮肥管理模式对太湖流域稻田土壤氮素渗漏的影响   总被引:14,自引:0,他引:14  
针对太湖流域稻田土壤氮素流失引起的面源污染问题,以农户常规施肥处理、化肥减量施肥处理、缓控释肥处理、有机无机肥配施处理以及按需施肥处理5种稻田氮肥管理模式,探讨了不同施氮水平与肥料类型的处理对20~40 cm、40~60 cm、60~80 cm以及100~120 cm四个深度土壤氮素渗漏的影响。结果表明,20~40 cm渗漏液中总氮(TN)浓度与施肥量成正比;农户常规施肥处理会出现40~60 cm TN浓度高于20~40 cm的现象;缓控释肥处理具有较高的20~40 cm TN淋失量;溶解性有机氮(DON)是稻田氮素进入地下水的主要形态,占TN的60%~70%;减少33%的氮素施用量,可降低进入地下水体36.9%~49.0%的TN浓度。按需施肥处理能在保证产量的情况下降低施氮水平,减少氮素渗漏损失,是适宜该地区的环境友好型氮肥管理模式。  相似文献   

10.
通过大田试验,设计3个不同氮肥水平(0、150、240kgN·hm-2)和两种不同施肥比例(基肥:分蘖肥:穗粒肥=40%:30%:30%、基肥:分蘖肥:穗粒肥=30%:20%:50%),研究了氮肥运筹对稻田田面水氮素动态变化特征和氮素吸收利用效率的影响。结果表明,稻田田面水NH4+-N和总N浓度在施肥后第1d达到最大值,随后降低,在施肥后的第7d,分别降为峰值的7.88%~17.84%和29.71%~45.55%。施氮水平介于0~240Nkg·hm-2时,水稻产量随着氮素水平的提高而显著增加,氮素的吸收利用率和偏生产力却随之降低。在高氮水平(240kgN·hm-2)下,与氮肥前移相比(基肥:分蘖肥:穗粒肥=40%:30%:30%),采用氮肥后移(基肥:分蘖肥:穗粒肥=30%:20%:50%)的施肥比例,水稻产量增加了6.2%、氮素吸收利用率和农学利用率分别提高了30.49%和23.72%,而氮素生理利用率和偏生产力差异不显著,说明适宜的氮肥运筹可以增加水稻的产量,提高氮素的吸收利用率和农学利用率,减少氮素损失。  相似文献   

11.
前氮后移对水稻产量形成和田面水氮素动态变化的影响   总被引:3,自引:0,他引:3  
通过田间小区试验,在施氮量180 kg/hm~2水平下,设置4个氮肥运筹比例,基肥∶分蘖肥∶穗肥的比例分别为10∶0∶0(T1),4∶3∶3(T2),2∶3∶5(T3),0∶3∶7(T4),研究氮肥后移对水稻产量形成和稻田田面水氮素动态变化的影响。结果表明:与氮肥全部作为基肥施用的处理相比,将前期氮肥的30%甚至50%后移到穗肥施用,对水稻产量没有明显影响,而氮肥后移70%至穗肥会使水稻产量显著下降。田面水中总氮(TN)和可溶性总氮(DTN)浓度在每次施肥后1天达到峰值,铵态氮(NH_4~+-N)浓度在基肥和分蘖肥后1天达到峰值,穗肥后3天达到峰值,随后逐渐降低至与不施氮肥处理相当。整个基肥期、分蘖肥后20天内和穗肥后9天内是防止稻田氮素流失的关键期。施尿素后,DTN是田面水氮素的主要部分,DTN以无机氮(IN)为主,而NH_4~+-N在IN中所占比例达64.0%以上。比较水稻生育过程中氮素流失风险期内的TN、DTN和NH_4~+-N三氮浓度,相比T1,T2的三氮浓度分别降低了2.9%,1.6%,3.1%,T3的三氮浓度分别降低了15.5%,14.7%,22.3%,T4的三氮浓度分别降低了16.1%,22.9%,34.1%,结合产量,确定基肥∶分蘖肥∶穗肥比例为2∶3∶5的氮肥后移措施能够在保证水稻产量不下降的同时,有效降低稻田氮素的流失风险。  相似文献   

12.
太湖地区绿肥还田与无机氮追肥配施的环境效应分析   总被引:2,自引:1,他引:1  
通过太湖地区绿肥还田与不同用量的无机氮追肥配施小区试验,研究了水稻苗期、分蘖期和抽穗期田面水氮素不同形态的变化特征、径流损失及水稻产量。结果表明:绿肥还田后,水稻苗期田面水中总氮浓度出现先减小后增加的变化,总氮浓度增加的原因主要是有机氮浓度的增加,而无机氮浓度先升后降;分蘖肥和穗肥施用后,田面水氮素浓度随施肥量的增加而升高,田面水总氮和有机氮在施肥后第1天达到最大,随后快速下降,而无机氮在施肥后则经历了一个先升后降的变化过程;随着施肥量的增加,稻季氮素径流损失不断增大,无机氮是氮素径流损失的主要形态,且径流水中无机氮以铵态氮为主,故应将铵态氮作为农田排水污染检测的主要指标;绿肥还田模式下,施用氮素基肥可大大提高田面水的氮素含量,增加氮素流失风险,而不施氮素追肥或者过量减施均可影响作物的产量。绿肥还田,稻季配施140 kg hm-2无机氮追肥,可减少48%无机氮肥投入,降低38.5%氮肥流失率,实现水稻产量效应和环境效应的协调,是水体污染严重地区值得尝试的一种农作方式。  相似文献   

13.
习惯施肥对菜地氮磷径流流失的影响   总被引:6,自引:0,他引:6  
对菜地进行连续3年的定位监测试验。结果表明:与不施肥对照相比,菜农习惯施肥处理显著提高降雨径流中的总氮(TN)和硝态氮(NO3--N)流失质量浓度及流失量,3年监测期内总氮(TN)径流流失负荷为321kg/hm2,总磷(TP)流失负荷为134kg/hm2,分别占氮、磷养分投入总量的13.6%和13.2%,氮肥的流失系数约为5.6%。菜地氮素流失以硝态氮(NO3--N)形式为主,磷素流失以颗粒态磷(PP)形式为主。菜地氮、磷养分径流流失与径流量呈显著线性关系,菜地每流失1kg的总磷(TP),可溶性总磷(TDP)、总氮(TN)、硝态氮(NO3--N)、铵态氮(NH4+-N)所需要的径流量分别为77.5,322,52.5,67.5,404m3。  相似文献   

14.
有机无机肥配施对水稻氮素利用率与氮流失风险的影响   总被引:8,自引:3,他引:5  
农田土壤–作物系统对畜禽粪便有一定的消纳作用,有机粪肥与无机氮肥配施是未来农业生产中进一步增加产量、减少化肥施用和保护环境的重要生产模式。本研究采用盆栽试验,分析在施用一定量有机粪肥基础上,不同无机氮肥用量对水稻产量、氮素利用率和氮流失风险的影响,探讨有机肥与无机氮肥的最优比例,为有机肥施用条件下稻田无机氮肥的合理施用提供科学依据。结果表明:与单施有机肥(M)相比,配施0.8倍的无机氮肥效果最佳,水稻产量、株高、分蘖数、籽粒吸氮量和氮肥利用率达最高。有机肥作底肥时,水稻生长前期田面水无机氮浓度随配施无机氮肥量的增加而增加,而后期配施无机氮肥各处理田面水氮素浓度则随着氮肥施用量的增加呈现先降低后升高趋势,其中,增施0.4倍、0.6倍和0.8倍无机氮肥时稻田田面水氮素浓度较单施有机肥处理分别降低17.5%、11.9%和9.3%,差异达显著水平(P0.05)。与单施无机氮肥处理(N)相比,同样以0.8倍无机氮肥+有机肥处理作物产量和氮肥利用率最高,田面水氮浓度降低了30.2%,差异达显著水平(P0.05)。综上,消纳有机肥基础上,在满足作物需氮量的前提下,无机氮肥与其配比为1︰1时,既可以提高水稻增产潜力,又降低稻田氮素流失风险和适当减少稻田无机氮肥施用量。  相似文献   

15.
【目的】以秸秆还田定位试验为平台,探讨玉米秸秆还田配施氮肥对冬小麦产量、土壤硝态氮积累、氮素表观盈余和氮肥利用率的影响规律,明确砂姜黑土玉米秸秆全量还田条件下冬小麦生长季的最佳施氮量。【方法】试验以秸秆处理为主区,设秸秆还田和秸秆移除2个水平;施氮量为副区,设6个水平,分别为0、162.0、202.5、243.0、283.5、324.0 kg/hm2。测定了冬小麦播种前、拔节期、成熟期地上部植株含氮量,土壤0—20、20—40和40—60 cm硝态氮含量,小麦产量以及籽粒氮含量,计算了冬小麦生育期土壤的氮素表观盈余,小麦基施和追施氮肥的利用效率以及不同阶段的氮素盈余。【结果】玉米秸秆还田后小麦增产365 844 kg/hm2,增产率为4.2%9.3%,尤其以配施243.0 kg/hm2的增幅最高,产量达9858 kg/hm2。小麦整个生育期,秸秆还田显著增加了0—60 cm土层的土壤硝态氮累积量,而秸秆移除条件下,土壤硝态氮累积量与氮肥施用量相关,高量氮肥增加了硝态氮累积量,N施用量高于243.0 kg/hm2时,硝态氮累积量较小麦播种前增加19.8%28.6%。施氮均显著增加了植株氮素积累量;小麦播种到拔节期,植株的氮素积累量随基肥比例的增加而增加。小麦生育期不施氮处理表现为氮素亏缺,施氮处理显著增加了0—60 cm土层的土壤氮素盈余量,且随基肥、追肥量的增加而增加,盈余值每增加100.0kg/hm2,秸秆还田配施氮肥和单施氮肥的土壤剖面硝态氮积累量就会分别增加74.2和91.4 kg/hm2。秸秆还田配施氮肥提高了氮肥农学效率、植株地上部氮肥吸收利用率、籽粒氮肥吸收利用率,特别是在高氮肥时,基肥和拔节肥的利用率显著高于单施氮肥。在施氮处理间、相同氮肥施用下秸秆还田和移除处理间氮素收获指数均无显著差异。氮肥表观回收率随施氮量的增加而降低,基肥表观回收率显著高于拔节肥表观回收率。【结论】秸秆还田和施氮水平对小麦植株氮素的吸收转运没有显著影响,但可提高基施和追施氮肥的利用率,可增加土壤0—60 cm土层中硝态氮的含量。综合各项指标,冬小麦生长季玉米秸秆全量还田适宜的氮肥配施量为202.5 243.0 kg/hm2。  相似文献   

16.
不同施肥对雷竹林土壤氮、磷渗漏流失的影响   总被引:8,自引:2,他引:6  
于2009年利用土壤渗漏水收集器在浙江省临安市的雷竹林中进行雷竹林氮、磷渗漏淋失特征的田间试验,以比较不同施肥处理对雷竹林土壤氮、磷渗漏流失的影响。结果表明:土壤渗漏水量与降雨量呈显著正相关(p<0.05)。土壤渗漏水中全氮(TN)和全磷(TP)的浓度均随施肥量增大而增加。不同施肥处理渗漏水中TN和TP的平均浓度分别为19.7~50.9mg/L和1.2~2.5mg/L。硝态氮(NO3--N)是渗漏水中TN的主要形态,占TN的75.7%~83.6%。整个试验期间,各施肥处理雷竹林氮和磷的累计淋失负荷分别为53.0~149.2kg/hm2和3.0~5.8kg/hm2。不同施肥处理雷竹林土壤渗漏水中氮、磷渗漏淋失负荷递减次序为常规施肥>缓释肥>专用复合肥>微生物肥>对照。与常规施肥处理相比,低量施肥量的专用复合肥、缓释肥和微生物肥处理的氮渗漏流失负荷分别减少31.8%,17.6%,41.2%,而磷渗漏流失负荷分别减少29.4%,12.9%,40.4%。  相似文献   

17.
田间试验研究了不同土壤氮素供应水平和底追比例对玉米籽粒产量、土壤硝态氮和农田氮素平衡的影响.与农民习惯施肥(N 240 kg·hm-2,基肥和大喇叭口追肥为1∶2)相比,氮肥减量10%(N 216 kg· hm-2)和20% (N 192kg·hm-2)处理的玉米产量并没有降低,而氮肥利用效率显著增加.氮肥减量后移可使耕层无机氮供应较好地与作物吸收同步,降低收获期0~100 cm土层的硝态氮积累,减少氮素的田间表观损失,提高氮肥利用效率.在本试验条件下,氮肥减量20%(N 192 kg·hm-2),基追比例1∶3∶1处理的植株产量、地上部植株氮肥吸收利用率、氮肥农学利用率均较高,0~100 cm土层未出现硝态氮明显累积,氮素表观损失量最少,是最佳施氮运筹模式.  相似文献   

18.
研究了分次施氮条件下不同氮紊用量对高肥力稻田水稻-土壤-水体含氮量的变化,结果表明:不同施氮水平与植物吸氮置、土壤含氮量以及田面水、渗漏水全氮含量之间具有很强的相关性。但总的来说,氮素利用率不高,有70%~80%左右的化肥氮排入到环境中,对土壤.水体和大气造成污染。在移栽期时,氮紊损失严重。土壤古氮量在水稻生长的前3个时期变化不大,但最终土壤氮素效应明显,低于150kg/hm^2的施氮量不利于土壤肥力的保持。同时用差值法估算出化肥氮对土壤氮的贡献量占化肥氮排入环境量的比例为30%~40%。田面水全氮浓度在每次施肥后第一天达到高峰.一周后全氮浓度显著下降,从环境角度,施肥后一周内是防止田面水氮素流失的主要时期。通过差值法估算的渗漏水中氮含量占化肥氮排入环境氮的比例很小,说明化肥氮当季渗漏淋失的较小。但从总量上却不可忽视,特别是施氮量大于225kg/hm^2时,会对环境造成很大的污染。  相似文献   

19.
不同施肥对双季稻田径流氮磷流失特征的影响   总被引:5,自引:0,他引:5  
通过定位试验,研究了不施氮肥(WN)、单施化肥(HF)、猪粪替代20%氮肥(ZF)、沼渣沼液替代20%氮肥(ZYF)、堆肥替代20%氮肥(DF)、早稻绿肥、晚稻稻草代替20%氮肥(LDF)6种不同施肥处理下双季稻径流氮磷含量和累积流失负荷的影响。结果表明,水稻基肥和追肥后,径流水中全氮、硝态氮、铵态氮、全磷和水溶性磷含量逐渐下降。HF处理双季稻季径流水中全氮、铵态氮、硝态氮平均含量最高,分别为5.91,3.65,0.82mg/L。相比HF处理,有机物料替代20%氮肥处理能够降低径流水中全氮、铵态氮、硝态氮的平均含量,其中以DF处理下降幅度最大,分别下降1.18,0.71,0.14mg/L;除DF处理外,有机物料替代20%氮肥能够增加径流水中全磷和水溶性磷的平均含量。相比HF处理,有机物料替代20%氮肥能够减少氮素径流流失负荷,以DF处理总氮、铵态氮和硝态氮累积流失负荷最小,分别为10.25,6.17,1.71kg/hm2;DF处理磷素流失负荷与单施化肥处理持平。综上,DF处理能够降低径流水中氮磷流失负荷,对于保护环境和控制面源污染具有重要意义。  相似文献   

20.
【目的】黄淮海平原高产麦田水肥资源的大量投入带来了水肥利用率低、氮素损失量大等一系列问题,本文研究了滴灌施肥对黄淮海平原冬小麦大田氮素利用和损失的影响,以期为小麦高产高效施肥提供新的技术手段。【方法】以尿素、NH4H2PO4和KCl混合的水溶性肥料为材料,在山东桓台进行冬小麦主要生育期测墒补灌并随水施肥的田间试验,设置4个施氮量处理,即N0(不施肥)、N1(94.5 kg/hm2)、N2(189 kg/hm2)和N3(270 kg/hm2),分析了大田土壤NO-3-N空间分布、剖面累积及氮素的平衡。【结果】1)滴灌施肥24 h后,随施氮量的增加,在滴头周围水平方向上土壤NO-3-N从在湿润土体边缘聚集逐渐变化为在滴头下方聚集,当施氮量为189 kg/hm2时,滴灌施肥后滴头下方和湿润土体边缘的NO-3-N含量差异不显著,在滴头周围水平方向上均匀性最好;NO-3-N在滴头下方土壤内随水运移深度主要在60 cm以上,滴灌施肥后滴头下方垂直方向上NO-3-N没有在湿润体边缘聚集。2)冬小麦收获后,0—100 cm土壤剖面NO-3-N累积量随施氮量的增加而逐渐增加,且施氮量超过N 189kg/hm2后,土壤剖面NO-3-N累积量的增加幅度加大,0—40 cm土层的NO-3-N增加量显著高于其他土层,N0、N1、N2和N3处理0—40 cm土层NO-3-N累积量所占比例分别为66%、72%、72%和71%。3)随着施氮量的增加,冬小麦吸氮量和籽粒产量先增加后下降,而0—100 cm土层氮素残留量、表观损失量不断增加,滴灌施肥条件下氮素表观损失量较低,N1、N2和N3的表观损失率分别为20%、17%和16%。【结论】滴灌施肥措施下,合理的灌溉量可以调节滴灌施肥后硝态氮主要向下运移至作物根区范围,集中在作物根系最密集的0—40 cm范围内,肥液浓度对硝态氮运移深度影响不大。施入适宜量氮肥有利于提高滴头下方湿润体内水平方向上NO-3-N分布的均匀度,从而促进作物对氮素的吸收。施氮量为189 kg/hm2的N2处理获得了最高的籽粒产量和氮肥利用效率,播前和收获后根区土壤NO-3-N累积量基本达到平衡,是试验筛选出的最佳滴灌施氮模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号