首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
适宜咸水滴灌提高棉花水氮利用率   总被引:5,自引:0,他引:5  
通过田间试验研究了不同灌溉水盐度和灌溉量对棉花水氮利用效率的影响。试验设置三种灌溉水盐度(电导率EC):0.35(淡水)、4.61(微咸水)和8.04 dS/m(咸水),分别以FW、BW和SW表示;两个灌溉量405和540 mm,分别以I405、I540表示。结果表明微咸水灌溉棉花干物质质量最高,其次是淡水灌溉,咸水灌溉最低。咸水灌溉棉花的氮素吸收量、产量显著降低,但微咸水与淡水灌溉差异不显著。农田蒸散量随灌溉水量的增加而增加,随灌溉水盐度的增加而降低。微咸水灌溉对滴灌棉田蒸散量和水分生产率影响不大,但咸水灌溉导致蒸散量和水分生产率显著降低。15N同位素标记试验结果表明,三种灌溉水盐度下,高灌量处理(540 mm)较低灌量处理(405 mm)棉花15N回收率平均增加7.51%,土壤15N回收率降低13.20%,15N淋洗损失率增加29.47%。不同灌溉水盐度处理棉花15N回收率为47.02%~59.86%,微咸水灌溉棉花15N回收率与淡水灌溉差异不大,但咸水灌溉棉花15N回收率较淡水和微咸水灌溉分别降低了10.17%和15.23%。不同灌溉水盐度对土壤15N残留率的影响较小,为16.75%~22.41%。15N的淋洗损失率为1.56%~4.71%,表现为随灌溉水盐度的增加而显著增加,咸水和微咸水灌溉15N淋洗损失率平均较淡水灌溉分别增加了80.53%和136.00%。上述结果说明适宜盐度和灌溉量的微咸水滴灌对棉花生长、产量以及水氮利用率影响不大,但高盐度咸水灌溉会导致棉花减产,水氮利用率显著降低。滴灌条件下,氮素的淋洗损失也是氮肥损失的重要途径,尤其是咸水和微咸水灌溉会加剧氮肥的淋洗损失风险。因此,咸水微咸水灌溉条件下减少氮肥的淋洗损失是提高氮肥利用率的重要方面。  相似文献   

2.
灌溉水盐度和施氮量对棉花产量和水氮利用的影响   总被引:6,自引:3,他引:3  
淡水资源不足和盐渍化是干旱半干旱地区农业生产的重要限制因素,因此提高水、 肥利用效率和作物产量,减少根区盐分积累和地下水污染风险是这些地区水分养分优化管理的重要目标。通过田间试验研究了滴灌条件下灌溉水盐度和施氮量对棉花产量和水、 氮利用率的影响。试验设置灌溉水盐度和施氮量两个因素,灌溉水盐度(电导率,EC)设3个水平,为0.35(淡水)、 4.61(微咸水)和 8.04(咸水)dS/m,分别用SF、 SM和SH表示;施氮(N)量设4个水平,为0、 240、 360和480 kg/hm2,分别以N0、 N1、 N2和N3表示。研究结果表明,棉花干物质重、 氮素吸收量和氮肥利用率受灌溉水盐度、 施氮量及二者交互作用的影响显著。咸水灌溉处理(SH)棉花干物质重、 氮素吸收量、 产量和氮肥表观利用率均显著降低,而微咸水灌溉(SM)对棉花氮素吸收量和氮肥表观利用率影响不大,但干物质重和产量有所降低。施氮肥可显著促进棉花生长,增加干物质重、 氮素吸收量和产量,但随着灌溉水盐度的增加,其促进效应明显受到抑制。微咸水和咸水灌溉会导致水分渗漏增加、 蒸散量降低,增施氮肥则可显著降低水分渗漏、 增加蒸散量。微咸水灌溉水分利用率最高,其次是淡水灌溉,咸水灌溉最低;增施氮肥则可显著提高水分利用率。因此滴灌条件下,高盐度的咸水不宜用于灌溉。而短期的微咸水灌溉不会对棉花产量和水、 氮利用率产生严重的负面影响;同时,合理的配施氮肥也有助于促进棉花生长,提高棉花产量和水分利用率。  相似文献   

3.
华北平原玉米种植中施入氮肥的去向研究   总被引:1,自引:0,他引:1  
为了定量研究玉米氮肥利用特性以及肥料氮的去向,设计了~(15) N标记微区控制试验,设置3个施氮水平:不施氮肥(对照)、低氮处理(120kg N/hm~2)和高氮处理(240kg N/hm~2)。结果表明:土壤中残留~(15) N量随施氮量增加而显著增加(P0.05)。在空间分布上,总体呈现出随土壤深度先下降后上升的趋势,高氮处理和低氮处理~(15) N累积量均以40—60cm和60—80cm土层最多,这两层残留~(15) N总量分别占总投入量的37.55%和18.99%。与对照相比,施氮处理均显著提高了玉米地上、地下生物量和籽粒产量以及各部分吸氮量。虽然高氮处理较低氮处理施氮量增加了1倍,但籽粒产量仅增加0.14倍。氮肥农学效率与氮肥表观利用率随着施氮量增加而显著降低。高氮处理和低氮处理中玉米对~(15) N标记氮肥的利用率分别为28.86%和31.15%,土壤氮残留率分别为50.42%和36.52%,当季进入地下水的比率分别为4.27%和0.68%,其他损失率分别为16.45%和32.33%。研究结果表明,施氮量为120kg/hm~2可有效增加玉米产量,同时提高氮肥利用率,减少土壤氮累积,减小氮肥施用产生的环境污染风险。  相似文献   

4.
为探明盐渍化农田不同施氮水平下向日葵氮素吸收利用规律,采用15N同位素示踪技术进行田间微区试验,以不施氮处理(N0)为对照,设计3种施氮水平(N1=150 kg/hm2、N2=225 kg/hm2、N3=300 kg/hm2),于向日葵成熟期测定植株和0—100 cm土层土壤15N同位素丰度及总氮含量,研究各处理肥料氮素的去向及其利用机制。结果表明:向日葵氮素吸收量随施氮量的增加而增加,成熟期作物氮素吸收量在N2水平较不施氮显著增加38.7%;土壤氮和肥料氮对作物当季氮素吸收的贡献比例为84.9%和15.1%。N2水平下,肥料氮的贡献比例较N1增加35.7%,土壤氮的贡献比例较N1降低4.3%。肥料氮残留量随土层深度增加而减少,土壤中47.4%的残留肥料氮主要集中在0—20 cm土层。不同施氮水平下肥料氮去向均表现为氮肥损失率>氮肥残留率>氮肥利用率,N2施氮水平下氮肥利用率较N1、N3显著提高22.7%和14.6%,土壤残留率较N1、N3减少8.5%和8.6%。综合考虑向日葵氮素吸收利用及土壤中氮素残留情况,225 kg/hm2施氮量下氮肥利用率为27.4%,氮肥残留率为32.3%,氮肥损失率为40.3%,是中度盐渍化农田较适宜的施氮量。  相似文献   

5.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

6.
【目的】华北平原棉区中等肥力棉田经济最佳施氮量为300 kg/hm2左右,这一结果仅从产量效应得出,未充分考虑棉花对氮肥的回收利用和土壤中氮肥的残留。探讨低肥力土壤施氮量及施氮比例对棉花产量及氮肥利用率的影响,以及低、中、高肥力土壤条件下等量施氮效应,旨在为棉花减氮增效提供理论依据。【方法】田间试验选择了高 (S1)、中 (S2)、低 (S3) 三个肥力水平的地块,其全氮含量分别为0.83、0.74、0.60 g/kg。低肥力地块设置低氮 (N1 113 kg/hm2)、中氮 (N2 225 kg/hm2)、高氮 (N3 338 kg/hm2) 3个氮肥用量;中肥力和高肥力地块设低氮量处理,氮肥两次追施在苗期与初花期进行,氮肥比例为1∶2;此外,设置低肥力土壤低氮量,氮肥追施在苗期与初花期进行,氮肥分配比例为1∶1。在吐絮70%时采集棉株和土壤样品,用15N技术分析了棉株氮素吸收来源、籽棉产量、棉株氮肥回收率和土壤氮肥残留率。【结果】低氮处理,土壤肥力对棉花籽棉产量无显著影响,随土壤肥力提升,棉株吸收氮素来源于肥料的比例下降,相对增加了对土壤氮素的吸收。棉花植株15N回收率随施氮量增加显著下降,随土壤肥力提高呈下降趋势,低肥力土壤与中肥力土壤间棉花植株15N回收率差异不显著,但显著高于高肥力土壤。高肥力土壤15N残留率高于低肥力土壤和中肥力土壤。15N损失率随施氮量和土壤肥力提高显著增加。低土壤肥力低氮量条件下氮肥分配比例1∶2处理籽棉产量高于1∶1处理。低肥力土壤条件下,中氮处理籽棉15N积累量相对高于高氮和低氮处理,籽棉产量较优。【结论】在较低土壤肥力条件下,施氮225 kg/hm2籽棉产量和氮回收率均优于施氮338 kg/hm2,氮肥损失率较低,减氮增效是可行的。高肥力土壤条件下减少氮肥投入可减少肥料的浪费。  相似文献   

7.
采取土柱模拟实验的方法研究了不同施氮强度对宁夏引黄灌区灌淤土中氮素淋洗损失特征,以期为氮素淋失控制和合理施用提供科学依据。试验设5个氮水平,分别为对照处理(N0)、常规氮水平300 kg·hm-2(N300)、优化氮水平(N240)、2倍常规氮水平(N600)、2倍优化氮水平(N480)。试验结果表明:不同施氮水平淋洗液中NO3--N的浓度表现出先升高后降低的趋势,浓度峰值出现的时间随施氮水平增加逐渐后移,NO3--N是氮素淋洗损失的主要形态,而NH4+-N的淋失损失主要出现在淋洗前期,增加施氮量可以推迟各形态氮素峰值出现时间,增加淋失风险。N240,N300,N480和N600处理总氮累积淋失量分别为94.53、128.02、222.06 kg·hm-2和268.6 kg·hm-2,淋洗损失比例分别为39.38%、42.67%、46.26%和44.77%,当季施入稻田土壤的氮肥极易淋洗到100 cm深度以下,成为浅层地下水的潜在威胁。施入到灌淤土的氮素有39.38%~46.26%通过淋洗途径损失,各处理总氮累积量淋失规律服从对数方程Yt=a+blnt(R2=0.927~0.975)。  相似文献   

8.
氮硫配施对冬小麦氮硫吸收转运及利用效率的影响   总被引:1,自引:1,他引:0  
采用二元二次正交旋转组合设计,通过田间试验研究了陕西关中地区氮硫配施对冬小麦氮硫素吸收、转运及利用效率的影响。试验施氮量[kg(N)·hm-2]设75(N1)、108(N2)、187.5(N3)、267(N4)和300(N5)5个水平,施硫量[kg(S)·hm-2]设75(S1)、97.5(S2)、150(S3)、202.5(S4)和225(S5)5个水平,组成N4S4、N4S2、N2S4、N2S2、N5S3、N1S3、N3S5、N3S1、N3S3 9个处理。结果表明:拔节期至开花期是冬小麦干物质和氮、硫积累的高峰期,积累量分别占全生育期内干物质和氮、硫积累量的43.33%~48.42%、28.71%~44.77%和40.11%~50.43%。氮素向籽粒的转运率(63.61%~70.64%)远高于硫素向籽粒的转运率(10.63%~30.98%);氮硫配施促进了小麦花后营养器官氮硫向籽粒的运转,同时增加了总转运量对籽粒氮硫的贡献率。在N2(108 kg·hm-2)和S2(97.5 kg·hm-2)水平,氮硫积累量及转运量随施硫量或施氮量的增加而增加;在N3(187.5 kg·hm-2)和S3(150 kg·hm-2)水平,则随施硫量或施氮量的增加先增加后趋于稳定。植株体内的氮素和硫素吸收累积量具有极显著相关关系。综合考虑氮素(硫素)表观利用率及生理效率,在施氮量(170.64~204.52 kg·hm-2)与施硫量(97.35~139.32 kg·hm-2)水平下,氮硫肥利用率较高。因此,在冬小麦栽培过程中,可以通过调节施氮量和施硫量,充分利用氮硫交互效应,提高氮硫的吸收、分配及利用效率。  相似文献   

9.
春玉米产量、氮素利用及矿质氮平衡对施氮的响应   总被引:17,自引:0,他引:17  
通过在辽宁省昌图县的田间试验,研究了不同施氮水平(0、60、120、180、240和300 kg hm-2)对春玉米产量、氮素利用及农田矿质氮平衡的影响。结果表明:春玉米产量随施氮量增加而显著提高,当施氮量高于N 240 kg hm-2时,产量有减少趋势;氮素当季利用率随施氮量增加先增加后降低,在施氮量180 kg hm-2时达到最大,为27.95%。随着施氮量增加,氮肥农学利用率、氮素吸收效率和氮素偏生产力均显著降低,而氮肥生理利用率和氮肥表观残留率均先增加后降低,这与氮肥表观损失率的变化正好相反。作物吸氮量随施氮量增加而显著增加,氮盈余主要以土壤残留为主,表观损失在氮盈余中的比例虽小,但随着施氮量增加而明显增加。低量施氮(<180 kg hm-2)主要引起土壤矿质氮残留量的显著增加,而高量施氮(240 kg hm-2和300 kg hm-2)主要引起土壤氮素表观损失量的显著增加。在本试验条件下,合理施氮量应控制在180~209 kg hm-2左右。  相似文献   

10.
周静  崔键  胡锋  王国强  马友华 《土壤学报》2007,44(6):1076-1082
探讨了我国南方红壤上种植牧草马唐施不同量氮肥,施氮量与土壤氨挥发、径流和1 m深土壤淋溶损失氮量的关系。结果表明,在施用N 90、160、230 kg hm-2尿素处理下,土壤氨挥发损失量分别为N0.67、1.24和5.16 kg hm-2,分别占施氮量的0.74%0、.77%和2.24%,土壤氨挥发损失量(y)与施氮量(x)呈指数递增关系:y=0.156 3e0.014 6x;径流氮素损失量分别为N 1.05、0.88和1.01 kg hm-2,分别占施氮量的1.17%、0.55%和0.44%,径流损失的氮量与施氮量之间无明显相关性;淋溶损失总氮量为2.05、2.86和4.09kg hm-2,分别占施氮量的0.91%、1.02%和1.24%,土壤淋溶损失总氮量(y)与施氮量(x)呈线性递增关系:y=0.012 2x 1.087 7。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号