首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
Alpine grasslands with a high soil organic carbon(SOC)storage on the Tibetan Plateau are experiencing rapid climate warming and anthropogenic nitrogen(N)deposition;this is expected to substantially increase the soil N availability,which may impact carbon(C)cycling.However,little is known regarding how N enrichment influences soil microbial communities and functions relative to C cycling in this region.We conducted a 4-year field experiment on an alpine grassland to evaluate the effects of four different rates of N addition(0,25,50,and 100 kg N ha^-1 year^-1)on the abundance and community structure(phospholipid fatty acids,PLFAs)of microbes,enzyme activities,and community level physiological profiles(CLPP)in soil.We found that N addition increased the microbial biomass C(MBC)and N(MBN),along with an increased abundance of bacterial PLFAs,especially Gram-negative bacterial PLFAs,with a decreasing ratio of Gram-positive to Gram-negative bacteria.The N addition also stimulated the growth of fungi,especially arbuscular mycorrhizal fungi,reducing the ratio of fungi to bacteria.Microbial functional diversity and activity of enzymes involved in C cycling(β-1,4-glucosidase and phenol oxidase)and N cycling(β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase)increased after N addition,resulting in a loss of SOC.A meta-analysis showed that the soil C/N ratio was a key factor in the response of oxidase activity to N amendment,suggesting that the responses of soil microbial functions,which are linked to C turnover relative to N input,primarily depended upon the soil C/N ratio.Overall,our findings highlight that N addition has a positive influence on microbial communities and their associated functions,which may reduce soil C storage in alpine grasslands under global change scenarios.  相似文献   

2.
不同肥力水平和利用历史的红壤磷脂脂肪酸图谱   总被引:4,自引:0,他引:4  
Analysis of phospholipid fatty acids(PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correltaed with soil organic carbon, total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustainbility in these highly weathered soils.Soils of the eroded wastelan were rich in Gram-positive species .When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8-12 yearss before it reached a significantly different population,Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.Howver,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.  相似文献   

3.
Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility. A investigation was performed to study the effects of long-term natural restoration, cropping, and bare fallow managements on the soil microbial biomass and bacterial community structures in depths of 0--10, 20--30, and 40--50 cm in a black soil (Mollisol). Microbial biomass was estimated from chloroform fumigation-extraction, and bacterial community structures were determined by analysis of 16S rDNA using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Experimental results showed that microbial biomass significantly declined with soil depth in the managements of restoration and cropping, but not in the bare fallow. DGGE profiles indicated that the band number in top 0--10 cm soils was less than that in depth of 20--30 or 40--50 cm. These suggested that the microbial population was high but the bacterial community structure was simple in the topsoil. Cluster and principle component analysis based on DGGE banding patterns showed that the bacterial community structure was affected by soil depth more primarily than by managements, and the succession of bacterial community as increase of soil depth has a similar tendency in the three managements. Fourteen predominating DGGE bands were excised and sequenced, in which 6 bands were identified as the taxa of Verrucomicrobia, 2 bands as Actinobacteria, 2 bands as α-Proteobacteria, and the other 4 bands as δ-Proteobacteria, Acidobacteria, Nitrospira, and unclassified bacteria. In addition, the sequences of 11 DGGE bands were closely related to uncultured bacteria. Thus, the bacterial community structure in black soil was stable, and the predominating bacterial groups were uncultured.  相似文献   

4.
挪威北部土壤微生物活性的季节变化   总被引:9,自引:0,他引:9  
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacteria] biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.  相似文献   

5.
Soil drying-rewetting(DRW) events affect nutrient transformation and microbial community composition; however, little is known about the influence of drying intensity during the DRW events. Therefore, we analyzed soil nutrient composition and microbial communities with exposure to various drying intensities during an experimental drying-rewetting event, using a silt loam from a grassland of northern China, where the semi-arid climate exposes soils to a wide range of moisture conditions, and grasslands account for over 40% of the nation's land area. We also conducted a sterilization experiment to examine the contribution of soil microbes to nutrient pulses. Soil drying-rewetting decreased carbon(C) mineralization by 9%–27%. Both monosaccharide and mineral nitrogen(N) contents increased with higher drying intensities(drying to ≤ 10% gravimetric water content), with the increases being 204% and 110% with the highest drying intensity(drying to 2% gravimetric water content), respectively, whereas labile phosphorus(P)only increased(by 105%) with the highest drying intensity. Moreover, levels of microbial biomass C and N and dissolved organic N decreased with increasing drying intensity and were correlated with increases in dissolved organic C and mineral N, respectively,whereas the increases in labile P were not consistent with reductions in microbial biomass P. The sterilization experiment results indicated that microbes were primarily responsible for the C and N pulses, whereas non-microbial factors were the main contributors to the labile P pulses. Phospholipid fatty acid analysis indicated that soil microbes were highly resistant to drying-rewetting events and that drought-resistant groups were probably responsible for nutrient transformation. Therefore, the present study demonstrated that moderate soil drying during drying-rewetting events could improve the mineralization of N, but not P, and that different mechanisms were responsible for the C, N, and P pulses observed during drying-rewetting events.  相似文献   

6.
Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P 〈 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P 〈 0.05). There were also significant decreases (P 〈 0.05) along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.  相似文献   

7.
退化喀斯特植被恢复与土壤微生物特征的关系   总被引:10,自引:0,他引:10  
The mechanism of vegetation restoration on degraded karst regions has been a research focus of soil science and ecology for the last decade.In an attempt to preferably interpret the soil microbiological characteristic variation associated with vegetation restoration and further to explore the role of soil microbiology in vegetation restoration mechanism of degraded karst regions,we measured microbial biomass C and basal respiration in soils during vegetation restoration in Zhenfeng County of southwestern Guizhou Province,China.The community level physiological profiles(CLPP) of the soil microbial community to were estimated determine if vegetation changes were accompanied by changes in functioning of soil microbial communities.The results showed that soil microbial biomass C and microbial quotient(microbial biomass C/organic C) tended to increase with vegetation restoration,being in the order arboreal community stage > shrubby community stage > herbaceous community stage > bare land stage.Similar trend was found in the change of basal respiration(BR).The metabolic quotient(the ratio of basal respiration to microbial biomass,qCO 2) decreased with vegetation restoration,and remained at a constantly low level in the arboreal community stage.Analyses of the CLPP data indicated that vegetation restoration tended to result in higher average well color development,substrate richness,and functional diversity.Average utilization of specific substrate guilds was highest in the arboreal community stage.Principle component analysis of the CLPP data further indicated that the arboreal community stage was distinctly different from the other three stages.In conclusion,vegetation restoration improved soil microbial biomass C,respiration,and utilization of carbon sources,and decreased qCO 2,thus creating better soil conditions,which in turn could promote the restoration of vegetation on degraded karst regions.  相似文献   

8.
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity.  相似文献   

9.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

10.
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.  相似文献   

11.
Terrestrial ecosystems experience simultaneous shifts in multiple drivers of global change, which can interactively affect various resources. The concept that different resources co-limit plant productivity has been well studied. However, co-limitation of soil microbial communities by multiple resources has not been as thoroughly investigated. Specifically, it is not clearly understood how microbial communities respond to shifts in multiple interacting resources such as water, temperature, and nitrogen (N), in the context of global change. To test the effects of these various resources on soil microorganisms, we established a field experiment with temperature and N manipulation in three grasslands of northern China, where there is a decrease in precipitation from east to west across the region. We found that microbial responses to temperature depended upon seasonal water regimes in these temperate steppes. When there was sufficient water present, warming had positive effects on soil microorganisms, suggesting an interaction between water and increases in temperature enhanced local microbial communities. When drought or alternating wet–dry stress occurred, warming had detrimental effects on soil microbial communities. Our results also provide clear evidence for serial co-limitation of microorganisms by water and N at the functional group and community levels, where water is a primary limiting factor and N addition positively affects soil microorganisms only when water is sufficient. We predict that future microbial responses to changes in temperature and N availability could be seasonal or exist only in non-drought years, and will strongly rely on future precipitation regimes.  相似文献   

12.
Soil microorganisms are influenced by various abiotic and biotic factors at the field plot scale. Little is known, however, about the factors that determine soil microbial community functional diversity at a larger spatial scale. Here we conducted a regional scale study to assess the driving forces governing soil microbial community functional diversity in a temperate steppe of Hulunbeir, Inner Mongolia, northern China. Redundancy analysis and regression analysis were used to examine the relationships between soil microbial community properties and environmental variables. The results showed that the functional diversity of soil microbial communities was correlated with aboveground plant biomass, root biomass, soil water content and soil N: P ratio, suggesting that plant biomass, soil water availability and soil N availability were major determinants of soil microbial community functional diversity. Since plant biomass can indicate resource availability, which is mainly constrained by soil water availability and N availability in temperate steppes, we consider that soil microbial community functional diversity was mainly controlled by resource availability in temperate steppes at a regional scale.  相似文献   

13.
Microbial mineralization and immobilization of nutrients strongly influence soil fertility. We studied microbial biomass stoichiometry, microbial community composition, and microbial use of carbon (C) and phosphorus (P) derived from glucose-6-phosphate in the A and B horizons of two temperate Cambisols with contrasting P availability. In a first incubation experiment, C, nitrogen (N) and P were added to the soils in a full factorial design. Microbial biomass C, N and P concentrations were analyzed by the fumigation-extraction method and microbial community composition was analyzed by a community fingerprinting method (automated ribosomal intergenic spacer analysis, ARISA). In a second experiment, we compared microbial use of C and P from glucose-6-phosphate by adding 14C or 33P labeled glucose-6-phosphate to soil. In the first incubation experiment, the microbial biomass increased up to 30-fold due to addition of C, indicating that microbial growth was mainly C limited. Microbial biomass C:N:P stoichiometry changed more strongly due to element addition in the P-poor soils, than in the P-rich soils. The microbial community composition analysis showed that element additions led to stronger changes in the microbial community in the P-poor than in the P-rich soils. Therefore, the changed microbial biomass stoichiometry in the P-poor soils was likely caused by a shift in the microbial community composition. The total recovery of 14C derived from glucose-6-phosphate in the soil microbial biomass and in the respired CO2 ranged between 28.2 and 37.1% 66 h after addition of the tracer, while the recovery of 33P in the soil microbial biomass was 1.4–6.1%. This indicates that even in the P-poor soils microorganisms mineralized organic P and took up more C than P from the organic compound. Thus, microbial mineralization of organic P was driven by microbial need for C rather than for P. In conclusion, our experiments showed that (i) the microbial biomass stoichiometry in the P-poor soils was more susceptible to additions of C, N and P than in the P-rich soils and that (ii) even in the P-poor soils, microorganisms were C-limited and the mineralization of organic P was mainly driven by microbial C demand.  相似文献   

14.
Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.  相似文献   

15.
不同培肥模式对茶园土壤微生物活性和群落结构的影响   总被引:6,自引:0,他引:6  
以闽东地区红黄壤茶园定位实验地为对象,通过测定6种不同施肥处理土壤微生物学特性,研究不同培肥对土壤微生物特性和生物化学过程的影响,阐明各指标间的相互关系.结果表明,除了单施无机肥处理外,半量化肥+半量有机肥、全量有机肥、全量化肥+豆科绿肥以及半量化肥+半量有机肥+豆科绿肥等的培肥方式均不同程度提高了土壤有机质,可培养微生物数量,微生物量碳、氮含量及土壤酶活性,尤以半量无机肥+半量有机肥+豆科牧草的培肥模式增幅更为明显,而单施无机肥不利于微生物的生长、酶活性的提高和维持生态系统的稳定性.微生物群落磷脂脂肪酸(PLFAs)标记主成分分析显示,各种不同施肥方式使微生物群落结构发生改变.相关分析表明,微生物量与可培养微生物数量、微生物磷脂脂肪酸含量之间的相关性明显高于微生物量与各种酶活性之间的相关性,说明微生物数量大小对微生物群落结构的影响大于对酶活性功能的影响.研究也表明土壤各微生物指标能从不同方面反映土壤肥力水平,所以采用各种不同的方法能更客观地评价闽东地区茶园红黄壤质量的优劣.  相似文献   

16.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

17.
Intensive greenhouse vegetable‐production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic‐matter contents were greater in the intensive greenhouse tomato soils than the open‐field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic‐matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.  相似文献   

18.
已有许多研究证明,中国北方草地生态系统的植物群落结构和组成对气候变化和氮沉降较为敏感,但是关于草原土壤微生物群落响应多重环境因子变化方面的研究较薄弱。水和氮是陆地生态系统生产力的两大限制性因子。本研究在内蒙古多伦半干旱草原地区进行增雨和施氮的野外控制试验,以模拟未来该地区的降水变化和氮沉降,使用微生物群落水平生理图谱法,监测样地土壤理化指标和土壤微生物群落碳源利用潜力的变化。3年的跟踪监测结果显示:增雨显著提高了半干旱草原地区土壤含水量和有机质含量;施氮和增雨同时施氮则显著提高了土壤可溶性氮含量,降低了土壤pH;施氮和增雨都没有单独引起土壤微生物群落碳源利用潜力的显著变化,而在同时增雨和施氮试验处理下,微生物群落碳源利用潜力得到提高,说明在水和氮都充足的条件下,土壤微生物碳源利用潜力才会显著提高。以上研究结果预示着在未来降雨增加和氮沉降的全球变化背景下,中国北方半干旱草地生态系统的碳循环速率可能会加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号