首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为提高氮肥利用效率,减少过量施用氮肥对环境造成的污染,本文以甘肃省河西灌区为试验地点,在0和225kg(N)·hm^-2氮水平下,探讨了蚕豆、豌豆、大豆3种豆科作物与玉米间作对土壤硝态氮累积和分布的影响。研究表明:蚕宜收获后,间作的蚕豆、大豆、豌豆和玉米土壤硝态氮累积量在两个氮水平下均低于相应的单作,蚕豆、大豆、豌豆的间作土壤剖面硝态氮含量也低于相应的单作,但表现的土层深度各异。玉米收获后,蚕豆和豌豆的间作土壤硝态氮累积量低于单作;不施氮条件下,大豆间作土壤硝态氮累积量低于单作,与蚕豆、豌豆和大豆间作的玉米土壤硝态氮累积量均高于单作玉米;在225kg(N)·hm^-2氮水平下,与蚕豆和豌豆阔作的玉米土壤硝态氮累积量低于单作玉米,间作大豆和与大豆间作的玉米土壤硝态氮累积量高于相应的单作。玉米收获期,不施氮条件下3种豆科作物间作0~60cm土壤硝态氮含量均低于单作;225kg(N)·hm^-2氮水平下,蚕豆、豌豆间作0~60cm土壤硝态氮含量低于单作,而间作大豆0~100cm土壤硝态氮含量高于单作。对不同深度土壤硝态氮相对累积量分析表明,蚕豆收获期间作0~60cm土层相对累积量高于单作,而100~180cm土层则低于单作。  相似文献   

2.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:8,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

3.
施肥与灌水对硝态氮在土壤中残留的影响   总被引:34,自引:1,他引:34  
通过田间试验研究不同施氮量与灌水量对春玉米和冬小麦田土壤中硝态氮分布与累积的影响,结果表明,春玉米收获后0~2 m土壤中累积硝态氮185.7~748.0 kg/hm2,其中1 m以上占57.9%~70.1%。由于施用氮肥而增加的硝态氮占施N量的1.8%(N 112.5 kg/hm2),50.7%(N 225 kg/hm2),56.7%(N 337.5 kg/hm2)和77.0%(N450 kg/hm2)。不施N和施N 112.5 kg/hm2时春玉米田土壤剖面没有明显累积峰;施N等于或高于225 kg/hm2时在60~80 cm土层有明显累积峰,施氮量高的峰值较高;施N 450 kg/hm2时在120~140 cm深度出现另一个累积高峰。冬小麦收获后土壤0~2 m硝态氮累积量为74.9~328.8 kg/hm2,其中1m以上占67.8%~90.7%。由于施用氮肥而增加的硝态氮占施N量的19.5%(N 112.5 kg/hm2),35.6%(N 225 kg/hm2),58.9%(N 337.5 kg/hm2)和56.4%(N 450 kg/hm2)。冬小麦田收获后土壤深层(1~2 m)没有明显的硝态氮累积,即使施氮量高达450 kg/hm2时也只在表层40 cm以上累积较多。不论是春玉米还是冬小麦,当生育期施氮量大于225 kg/hm2时0~2 m土层均有明显的硝态氮累积,施氮量高的累积量较高。施氮量是造成土壤中硝酸盐累积的主要因素,灌水量对春玉米田硝态氮的向下迁移有显著影响。  相似文献   

4.
施氮量和蚕豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:2,他引:2  
在田间条件下于2006—2007年研究了不同氮水平下(N 0、75、150、225、300 kg/hm2)蚕豆/玉米间作体系与其相应单作体系土壤无机氮的时空分布规律,旨在为河西走廊灌区蚕豆/玉米间作体系的氮素管理提供理论依据。用土钻法采集土壤剖面样品,CaCl2浸提,流动分析仪测定土壤无机氮的方法研究了施氮量和蚕豆/玉米种间相互作用对土壤无机氮时间和空间变化特点。结果表明:灌漠土无机氮以NO3--N为主。蚕豆和玉米无机氮含量在蚕豆收获前种植方式间均无显著性差异,蚕豆收获后至玉米收获,间作显著降低了两种作物各层无机氮含量;无机氮含量随着施氮量增加而显著增加。蚕豆收获后间作体系0—100 cm土层无机氮累积量略高于单作体系,且0—100 cm 土层无机氮累积量高于100—160 cm土层;玉米收获后,间作蚕豆和玉米土壤无机氮累积量在0—100 cm土层分别平均降低了51.7%和16.6%,在100—160 cm土层平均降低了42.1%和6.1%;与不施氮相比,施氮蚕豆和玉米无机氮累积量在0—100 cm土层分别平均增加了40.1%和81.5%,在100—160 cm土层分别增加了69.6%和40.6%;与单作体系相比,间作体系0—100 和100—160 cm土层土壤无机氮分别降低43.4%和34.1%。因此,施氮肥显著增加土壤无机氮的累积,而豆科/禾本科间作减少了土壤无机氮的残留。  相似文献   

5.
施氮量对间作玉米土壤硝态氮累积量及氮肥利用率的影响   总被引:1,自引:0,他引:1  
马忠明  孙景玲 《核农学报》2012,26(9):1305-1310
通过田间定位试验,监测了不施氮和不同施氮水平(分别为210、420和630kg.hm-2)下间作玉米各关键生育时期0~200cm土层硝态氮累积量的动态变化、玉米产量及其构成,计算分析了间作玉米的氮肥利用率。研究结果表明,间作玉米0~200cm土层土壤硝态氮累积量总体表现为0~60cm土层>60~200cm土层。0~60cm土层土壤硝态氮累积量呈"M"形变化,即玉米播种前和玉米大喇叭口期出现高峰,小麦播种前、玉米拔节期和玉米收获后出现低谷。60~120cm和120~200cm土层土壤硝态氮累积量呈倒"V"形变化,总体在玉米大喇叭口期前后出现高峰值,210~630kg.hm-2施氮处理下120~200cm土层的硝态氮累积量较不施氮处理分别高出149.1%、115.6%和126.3%。随着施氮量的增加,间作玉米穗长、穗粒数、穗重呈增大趋势,秃顶呈降低趋势,增产幅度依次减小,氮肥利用率依次降低。  相似文献   

6.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升—下降—上升—下降—稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

7.
在田间条件下研究了施氮量对春玉米产量、氮肥利用率和土壤硝态氮时空分布的影响,旨在为冀西北春玉米氮肥优化管理提供理论依据。研究结果表明,春玉米产量随施氮量的增加而提高,当施氮量高于225 kg/hm2时,春玉米产量和氮肥利用率显著降低。从春玉米播种前到收获后,不施氮处理0-90 cm各土层硝态氮含量不断降低,施氮处理0-30 cm和30-60 cm土层硝态氮含量呈先上升后迅速下降并保持稳定的趋势,而60-90 cm土层硝态氮在春玉米生长后期有增加的趋势;春玉米收获后随着土层深度的增加,硝态氮呈波浪式下降,施氮量300,375 kg/hm2处理60-90,120-150,150-180 cm土层硝态氮含量显著高于其它处理。随着施氮量的增加,春玉米0-90,90-180,0-180 cm土层硝态氮累积量均呈增加趋势,高施氮量土层累积的硝态氮存在着更大的淋溶风险。因此,综合分析氮肥用量对春玉米产量、氮肥利用率的影响,并考虑土壤硝态氮时空分布下的环境风险,合理的施氮量应控制在195~225 kg/hm2之间。  相似文献   

8.
【目的】明确玉米条带不同追施氮量对间作作物产量、 吸氮量和土壤硝态氮动态变化的影响,并阐明间作系统不同施氮量的后茬农学效应和环境效应。【方法】玉米和大豆播种时均施用相同的基肥(其中氮肥用量为N 45 kg/hm2),根据大喇叭口期玉米条带追施氮量的不同(N 0、 75、 180 kg/hm2)设置三个处理(N0、 N75、 N180),并且大豆生育期间均不追施氮肥,然后实时监测玉米和大豆各个关键生育期的生物量和土壤硝态氮动态变化,并对比分析各处理的后茬冬小麦产量和土壤硝态氮残留量。【结果】随着玉米条带追施氮量的增加,玉米条带生物量、 产量和吸氮量均无显著变化,而且玉米追施氮量的多少对大豆生物量、 产量和吸氮量没有明显影响。间作种植系统土壤硝态氮含量受到追施氮量的影响,氮肥追施后,020 cm土壤硝态氮含量显著上升,但2040 cm土壤硝态氮含量变化不大。追施氮量越多,玉米条带和大豆条带的土壤硝态氮含量也越高,作物收获后土壤硝态氮残留量也越高,玉米条带追施N 180 kg/hm2的间作系统作物收获后土壤硝态氮含量高出其他两个处理12%~25%。此外,后茬作物冬小麦产量、 吸氮量并未随着前茬间作系统施氮量的增加而增加,但小麦收获后的0100 cm土壤硝态氮残留却随着前茬间作系统施氮量的增加而增大,相对仅施用基肥而不追施氮肥的间作系统,前茬间作系统追施氮肥导致后茬小麦收获后土壤(0100 cm)硝态氮残留量增加了22.38%~70.18%。【结论】针对玉米与大豆间作种植模式,只施用玉米基肥(其中氮肥用量为N 45 kg/hm2)而不追肥,或者在施用基肥的基础上,仅在玉米条带上追施少量氮肥(N 75 kg/hm2),不会影响间作体系产量,还可降低后茬小麦0100 cm土壤中的硝态氮残留。  相似文献   

9.
河北山前平原夏玉米高产区施肥不合理现象普遍存在,农业面源污染严重。研究华北山前平原水肥一体化条件下夏玉米适宜的氮肥运筹,可为该区氮素优化施用技术及提高氮肥利用效率提供依据。本研究以‘郑单958’玉米品种为材料,于2014—2015年2个玉米生长季,在滴灌条件下设置4个施氮水平(N0:不施氮;N1:120 kg·hm~(-2);N2:240 kg·hm~(-2);N3:360 kg·hm~(-2)),研究滴灌水肥一体化下施氮量对玉米氮素吸收利用和土壤硝态氮含量的影响。结果表明:N0处理的玉米干物质重及产量较其他处理显著降低,N1、N2和N3处理间无显著差异;N1处理的玉米氮含量和氮累积量较N0处理显著增加,施氮量在N1~N3范围内,不同年份间玉米植株氮含量和氮累积量存在一定差异,总体表现为随施氮量的增加而上升的趋势,但随施氮量的增加,植株氮含量和氮累积量上升幅度逐渐降低。N2处理的氮肥收获指数最高。随施氮量增加,氮肥当季回收利用率、氮肥农学效率、氮肥生产效率和氮肥利用效率显著降低;2014年,在0~100 cm土层范围内,4种施氮处理的土壤硝态氮含量均表现为随土层加深逐渐降低;2015年N2和N3处理的土壤硝态氮在80~100 cm土层达到累积峰,经过2年种植后,年施氮量超过240 kg·hm~(-2)的处理,土壤硝态氮淋洗加剧。利用一元二次方程拟合产量与施氮量之间的关系,明确了玉米最高产量的施氮量为199~209 kg·hm~(-2),经济施氮量为174~187 kg·hm~(-2)。综合考虑经济效益和生态效益,该条件下夏玉米滴灌水肥一体化的适宜施氮量为174~187 kg·hm~(-2)。  相似文献   

10.
通过在中国科学院长武黄土高原农业生态试验站半覆膜种植春玉米大田试验,研究了减氮及秸秆深埋对土壤电导率、土壤硝态氮淋溶和玉米产量的影响,旨在为提高氮肥利用效率和保护环境提供理论依据。试验设5个处理3个重复,处理包括不施氮(CK)、常规施氮(CON1,N 250kg/hm2)、常规施氮加秸秆(CON2,N 250kg/hm2+秸秆)、减量施氮(CR1,N 200kg/hm2)和减量施氮加秸秆(CR2,N 200kg/hm2+秸秆)。测量了春玉米各生育期土层剖面土壤电导率、收获期土壤硝态氮含量和春玉米产量。结果表明:土壤电导率在分蘖期、拔节期40—150cm土层出现峰值,在抽穗期、成熟期40—200cm土层出现峰值,峰值范围下移。在0—150cm土层范围内,土壤电导率整体呈现CON2CON1,CR2CR1。在0—150cm土层范围内,常规施氮土壤电导率高于减量施氮。与常规施氮相比,减量施氮减少了土壤剖面硝态氮含量,同时,采取秸秆深埋措施也能减少土壤剖面硝态氮含量,并延缓硝态氮的淋溶下移。与常规施氮相比,减量20%施氮增产9.59%。施氮条件下,秸秆深埋时,有利于提高作物产量,提高氮肥增产潜力。秸秆深埋有利于提高土壤电导率,减少土壤硝态氮含量,阻控土壤硝态氮向下淋溶,提高玉米产量。  相似文献   

11.
豌豆/玉米间作是河西绿洲灌区面积最大的间作模式,也是当地重要的高产高效种植模式之一。针对目前氮肥过量施用和豆科作物生物固氮被忽视的实际,2011年和2012年在甘肃省武威市凉州区进行了豌豆/玉米间作大田试验,研究不同施氮量下,豌豆接种根瘤菌对豌豆/玉米间作体系作物籽粒产量和水分利用效率的影响,旨在为河西绿洲灌区豌豆/玉米间作体系节肥、高产的氮肥用量和接菌增产作用提供理论依据。结果表明:施用氮肥对豌豆产量影响不显著。接种根瘤菌后单作豌豆比不接菌处理两年平均增产12.7%,间作豌豆产量比单作两年平均增产61.1%,间作豌豆接种根瘤菌比不接菌两年平均增产4.8%。单作豌豆以施氮量75 kg(N)·hm-2接菌处理的产量最高,达到2 735 kg·hm-2;而且在此施氮量下接菌比不接菌两年平均增产达22.8%。施用氮肥对玉米的增产效果显著,施氮量在300 kg(N)·hm-2时单作玉米产量为14 394 kg·hm-2,间作比单作两年平均增产61.8%;间作豌豆带接菌较不接菌玉米两年平均增产3.3%。土地当量比在不同施氮量和接种根瘤菌的条件下都大于1。豌豆水分利用效率随施氮量增加而减小,最大值为不施氮的12.9 kg·mm-1·hm-2;玉米水分利用效率随施氮量增加先增大后减小,以施氮量300 kg(N)·hm-2处理为最高,达25.0 kg·mm-1·hm-2。综上所述,在豌豆/玉米间作体系中,玉米高产、高水分利用效率的施氮量为300 kg(N)·hm-2,豌豆高产高效的施氮量为75 kg(N)·hm-2。在大田生产中,接种根瘤菌对豌豆和玉米增产作用明显。  相似文献   

12.
在大田条件下以甜瓜和向日葵为试材,研究两种作物单作和向日葵间作播期(甜瓜伸蔓期、开花坐果期、果实膨大期)、间作密度[高(24 975株·hm~(-2))、中(22 200株·hm~(-2))和低(19 980株·hm~(-2))]对间作系统和两种作物单作的氮素积累量、氮素利用效率和光能利用效率的影响。结果表明,间作显著提高了间作系统甜瓜的氮素累积和利用效率,却降低了向日葵的氮素累积和利用效率。间作甜瓜植株地上部的氮素累积量平均为195.08 kg·hm~(-2),较单作甜瓜(172.61 kg·hm~(-2))提高13.0%,氮素利用效率和氮肥偏生产力均显著高于单作(分别提高40.5%和55.4%)。间作系统向日葵氮素利用效率和氮肥偏生产力较单作降低8.2%和58.4%,而氮素收获指数较单作提高4.9%。在甜瓜伸蔓期、开花坐果期和果实膨大期间作向日葵,间作系统的氮素利用效率较同播期的单作向日葵分别提高43.5%、12.5%和59.8%;果实膨大期间作向日葵,间作系统的氮素利用效率较单作甜瓜提高6.7%。在甜瓜伸蔓期、开花坐果期和果实膨大期间作向日葵,间作系统的氮肥偏生产力较同播期的单作向日葵提高6.5%、32.1%和40.4%,较单作甜瓜分别降低22.5%、10.1%和34.3%;在甜瓜伸蔓期、开花坐果期和果实膨大期间作向日葵,间作系统的氮素收获指数较同播期的单作向日葵分别降低7.2%、7.7%和12.5%。高、中和低3个间作密度下,间作系统的氮素利用效率较同密度甜瓜单作分别降低14.2%、20.4%和13.9%,较向日葵单作分别提高25.2%、20.0%和9.5%,氮肥偏生产力较同密度甜瓜单作降低29.6%、15.6%和21.1%;高密度和低密度间作处理的间作系统氮素收获指数较向日葵单作提高2.7%和1.4%,而中密度间作降低7.6%。间作系统甜瓜的光能利用效率与氮素利用效率呈显著正相关关系,向日葵的光能利用效率与氮素利用效率无显著相关。在河西绿洲灌溉条件下,氮素利用率较高的适宜向日葵间作播期为甜瓜果实膨大期,适宜间作株距为40 cm(密度为24 975株·hm~(-2))。  相似文献   

13.
玉米/大豆间作具有一定的养分利用优势,但是不同供氮水平对玉米/大豆间作体系干物质累积和氮素吸收的调控作用不同。本试验采用田间裂区设计,运用Logistic模型分析,模拟了4个氮水平下玉米/大豆间作作物干物质积累和氮素吸收的动态变化。结果表明,玉米、大豆干物质累积和氮素吸收动态符合Logistic模型,相关系数R2均在0.9以上。在N0(不施氮肥)、N1(180 kg·hm-2)、N2(240 kg·hm-2)和N3(300 kg·hm-2)供氮水平时,间作玉米最大生长速率(Imax-B)分别比单作提高34.2%、46.7%、25.9%和25.1%,而相应的供氮水平下,大豆的Imax-B分别降低27.7%、30.3%、16.5%和23.7%,但整个间作系统的Imax-B平均增加32.1%;玉米和大豆干物质的其他模拟参数与Imax-B规律一致。氮素吸收动态与干物质积累表现出同步的变化特点,在N1水平下,单位面积间作玉米的氮素最大吸收量(K-N)、最大吸收速率(Imax-N)和瞬时吸收速率(r-N)比相应单作分别提高18.4%、48.9%和25.8%,而间作大豆的K-NImax-Nr-N值比单作处理分别降低15.9%、29.9%和16.69%,整个间作系统氮素分别提高0.4%、13.7%和7.8%;施氮水平对大豆r-N无显著性影响。间作显著地提高了氮素当量比(LERN>1),其中N0水平下LERN值最高,随着施氮量的增加,LERN有下降趋势。在本试验条件下,N2供氮水平下玉米/大豆间作体系干物质积累量和氮素吸收量最高,间作优势最明显。  相似文献   

14.
小麦/玉米套作条件下氮、磷配施的肥料效应研究   总被引:6,自引:0,他引:6  
针对内蒙古河套灌区农业面源污染的现状,本研究以内蒙古河套灌区常规作物小麦和玉米为供试材料,采取"3414"部分实施方案,对氮、磷肥的施用效应及养分交互作用进行了研究,探讨进一步削减当地农业生产过程中的肥料用量的施肥技术。结果表明:小麦/玉米套作条件下,作物产量与氮、磷肥施用量之间满足二次型回归模型,氮肥、磷肥及氮磷交互效应对产量产生显著影响,氮磷交互作用氮磷。在施肥水平较低时,氮、磷肥表现出较好的协同促进作用,在达到产量的极限值后,则表现为无效及拮抗作用;中氮中磷处理能够较好地满足作物生长发育过程中对氮和磷的需求,提高作物对氮、磷的利用率。但随着施肥量的进一步增加,作物植株吸肥量也随之增加,施肥效益降低,肥料利用率持续下降。通过对氮、磷单因素及二因素肥料效应的分析,对施肥水平做进一步优化,得出小麦最佳施氮量为167.67~196.61 kg·hm-2,最佳施磷量为130.43~186.64 kg·hm-2;玉米最佳施氮量为222.10~299.14 kg·hm-2,最佳施磷量为156.14~188.00 kg·hm-2。这将为进一步削减氮、磷配施量,改善当地土壤养分平衡,减轻农业面源污染提供一定的指导作用。  相似文献   

15.
2012年3—10月在甘肃省河西走廊石羊河绿洲灌区进行大田试验,研究了不同施氮水平[0、140 kg(N)·hm-2、221 kg(N)·hm-2和300 kg(N)·hm-2]对小麦//玉米间作系统生产力、间作优势和水分吸收利用的影响。研究结果表明:当施氮量达221 kg(N)·hm-2时,小麦单作籽粒产量(5 036 kg·hm-2)和水分利用效率(25.13 kg·hm-2·mm-1)达最大值;当施氮量达300 kg(N)·hm-2时,小麦间作籽粒产量(3 078 kg·hm-2)和水分利用效率(39.76kg·hm-2·mm-1)、玉米单作籽粒产量(9 921 kg·hm-2)和水分利用效率(38.96 kg·hm-2·mm-1)、玉米间作籽粒产量(6 895 kg·hm-2)和水分利用效率(46.31 kg·hm-2·mm-1)达最大值;当施氮量为0 kg(N)·hm-2时,小麦相对于玉米的竞争力(0.049)达最大值;当施氮量为300 kg(N)·hm-2时,小麦//玉米间作的土地当量比(1.33)达最大值;当施氮量为140 kg(N)·hm-2时,小麦相对于玉米的水分竞争比率(0.98)达最大值。与单作相比,小麦//玉米间作具有显著的间作产量优势和水分利用优势。间作方式中小麦的竞争能力大于玉米;小麦、玉米两作物对水分生理需求时间有效性差异是小麦//玉米间作高效利用水分资源的基础,合理施氮能促进间作种植产量优势和水分利用优势的发挥。  相似文献   

16.
改变玉米行距种植对豌豆/玉米间作体系产量的影响   总被引:5,自引:1,他引:4  
间作体系中改变作物的种植行距可改变体系作物的种间互作效应,影响作物产量。本研究通过设置豌豆/玉米间作种植体系中玉米的5种种植行距(0 cm、20 cm、40 cm、60 cm和80 cm),以期揭示间作体系中作物种植行距变化对体系作物产量的影响。结果表明:豌豆/玉米间作体系产量优势明显,各处理的土地当量比均大于1。玉米种植行距在0~80 cm区间改变时对体系产量的影响总体表现为随玉米行距增大,产量先增后降,且玉米种植行距与体系混合产量和间作玉米产量均呈现二次曲线相关关系,产量峰值出现在玉米种植行距为40 cm时,间作玉米产量达10 118 kg.hm 2。玉米行距变化对豌豆产量的影响不明显,间作体系产量主要受间作玉米产量影响。改变玉米行距种植明显改变了玉米的产量性状,主要表现在穗粒数上,行距为60 cm时,穗粒数最大,达549粒。种间相对竞争力总体表现为随玉米行距的增大玉米相对于豌豆在产量形成方面的竞争力逐渐增强;在玉米行距0~60 cm之间,豌豆相对于玉米的种间相对竞争力均<0,表明竞争力玉米强于豌豆,而当玉米行距为80 cm时,种间竞争力为0.14,表明此时豌豆竞争力强于玉米。因此,通过合理调整玉米种植行距从而提高间作玉米产量有利于提高豌豆/玉米间作体系的整体产量。  相似文献   

17.
施用磷肥对土壤NO3——N累积的影响   总被引:47,自引:9,他引:38  
在黄土高原南部的国家黄土肥力和肥料效益监测基地进行的长期定位试验结果表明 ,在小麦 玉米轮作中 ,当年施氮量为N 352kg/hm2 时 ,单施氮肥或氮钾配合的 0~4m土壤剖面的NO3--N累积量达 1000kg/hm2 以上 ,其中约 50%~60%的NO3--N分布在 2~ 4m以下的土层中 ,而氮磷配合的 0~ 4m土壤剖面的NO3--N累积量仅为 220kg/hm2,且 80 %的NO3--N分布在 0~2m的土层中 ,增施磷肥由于增加了氮的吸收和对水分的利用而有效地降低了土壤中NO3--N的累积。  相似文献   

18.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

19.
为揭示玉米/大豆套作体系下土壤氮素转换的调控机理和根际微生态效应,以种植模式为主因素[设玉米单作(MM)、大豆单作(SS)和玉米/大豆套作(IMS)3种处理],以玉米、大豆施氮总量(玉米、大豆施氮比例为3∶1)为副因素[设不施氮(NN,0 kg?hm~(-2))、减量施氮(RN,180 kg?hm~(-2))和常量施氮(CN,240 kg?hm~(-2))3个处理],研究了玉米/大豆套作系统下不同施氮量对作物根际土壤微生物数量及土壤酶活性的影响。结果表明:与相应单作相比,套作下玉米根际土壤真菌、放线菌数量分别提高25.37%和8.79%;套作大豆根际土壤真菌、放线菌、固氮菌数量高于单作大豆;套作玉米根际土壤蛋白酶、脲酶活性和套作大豆根际土壤蛋白酶活性均显著升高。各施氮水平间,减量施氮下玉米、大豆根际土壤真菌数量较常量施氮和不施氮均有所提高;施氮提高了玉米、大豆根际土壤放线菌数量;大豆根际土壤固氮菌数量以减量施氮最高,比不施氮和常量施氮高17.78%和5.67%;玉米根际土壤蛋白酶活性、脲酶活性和大豆根际土壤脲酶活性均以减量施氮为最高。适宜的施氮量不仅能增加玉米/大豆套作土壤中真菌、放线菌、固氮菌的数量,还能提高土壤蛋白酶、脲酶活性,调节土壤氮素的转化,促进玉米/大豆对土壤中氮素的吸收,实现节能增效。  相似文献   

20.
小麦||蚕豆间作提高间作产量的优势及其氮肥响应   总被引:3,自引:0,他引:3  
为探明小麦||蚕豆间作体系种间互补和竞争与产量优势的关系及其氮肥响应,为豆科禾本科间作最佳氮素管理提供指导,本研究通过为期2年(2015—2017年)的田间定位试验,在不施氮(N0)、低氮(N1,90 kg·hm-2)、常规施氮(N2,180 kg·hm-2)和高氮(N3,270 kg·hm-2)4个施氮水平下,研究小麦||蚕豆间作的产量优势及其相关种间关系。结果表明,与单作相比,两年的间作小麦产量平均显著增加23.50%,单、间作蚕豆的产量均维持在4 000 kg·hm-2左右,土地当量比均表现为N0 > N1 > N2 > N3 > 1的趋势,系统生产力平均达5 023 kg·hm-2。与单作相比,间作小麦和蚕豆的花后干物质累积比例、干物质转移率和贡献率均不同程度增加,增幅随着施氮量增加而降低。不同施氮水平下,小麦的种间相对关系指数均表现出明显的互利效应,相对种间竞争强度在低氮水平为种内竞争,常规氮和高氮水平为种间竞争;蚕豆的种间相对关系指数则表现出竞争效应,相对种间竞争强度表现为种内竞争。较蚕豆而言,小麦的相对种间竞争力表现出不同程度的竞争优势,在种间竞争力为0.629 2时可获得最大的间作体系混合干物质量16 093 kg·hm-2。综上,小麦||蚕豆间作降低了低氮水平下的种间竞争强度,扩大了小麦的互利效应和竞争优势,增加了间作作物的花后干物质累积比例以及干物质贡献率,表现出明显的间作产量优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号