首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrina poeppigiana, a woody tropical plant, was inoculated with vesicular-arbuscular mycorrhizal (VAM) fungiGlomus etunicatum Becker and Gerdeman,G. mosseae Nicol. and Gerd. Gerdeman and Trappe, orG. intraradices Schenk and Smith. Growth, N uptake, and nutrition were evaluated in VAM-inoculated plants and controls fertilized with two levels (3 or 6 mM) of either NH inf4 sup+ -N or NO inf3 sup- -N. The response by the mycorrhizal plants to N fertilization, according to N source and/or level differed significantly from that of the control plants. In general, the growth of the mycorrhizal plants was similar to that of the non-mycorrhizal plants when N was provided as NH inf4 sup+ . When the N source was NO inf3 sup- the control plants grew significantly less than the VAM plants. Inoculation with VAM fungi gave yield increases of 255 and 268% forG. etunicatum-colonized plants, 201 and 164% forG. mosseae-colonized plants and 286 and 218% forG. intraradices-colonized plants fertilized with 3 and 6 mM NO inf3 sup- -N, respectively. The increased growth and acquisition of nutrients by plants fertilized with NO inf3 sup- -N and inoculated with VAM shows that VAM mycelium has a capacity for NO inf3 sup- absorption. The results also showed thatE. poeppigiana seedlings preferred NH inf4 sup+ as an N source.G. etunicatum was the most effective endophyte, not only increasing N, P, Ca, Mg, and Zn uptake in the presence of NO inf3 sup- fertilizer but also P and Mg in the presence of NH inf4 sup+ applications. From these results we conclude that VAM symbiosis affects N metabolism inE. poeppigiana plants and that this species can overcome limitations on the use of NO inf3 sup- -N by the mediation of VAM fungi.  相似文献   

2.
The effects of radial O2 loss from roots on nitrification and NO inf3 sup- availability were studied. Plants of the flooding-resistant species Rumex palustris and the flooding-sensitive species Rumex thyrsiflorus were grown on drained and waterlogged soils with an initially high nitrifying capacity. Nitrate reductase activity in the plant leaves was used as an indicator of NO inf3 sup- availability to the plants. In a separate experiment these species were shown to have higher levels of nitrate reductase activity when NO inf3 sup- was added to the soils compared to when only NH inf4 sup+ was provided. In drained soils nitrification was maintained and both plant species showed relatively high nitrate reductase activities in their leaves. In the water-logged series planted with R. thyrsiflorus, nitrification was inhibited, NH inf4 sup+ accumulated, and the plants grew less well compared to those on drained soils. In contrast, waterlogged soils planted with R. palustris had a redox potential high enough for O2 to be continuously replenished. Furthermore, the nitrifying capacity of these latter soils was maintained at a high level. R. palustris grew well and NO inf3 sup- must have been available to the plant, since a high level of nitrate reductase activity was observed in the leaves.  相似文献   

3.
We studied the effects of fast- and slow-release organic N fertilizers (urea and urea-formaldehyde, Nitroform) on mineralization, nitrification, and N leaching in an acid, poor forest soil. We also studied the effects of a nitrification inhibitor (dicyandiamide) applied together with urea. Net nitrification, mineralization of N and C were determined by aerobic laboratory incubation of soil samples taken one and three growing seasons after N application. Numbers of autotrophic nitrifiers were estimated by a most probable number method three growing seasons after the treatment. Urea increased the CO2 production immediately after application, but after three growing seasons, CO2 production was the lowest in the urea-treated soils. In the nitroform-treated soils, the concentration of exchangeable NH inf4 sup+ after the first and third growing seasons was of the same magnitude, in contrast to the urea-treated soils, where hydrolysis took place immediately. Three growing seasons after application, the highest amount of NH inf4 sup+ accumulated during the laboratory incubation was in the nitro-form-treated soils. Unlike urea, nitroform did not increase the production of NO inf3 sup- or the number of NH inf4 sup+ oxidizers. In the urea+dicyandiamide-treated soils there was less NO inf3 sup- and a lower number of nitrifiers than in the urea-treated soils. The results showed that a slow-release N fertilizer, such as nitroform, increases the availability of mineral N in acid forest soils without increasing nitrification and hence the risk of NO inf3 sup- leaching.  相似文献   

4.
Seventeen strains of Rhizobium leguminosarum biovar viceae specific to the lentil (Lens culinaris L.) were screened, using the high-yielding lentil cultivar L 4076, for their tolerance to three levels of NO inf3 sup- : 0, 4, and 8 mM NO inf3 sup- . Preliminary screening of this symbiosis for nodulation and N fixation in the presence of NO inf3 sup- showed significant variations among the strains. The number of nodules decreased and nitrogenase activity was depressed in all strains in the presence of NO inf3 sup- . Strains L-1-87, L-27-89, L-33-89, and L-40-89 tolerated 8 mM NO inf3 sup- . Four strains, three tolerant of NO inf3 sup- (L-1-87, L-27-89, and L-33-89), and one sensitive (L-11-89) to NO inf3 sup- , were selected from preliminary screening and used in a pot experiment to assess the symbiosis in the presence of 6 mM NO inf3 sup- at three stages of plant growth, viz., 40 days, 60 days, and at the final harvest. In general, the weight of nodules and C2H2 reduction activity was significantly higher after 60 days than after 40 days. Inoculation with strain L-1-87 produced the maximum number of nodules, and root and shoot biomass both in the presence and the absence of NO inf3 sup- . Nitrate reductase activity in the tops and nodules was assayed only after 60 days and did not show significant variations among strains and NO inf3 sup- treatments. The grain yields for all strains except L-11-89 were significantly higher in the presence of NO inf3 sup- than in the absence of NO inf3 sup- , indicating that tolerant strains contributed symbiotically fixed N to the plant's N pool, resulting in an additive effect on yield. Inoculation with strain L-1-87 produced the maximum grain yield and this strain appears to have potential use as an inoculant in the presence of high levels of soil N.  相似文献   

5.
A rhizosphere application of NO inf3 sup- and/or naringenin affected the Pisum sativum — Rhizobium leguminosarum biovar viciae symbiosis. NO inf3 sup- (5 mM) lowered while naringenin raised the nodulation status (nodule numbers and weight) and nodule efficiency (C2H2 reduction activity). However, the inhibitory effect of NO inf3 sup- was to some extent alleviated when applied in combination with naringenin. The plant biomass was increased by the application of NO inf3 sup- and naringenin, either alone or in combination, while a higher root: shoot ratio was observed only in the naringenin-treated plants. Root flavonoids are known to regulate the expression of nod genes; their high-performance liquid chromatography profile was influenced in different ways by NO inf3 sup- and naringenin.  相似文献   

6.
A laboratory incubation experiment was conducted to compare the effects of NH inf4 sup+ and NO inf3 sup- on mineralization of N from 15N-labelled vetch (Vicia villosa Rotn) in an Illinois Mollisol, and to determine the effect of a nitrification inhibitor (nitrapyrin) on mineralization of vetch N when used with NH inf4 sup+ . The addition of either NH inf4 sup+ or NO inf3 sup- (100 and 200 mg N kg-1 soil) significantly increased mineralization of vetch N during incubation for 40 days. The effect was greater with NH inf4 sup+ than with NO inf3 sup- , and a further increase occurred in the presence of nitrapyrin (10 mg kg-1 soil). The addition of NO inf3 sup- retarded the nitrification of NH inf4 sup+ -N derived from vetch.  相似文献   

7.
Summary Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as 15NH inf4 sup+ or 15NO inf3 sup- . Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as 15NH inf4 sup+ or 15NO inf3 sup- at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of 15N in mycorrhizal plants was 38 or 40%, respectively, when 15NH inf4 sup+ or 15NO inf3 sup- was applied. The corresponding values for non-mycorrhizal plants were 7 and 16%. The higher 15N recovery observed in mycorrhizal plants than in non-mycorrhizal plants suggests that hyphal transport of N from the applied 15N sources towards the host plant had occurred. The concentration of mineral N in the soil of hyphal compartments was considerably less in mycorrhizal treatments than in controls, indicating that the hyphae were able to deplete the soil for mineral N.  相似文献   

8.
Soil samples were collected from litter, humus and mineral soil layers to a depth of 50 cm in 37–42 year-old limed and unlimed plots in one beech and three spruce stands in S Sweden for determination of carbon (C) and nitrogen (N) pools, C and N mineralization rates and nitrification rates. The samples were sifted while still fresh and incubated at a constant temperature (15°C) and soil moisture (50 % WHC) for 110–180 days with periodic subsamplings. The C and N pools in the uppermost soil layers were significantly lower in plots limed with 9–10 t CaCO3 ha?1 than in unlimed plots, whereas the pools in the deeper mineral soil did not differ markedly between the treatments. In the whole soil profile, the C and N pools had, on average, decreased by 16% (P<0.05) and 11% (P>0.05), respectively, after 40 yrs. The smaller reduction in N pools resulted in significantly lower C:N ratios and increased N immobilization in the limed spruce plots but not in the limed beech plot. C and net N mineralization rates were increased in some of the limed plots and decreased in others. This indicates that liming can still have a stimulatory effect after 40 yrs in some soils. The nitrification potential was increased in the limed plots. Liming did not increase tree growth in the stands investigated. We conclude that liming with high doses of CaCO3 is likely to reduce pools of soil C and possibly even soil N in relation to unlimed areas in spruce and beech forests in S Sweden. If trees in limed stands do not respond with better growth, the treatment will thus result in a net ecosystem loss of C and N in relation to unlimed areas. It was not possible to conclude whether the effects of low doses of lime would be similar to those of high doses.  相似文献   

9.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

10.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

11.
A pot experiment was conducted to compare the uptake and dry matter production potential of NH inf4 sup+ and NO inf3 sup- and to study the effect of Baythroid, a contact poison for several insect pests of agricultural crops, on growth and N uptake of maize (Zea mays L.). Nitrogen was applied as (15NH4)2SO4, K15NO3, or 15NH4NO3 and in one treatment Baythroid was combined with 15NH4NO3. Source of N had, in general, a nonsignificant effect on dry matter and N yield, but uptake of NO inf3 sup- was significantly higher than that of NH inf4 sup+ when both N sources were applied together. Substantial loss of N occurred from both the sources, with NH inf4 sup+ showing greater losses. Baythroid was found to have a significant positive effect on dry matter yield of both root and shoot; N yield also increased significantly. Uptake of N from both the applied and native sources increased significantly in the presence of Baythroid and a substantial added nitrogen interaction (ANI) was determined. The positive effect of Baythroid was attributed to: (1) a prolonged availability of NH inf4 sup+ due to inhibition of nitrification, (2) an increased availability of native soil N through enhanced mineralization, and (3) an enhanced root proliferation.  相似文献   

12.
Summary Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N and some physicochemical properties of different topsoil horizons in a spruce forest (Picea abies L.) were measured throughout one growing season. The highest biomass N was recorded in autumn and spring in the upper soil horizons, while the lowest values were obtained in summer and in deeper horizons. The clearest differences between the different soil treatments were apparent in autumn and in the upper horizons. Liming increased the microbial biomass N from 1.7% of the total N content to 6.8% (Olf1 layer) and from 1% to 2% of the total N content in the Of2 layer. The main inorganic-N fraction in the deeper horizons was NO inf3 sup- . An increase in cation exchange capacity was observed down to the Oh layer, while soil pH was only slightly higher in the Olf1 and Of2 layers after liming. The effects of irrigation were less marked. The microbial biomass N increased from 1.7% of total N to 4.8% in the Olf1 layer and from 1% to 2% of total N in the Of2 layer. In the Olf1 layer an increase in C mineralization was observed. Acid precipitation decreased the microbial biomass N in the upper horizons from 4.8% of total N to 1.8% in the Olf1 layer and from 2% to 0.5% in the Of2 layer. No significant changes in soil pH were observed, but the decrease in cation exchange capacity may result in a decrease in the proton buffering capacity in the near future.  相似文献   

13.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

14.
N mineralization capacity and its main controlling factors were studied in a large variety (n=112) of native (forest, bush) and agricultural (pasture, cultivated) soils from several climatic zones in Spain. The available inorganic N content, net N mineralization, and net N mineralization rate were determined after 6 weeks of aerobic incubation. NH inf4 sup+ –N largely predominated over NO inf3 sup- -N (ratio near 10:1) except in some agricultural soils. Net N mineralization predominated (83% of soils) over net N immobilization, which was more frequent in agricultural soils (25%) than in native soils (9%). In forest soils, both net N mineralization and the net N mineralization rate were significantly higher than in the other soil groups. The net N mineralization rate of pasture and cultivated soils was similar to that of bush soils, but available inorganic N was lower. The net N mineralization rate decreased in the order: soils over acid rocks>soils over sediments>soils over basic rocks or limestone; moreover, the highest net N mineralization and available inorganic N were found in soils over acid rocks. The highest N mineralization was found in soils with low C and N contents, particularly in the native soils, in which N mineralization increased as the C:N ratio increased. N mineralization was higher in soils with a low pH and base saturation than in soils with high pH and base saturation values, which sometimes favoured N immobilization. Soils with an Al gel content of >1% showed lower net N mineralization rates than soils with Al gel contents of <1%, although net N mineralization and available inorganic N did not differ between these groups. The net N mineralization rate in silty soils was significantly lower than in sandy and clayey soils, although soil texture only explained a low proportion of the differences in N mineralization between soils.  相似文献   

15.
Summary Three Illinois Mollisols were incubated for 2 weeks at 25°C after treatment with different amounts of glucose and/or 15N-labelled (NH4)2SO4 or 15N-labelled KNO3. The objectives were: (1) to compare the immobilization and interaction of NH inf4 sup+ –N and NO inf3 sup- –N with the native soil N, and (2) to study the relationship between immobilization of applied N and the added N interaction. As determined, immobilized N refers to forms not extractable with 2 MKCl (immobilized 15N+clay-fixed 15NH inf4 sup+ ). In all cases, both NH inf4 sup+ –N and NO inf3 sup- –N were actively immobilized and transformed into organic forms in the presence of glucose. In the absence of glucose, a higher proportion of NH inf4 sup+ than NO inf3 sup- was recovered in organic forms. Although the three soils differed considerably in the amounts of applied N immobilized, similar trends in N immobilization were observed. A positive added N interaction occurred with all soils, the magnitude increasing with the rate of N addition. In the absence of glucose, higher added N interactions were obtained for NH inf4 sup+ than NO inf3 sup- , whereas there was very little difference between NH inf4 sup+ and NO inf3 sup- in the presence of glucose. The results indicate that under conditions of rapid immobilization (e.g., in the presence of glucose), NH inf4 sup+ and NO inf3 sup- will show comparable interaction with the native soil N, whereas in unamended soil, the extent of this interaction will be greater with NH inf4 sup+ than with NO inf3 sup- . Significant correlations were observed between applied N immobilized and the added N interaction only in one soil having a high initial mineral N content.  相似文献   

16.
Summary In model experiments with a silty loam soil the effect of different C : NO inf3 sup- -N ratios on the reliability of C2H2 (1% v/v) in blocking N2O-reductase activity was examined. The soil was carefully mixed with different amounts of powdered lime leaves (Tilia vulgaris) to obtain organic C contents of about 1.8, 2.3, and 2.8%, and of NO inf3 sup- solution to give C : NO inf3 sup- -N ratios of 84, 107, 130, 156, 200, and 243. The soil samples were incubated in specially modified anaerobic jars (22 days, 25°C, 80% water-holding capacity, He atmosphere) and the atmosphere was analysed for N2, N2O, CO2, and C2H2 by gas chromatography at regular intervals. Destruction jars were used to analyse soil NO inf3 sup- , NH 4 + and C. The results clearly showed that N2O-reductase activity was completely blocked by 1% (v/v) C2H2 only as long as NO inf3 sup- was present. In the presence of C2H2, NO inf3 sup- was apparently entirely converted into N2O. The C2H2 blockage of N2O-reductase activity ceased earlier in soils with a wide C : NO inf3 sup- -N ratio (156, 200, and 243) than in those with closer C : NO inf3 sup- -N ratios (84, 107, and 130). As soon as NO inf3 sup- was exhausted, N2O was reduced to N2 in spite of C2H2. The wider the C : NO inf3 sup- -N ratio, the earlier the production of N2 and the less the reliability of the C2H2 blockage. In the untreated control complete inhibition of N2O-reductase activity by C2H2 lasted for 7–12 days. In the field, estimates of total denitrification losses by the C2H2 inhibition technique should be considered reliable only as long as NO inf3 sup- is present. Consequently, NO inf3 sup- monitoring in the field is essential, particularly in soils supplied with easily decomposable organic matter.  相似文献   

17.
Summary The biodegradation of litter from Festuca silvatica, Abies pectinata, Fagus silvatica, Calluna vulgaris, Picea abies associated with forest brown acid soils or with podzolic soils was studied in field lysimeters filled with granite sand. Analysis of the leachates collected during 2 years made it possible to determine NO inf3 sup- , NH inf4 sup+ , and soluble organic N production in order to investigate the specific influence of the different species of litter on the mineralization of organic N and the variations in nitrification. With Festuca silvatica (grass), active nitrification was observed after the addition of fresh litter in autumn (fall of leaves). Nitrification remained significant in winter, reached a maximum in spring until early summer, and then decreased after mineralization of the easily mineralizable organic N. Nitrification was the major N transformation process in this litter. The addition of fresh litter of Abies pectinata (fir), Fagus silvatica (beech), Calluna vulgaris (heather), and Picea abies (spruce) in autumn induced an inhibition of nitrification during winter and spring. With these litter species, nitrification started again by the end of spring and was at a maximum in summer and autumn until leaf fall. By comparison with Festuca, inhibition observed in winter and spring with the other litter species was definitely due to the chemical composition of the leaves. Simultaneously, a lower C mineralization of these plant material occured. These litter species, in particular Calluna and Picea released leachates containing significant amounts of soluble organic N that were only slightly decomposed. We conclude that NO inf3 sup- production outside of the plant growth period can definitely be involved in soil acidification and weathering processes.  相似文献   

18.
Summary The application of NH inf4 su+ -based fertilizers to soils slowly lowers soil pH, which in turn decreases nitrification rates. Under these conditions nitrification and N mineralization may be reduced. We therefore investigated the impact of liming fertilizer-acidified soils on nitrification and N mineralization. Soil samples were collected in the spring of 1987 from a field experiment, initiated in 1980, investigating N, tillage, and residue management under continuous corn (Zea mays L.). The pH values (CaCl2) in the surface soil originally ranged from 6.0 to 6.5. After 6 years the N fertilizer and tillage treatments had reduced the soil pH to values that ranged between 3.7 and 6.2. Incubation treatments included two liming rates (unlimed or SMP-determined lime requirement), two 15N-labeled fertilizer rates (0 or 20 g N m-2), and three replicates. Field-moist soil was mixed with lime and packed by original depth into columns. Labeled-15N ammonium sulfate in solution was surface-applied and columns were leached with 1.5 pore volumes of deionized water every 7 days over a 70-day period. Nitrification occurred in all pH treatments, suggesting that a ferilizer-acidified soil must contain a low-pH tolerant nitrifier population. Liming increased soil pH values (CaCl2) from 3.7 to 6.2, and increased by 10% (1.5 g N m-2) the amount of soil-derived NO3 --N that moved through the columns. This increase was the result of enhanced movement of soil-derived NO3 --N through the columns during the first 14 days of incubation. After the initial 14-day period, the limed and unlimed treatments had similar amounts of soil N leaching through the soil columns. Lime increased the nitrification rates and stimulated the early movement of fertilizer-derived NO3 --N through the soil.  相似文献   

19.
Summary Gross rates of N mineralization, assimilation, nitrification, and NO in3 sup- reduction were determined in soil from a wet riparian fen by 1-day incubations of soil cores and slurries with 15N-labelled substrates. N mineralization transformed 0.1% of the total organic N pool daily in the soil cores, of which 25% was oxidized through autotrophic nitrification and 53%–70% was incorporated into microorganisms. N mineralization and nitrification were markedly inhibited below 5 cm in soil depth. At least 80% of the NO in3 sup- reduction in aerated cores occurred through dissimilatory processes. Dissimilatory reduction to NH in4 sup+ (DNRA) occurred only below 5 cm in depth. The results show that NH in4 sup+ oxidation was limited by available substrate and was itself a strong regulator of NO in3 sup- -reducing activity. NO in3 sup- reduction was significantly increased when the soil was suspended under anaerobiosis; adding glucose to the soil slurries increased NO in3 sup- reduction by 2.4–3.7 times. Between 3% and 9% (net) of the added NO in3 sup- was reduced through DNRA in the soil slurries. The highest percentage was observed in soil samples from deeper layers that were pre-incubated anaerobically.  相似文献   

20.
Summary The effects of the endogeic earthworm, Aporrectodea caliginosa tuberculata (Eisen) on decomposition processes in moist coniferous forest soil were studied in the laboratory. The pH preference of this species and its effects on microbial activity, N and P mineralization, and the growth of birch seedlings were determined in separate pot experiments. Homogenized humus from a spruce stand was shown to be too acid for A. c. tuberculata. After liming, the earthworms thrived in the humus and their biomass increased (at pH above 4.8). In later experiments in which the humus was limed, the earthworms positively influenced the biological activity in humus and also increased the rate of N mineralization. A. c. tuberculata increased the growth of birch seedlings, with increases observed in stems, leaves, and roots. Neither NH 4 + -N fertilizer nor mechanical mixing with artificial worms affected seedling growth. No plant-growth-affecting compounds (e.g., hormone-like compounds) due to the earthworms were present in the humus. The shoot: root ratio in the birch seedlings was not affected by either the earthworms or the fertilizer. The experiments revealed the impact of earthworm activity on soil processes and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号