首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of the white rot fungus Phanerochaete chrysosporium to degrade isoproturon was tested in solid substrate fermentation (SSF) cultures using straw as substrate/carrier material. The role of the lignin degrading enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP), in the degradation of the herbicide was also studied. Isoproturon concentration and LiP and MnP activities were followed in sterile straw cultures of the fungus. In vitro degradation tests with pure LiP and MnP were performed. P. chrysosporium in straw cultures was able to degrade 91% of the herbicide isoproturon in 14 days of incubation. A sharp decrease of isoproturon coincided with the largest MnP activity. Although LiP activity was also present, its role in SSF is unclear. The in vitro tests showed a strong isoproturon oxidation by LiP and a slower oxidation by MnP in the presence of Tween 80 probably by a lipid peroxidation process. Two N-demethylated metabolites were identified in pure enzyme tests and in SSF cultures. Several unidentified isoproturon derivatives, most likely hydroxylated, were also formed in both systems. The different pattern of derivatives detected in pure LiP and MnP tests showed a completely different metabolism by these two enzymes.  相似文献   

2.
白腐真菌所具有的降解木质素能力源于其所产生的酶系统,碳源和氮源是其降解木质素和产酶的一个极为重要的影响因素。通过室内小麦秸秆固态发酵试验,研究了不同的碳、氮源对两株侧耳属真菌Tf1(P.pulmonarius)和JG1(P.cornucopiae)产酶活力、木质素降解和粗蛋白含量的影响。结果表明,Lip和MnP是参与复合木质素降解菌Tf1+JG1降解小麦秸秆重要的木质素降解酶。以葡萄糖为碳源,酒石酸铵为氮源能显著提高复合木质素降解菌对木质素的降解能力,发酵9 d后小麦秸秆的失重率为14.87%,木质素含量为8.68%,木质素降解率为22.95%;粗蛋白含量为7.28%,比未发酵麦秸提高了36.84%(P〈0.05);Lip和MnP活力分别为629.11 U.g-1和622.22 U.g-1。  相似文献   

3.
Phanerochaete chrysosporium (ATCC 24725) produced lignin peroxidase (LiP) and manganese peroxidase (MnP) in defined medium in plastic composite support (PCS) biofilm stirred tank reactors. Laccase was not detected. The formation of the Ph. chrysosporium biofilm on the PCS was essential for the production of MnP and LiP. The bioreactor was operated as a repeat batch, and no reinoculation was required between batches. Peroxidase production was influenced by 5 min purging of the bioreactor with pure oxygen or continuous aerating with a mixture of air and oxygen at a flow rate of 0.005 vvm. Continuous aeration and 300 rpm agitation with 3 mM veratryl alcohol addition on days 0 and 3 demonstrated the highest lignin peroxidase production on day 6 with means of 50.0 and 47.0 U/L. Addition of veratryl alcohol and MnSO(4) on day 0 with 300 rpm agitation and continuous aeration at 0.005 vvm (air flow rate in L/min divided by the reactor working volume in liters) hastens the production of MnP with final yield of 63.0 U/L after 3 days. Fourteen repeated batches fermentation were performed without contamination due to low pH (4.5) and aseptic techniques employed.  相似文献   

4.
Due to the production of lignocellulose-degrading enzymes, saprotrophic basidiomycetes can significantly contribute to the turnover of soil organic matter. The production of lignin- and polysaccharide-degrading enzymes and changes of the chemical composition of litter were studied with three isolates from a Quercus petraea forest. These isolates were capable of fresh litter degradation and were identified as Gymnopus sp., Hypholoma fasciculare and Rhodocollybia butyracea. Within 12 weeks of incubation, H. fasciculare decomposed 23%, R. butyracea 32% and Gymnopus sp. 38% of the substrate dry mass. All fungi produced laccase and Mn-peroxidase (MnP) and none of them produced lignin peroxidase or other Mn-independent peroxidases. There was a clear distinction in the enzyme production pattern between R. butyracea or H. fasciculare compared to Gymnopus sp. The two former species caused the fastest mass loss during the initial phase of litter degradation, accompanied by the temporary production of laccase (and MnP in H. fasciculare) and also high production of hydrolytic enzymes that later decreased. In contrast, Gymnopus sp. showed a stable rate of litter mass loss over the whole incubation period with a later onset of ligninolytic enzyme production and a longer lasting production of both lignin and cellulose-degrading enzymes. The activity of endo-cleaving polysaccharide hydrolases in this fungus was relatively low but it produced the most cellobiose hydrolase. All fungi decreased the C/N ratio of the litter from 24 to 15-19 and Gymnopus sp. also caused a substantial decrease in the lignin content. Analytical pyrolysis mass spectrometry of litter decomposed by this fungus showed changes in the litter composition similar to those caused by white-rot fungi during wood decay. These changes were less pronounced in the case of H. fasciculare and R. butyracea. All fungi also changed the mean masses of humic acid and fulvic acid fractions isolated from degraded litter. The humic acid fraction after degradation by all three fungi contained more lignin and less carbohydrates. Compared to the decomposition by saprotrophic basidiomycetes, litter degradation in situ on the site of fungal isolation resulted in the relative enrichment of lignin and differences in lignin composition revealed by analytical pyrolysis. It can most probably be explained by the participation of non-basidiomycetous fungi and bacteria during natural litter decomposition.  相似文献   

5.
白腐菌对难降解污染物的生物降解作用已引起世界范围内的普遍关注,它可通过其分泌的特殊的降解酶系或其他机制将各种难降解的有机污染物彻底降解为CO2和H2O。该文介绍了白腐真菌的生物学特性及其分泌的酶系,阐述了白腐菌所分泌的酶在降解各种难降解有机物中的作用机制,分析了提高白腐菌降解能力的方法,总结了白腐菌在治理环境污染方面的应用现状与研究进展,探讨了白腐菌在实际应用方面的不足以及今后的研究方向,对白腐菌在解决环境污染方面的问题具有实际意义。  相似文献   

6.
Summary Decomposition and changes in nutrient content of six litter types (leaves, sheaths, roots, twigs, and wood of bamboo, and grass shoots) were studied in nylon net bags for 2 years. The annual weight loss was (% of initial) bamboo leaves 56.5, bamboo sheaths 79.5, bamboo roots 65.8, bamboo twigs 49.6, bamboo wood 31.2, and grass shoots 74.9. Elemental mobility followed the order K>Na>C>P>Ca>N in all components except wood. Generally, an initial increase was followed by a consistent decrease in the contents of N (leaves), P (leaves, roots, wood) and Ca (leaves, roots, grass), and Na (wood). Most of the nutrients were immobilized in the rainy season. C and K contents showed a constant decrease throughout the decomposition period. Materials with a greater C:N ratio (>50) tended to accumulate more nutrients and retain them for longer, except for the bamboo twigs. The critical C:N ratio (at which a net release of N occured) for the leaf material was 25. Litter components with more initial N (sheaths) showed greater weight loss than those with less N (leaves, twigs, and wood). Overall, N and P were lost at the slowest rates while C and K were lost at faster rates. Initial lignin, lignin: N, C:N and C concentrations had a better predictive value for annual weight loss and nutrient release in bivariate relationships. A combination of the initial lignin value and the C: N ratio explained 93% of the variation in annual weight loss. A significant relationship was also observed between the annual weight loss rate and the nutrient mineralization/release rate.  相似文献   

7.
Polyporus sp. S133 fungi were selected based on their ability to degrade anthracene in liquid media. The degradation efficiency of anthracene increased by adding 0.5% Tween 80 to reach 71%; agitation at 120 rev/min increased the degradation to 92% after 30?days of incubation. Enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), laccase, 1,2-dioxygenase and 2,3-dioxgenase were produced by Polyporus sp. S133 during incubation, and the highest enzyme activity was 182.3 U l?1 by 1,2-dioxygenase after 20?days of incubation. These results indicate that ligninolytic and dioxygenase enzymes secreted from Polyporus sp. S133 could play an important role in anthracene degradation efficiency. The metabolites detected through the degradation pathway were anthraquinone, phthalic acid, benzoic acid and catechol.  相似文献   

8.
Ligninolytic fungi can be used for remediation of pollutants in water and soil. Extracellular peroxidases and laccases have been shown to oxidize recalcitrant compounds in vitro but the likely significance of individual enzyme levels in vivo remains unclear. This study documents the amounts and activities of Mn-dependent peroxidase (MnP), lignin peroxidase and laccase (LAC) in various species of ligninolytic fungi grown in liquid medium and soil and their effect on degradation of polycyclic aromatic hydrocarbons (anthracene and pyrene), a polychlorinated biphenyl mixture (Delor 106) and a number of synthetic dyes. Stationary cultures of a highly degradative strain Irpex lacteus exhibited 380-fold and 2-fold increase in production of MnP and LAC, respectively, compared to submerged cultures. Addition of Tween 80 to the submerged culture increased MnP levels 260-fold. High levels of MnP correlated with efficient decolorization of Reactive Orange 16 azo dye but not of Remazol Brilliant Blue R anthraquinone dye. Degradation of anthracene and pyrene in spiked soil by straw-grown explorative mycelium of Phanerochaete chrysosporium, Trametes versicolor and Pleurotus ostreatus showed the importance of MnP and LAC levels secreted into the soil. The importance of high fungal enzyme levels for efficient degradation of recalcitrant compounds was better demonstrated in liquid media compared to the same strains growing in soil.  相似文献   

9.
Plants and soil microbes produce extracellular enzymes (EE) that catalyze the hydrolysis of nitrogen (N) and phosphorus (P) containing compounds in soil and other enzymes involved in degradation of lignin and cellulose. We explored whether soil enzyme activity involved in carbon (C), N and P cycling were correlated with plant distribution, soil chemical conditions and the identity of fungi colonizing tree roots in an old growth forest remnant. Terminal restriction fragment length polymorphism (TRFLP) was used to determine the presence of root fungi and standard fluorometric analysis was used to determine soil enzyme activities. Soil enzymes were consistently positively correlated with soil C and N, but not CN ratio. Soil P was also correlated with enzyme activity during both June and September sampling. We saw no significant relationships between herbaceous plant cover and enzyme activity in June, but there were significant positive correlations between α-glucosidase and herbaceous plant coverage in September. We also found that some enzymes were significantly correlated with the identity of fungi colonizing tree roots separated from the soil cores. Chitinase and β-glucosidase were positively correlated with the genera Russula and Piloderma while chitinase was negatively correlated with Amanita and Entoloma. In addition, phosphatase was positively correlated with Russula, Meliniomyces and Solenopezia. Our results suggest that enzyme activity in old growth forest soils are affected by a variety of environmental factors, and that herbaceous plants and some root fungi may be associated with sites of elevated or decreased decomposition potential and nutrient cycling.  相似文献   

10.
Soil carbon (C) sequestration may be a viable technology to reduce increases in greenhouse gas emissions until cleaner fuel technology is available. Crop plants with increased lignin levels may lead to increased soil C sequestration. Grain sorghum (Sorghum bicolor) exhibiting lower lignin due to the naturally occurring brown midrib mutation (bmr) may allow an assessment of the potential of biotechnology to affect soil C sequestration by manipulating plant lignin levels. A 194-d laboratory microcosm experiment was conducted to investigate the mineralization of bmr and normal plant residue from four sorghum hybrids. Cross-polarization magic angle spinning 13C-nuclear magnetic resonance of the residue agreed with chemical analysis that the bmr residue contained altered lignin and less lignin per mass weight. Ground bmr or normal grain sorghum residue was added to soil, with or without an inorganic nitrogen (N) amendment. Initial C mineralization from microcosms receiving bmr residue was higher than from microcosms receiving normal residue, but the differences were not maintained through the 194-d experiment. Total residue C mineralization was not different between bmr or normal isolines, and accounted for only 26% of the originally added residue C. Greater variability was observed between sorghum lines than between bmr or normal isolines. The addition of N to soil resulted in increased soil C mineralization. With no added N, however, microcosm C mineralization was most strongly correlated with the lignin/N ratio. With added N, microcosm C mineralization was most strongly correlated with hemicellulose content. The soil microbial community, as assessed by phospholipid and neutral-lipid fatty acid analysis, was not affected by bmr or normal genotype, but the addition of N resulted in significant changes to the soil microbial community, most notably changes to the soil fungi. Results indicate that potential does exist to modify plant residue chemistry to increase soil C sequestration, but soil fertility and microbial community dynamics are important considerations and may further enhance C sequestration potential.  相似文献   

11.
The influence of noncomposted ground newsprint (GNP) and nitrogen (N) source on corn (Zea Mays L.) dry matter production, grain yield, and soil chemical properties has been previously reported (Lu et al. 1995). The effects of GNP and N source on soil solution ionic activities at 40 days after planting in a field study; seed germination and extractable aluminum (Al) in GNP in laboratory studies were evaluated to determine their effects on corn seedling stunting and nutrient imbalances during early growth stages. Ammonium nitrate (NH4NO3), urea, anhydrous ammonia (NH3), or poultry litter (PL) were the N sources used in the field study to adjust the C:N ratio of the GNP to ≤ 30:1. In laboratory experiments, cotton, soybean, and corn germination at seven days was not affected by N source or GNP applied at a rate of 2.44 kg C/m2 soil; but N source did influence the dry weight of corn root/shoot ratio at 21 days. The Al extracted from GNP increased as the NH4OH concentration in the extracting solution increased and followed a quadratic relationship with an r2 of 0.90. The σαca/σαcation ratio in soil solution for all N sources was greater than the 0.15 reported by Bennett and Adams (1970a), where incipient NH3 phytotoxicity can occur. At 40 days after planting, a two-fold increase in soil monomeric Al (σAlαmon.) ionic activity and a five-fold increase in soil P (σPα) ionic activity were measured in GNP treatments as compared to no N GNP treatments. When NH3 was the N source used to adjust the C:N ratio of GNP, the σAlαmon. ionic activities were increased by a factor of five as compared to NH3 applied alone. When PL was the N source, the AlT (σAlαspecies) ionic activity was 119 mmol L?1 compared to the σAlαmon. ionic activity of 0.53 mmol L?1. It appears that σAlαmon. ionic activity induced nutrient disorder and caused severe stunting of corn seedlings during early season growth. The relatively high water-soluble organic carbon in PL (18 percent) may have acted as a chelating agent to reduce the σAlαmon. ionic activities in the GNP, or as a soluble carbon source for increasing microbial utilization of all the N, thus slowing the formation and accumulation of phytotoxic levels of by-products.  相似文献   

12.
Efforts to model woody debris dynamics are limited by our empirical understanding of the patterns and drivers of decomposition. This knowledge gap is significant in tropical forests, particularly in the dry tropics where research has been minimal and where forest regeneration is a management priority. Here, we coupled trait-function relationships in decomposing logs with indices of microbial and insect activity in a regenerating Costa Rican dry forest. We cut and placed logs (∼18 cm dia) of eight tree species in ground contact at two sites. We assessed density loss and element dynamics in sapwood and heartwood twice annually over two years. At time 0 and year 2, we measured lignin, nitrogen, structural carbohydrates, extractives, insect galleries, and two residue ‘signatures’ of fungal rot type: dilute alkali solubility (DAS; higher for brown rot) and lignin:glucan loss (higher for white rot). After two years, sapwood mean density losses ranged from 11.6 to 44.4% among tree species (excluding one thoroughly-degraded species). The best predictor of sapwood density loss was initial pH, but this correlation was negative, contrasting positive correlations proposed for temperate forests. Mean heartwood density losses were consistently less than those in sapwood, and although heartwood extractives contents were as high as 16.4%, trait correlations were insignificant. Insect galleries contributed little to density loss (<3%), and DAS and lignin loss patterns indicated dominance by white rot fungi. This was often matched by dense fungal zone line patterns (spalting), outlining many small territories. Perhaps as a consequence, element patterns were spatially variable, with overall trends roughly similar to those from temperate studies (e.g., Ca gain, P, K loss). Estimated CO2 fluxes from logs ranged from ∼25 to 75% percent of annual fluxes from litter fall. This collectively implies an important role for wood decomposition in dry forest carbon cycling, and in our case, it shows an interesting pattern suggesting high decomposer spatial complexity but low functional diversity.  相似文献   

13.
【目的】川麦冬生产上存在多效唑滥用现象,长期过量施用多效唑会造成土壤酸化、有效养分淋湿,降低川麦冬产量及品质,不利于川麦冬出口。本研究旨在找到合理的氮、磷、钾肥配比,以期减少多效唑的施用量。【方法】田间试验采用4因素5水平 (2、1、0、–1、–2水平) 二次正交旋转组合设计,氮肥5个水平分别为3200、2500、1800、1100、400 kg/hm2;磷肥5个水平4100、3100、2100、1100、100 kg/hm2;钾肥5个水平分别为1760、1333、907、480、53 kg/hm2;多效唑用量分别为150、112.5、75、37.5、0 kg/hm2共36个处理。于收获期调查了川麦冬根、茎、叶生长状况,块根产量及折干率、根冠比。【结果】试验因素对块根鲜重、块根干重、叶鲜重、叶干重、叶长、根冠比有显著影响,对叶片数、叶宽、分蘖数、须根数、须根长、块根数及折干率无显著影响。随氮肥施用水平的增加,叶长、叶鲜重、叶干重、块根鲜重、块根干重均降低。随磷肥施用水平的增加,叶干重先增加后降低、根冠比先降低后升高。随钾肥施用水平的增加,叶鲜重、叶干重增加,块根鲜重先降低后增加,根冠比 (干) 降低。随多效唑施用水平的增加,叶长、叶鲜重、叶干重、块根鲜重、块根干重均降低。在影响地上部生长的因素中,多效唑贡献率最高,在影响产量的因素中,氮肥贡献率最高。【结论】通过肥料的合理配施,可保证川麦冬产量,多效唑的施用量较川麦冬生产中用量降低41%。川麦冬产量大于3100 kg/hm2的肥料用量为尿素799~1051 kg/hm2、过磷酸钙1904~2296 kg/hm2、硫酸钾823.31~900.69 kg/hm2,其多效唑用量为44.25~58.88 kg/hm2。  相似文献   

14.
沙柳沙障腐烂过程对土壤微生物生物量及酶活性的影响   总被引:1,自引:0,他引:1  
为探究沙柳沙障腐烂过程土壤微生物生物量及酶活性的变化规律,以铺设10年的沙柳沙障为研究对象,采用野外原位取样和室内指标测定法,结合RDA多元数据排序分析,揭示影响土壤微生物生物量及酶活性的主要环境因子.结果表明:(1)随铺设年限的增加,土壤中的C∶ N与C∶ P呈上升趋势,10年后的C∶ N是1年的16.14倍,而N ...  相似文献   

15.
以氮、磷、钾配比1∶0.5∶1.2为对照,研究了不同氮、磷、钾用量和配比对温室无土栽培黄瓜叶片部分代谢关键酶活性的影响。结果表明,增加氮素的用量和配比,黄瓜株高、茎粗、植株干重均先升后降,硝酸还原酶活性显著增强,蔗糖合成酶、蔗糖磷酸合成酶和Mg2+、Ca2+-ATPase活性先升后降;增加磷素用量和配比,株高、茎粗、植株干重随之增大,硝酸还原酶活性先升后降,但蔗糖合成酶、蔗糖磷酸合成酶及Mg2+、Ca2+-ATPase活性显著升高;同时增加氮、磷用量和配比可显著提高硝酸还原酶、蔗糖磷酸合成酶以及Mg2+、Ca2+-ATPase的活性,但显著降低蔗糖合成酶活性;增加钾素用量和配比对黄瓜株高、茎粗和植株干重影响较小,适当增钾显著或极显著提高硝酸还原酶、蔗糖合成酶和Ca2+-ATPase的活性,Mg2+-ATPase活性升高不明显,进一步增加钾素用量和比例,上述酶活性均显著降低;增钾对蔗糖磷酸合成酶活性的影响不显著。  相似文献   

16.
We developed an Extracellular EnZYme model (EEZY) of decomposition that produces two separate pools of C- and N-acquiring enzymes, that in turn hydrolyze two qualitatively different substrates, one containing only C (e.g., cellulose) and the other containing both C and N (e.g., chitin or protein). Hence, this model approximates the actions of commonly measured indicator enzymes ß-1,4-glucosidase and ß-1,4-N-acetylglucosaminidase (or leucine aminopeptidase) as they hydrolyze cellulose and chitin (or protein), respectively. EEZY provides an analytical solution to the allocation of these two enzymes, which in turn release C and N from the two substrates to maximize microbial growth. Model behaviors were both qualitatively and quantitatively consistent with patterns of litter decay generated by other decomposition models. However, EEZY demonstrated greater sensitivity to the C:N of individual substrate pools in addition to responding to factors directly affecting enzyme activity. Output approximated field observations of extracellular enzyme activities from studies of terrestrial soils, aquatic sediments, freshwater biofilm and plankton communities. Although EEZY is largely a theoretical model, simulated C- and N-acquiring enzyme activities approximated a 1:1 ratio, consistent with the bulk of these field observations, only when the N-containing substrate had a C:N ratio similar to commonly occurring substrates (e.g., proteins or chitin). This result supported the emerging view of the stoichiometry of extracellular enzyme activities from an environmental context, which suggests that a relatively narrow range of microbial C:N, carbon use efficiency and soil/sediment organic matter C:N across ecosystems explains the tendency towards this 1:1 ratio of enzyme activities associated with C- and N-acquisition. Sensitivity analyses indicated that simulated extracellular enzyme activity was most responsive to variations in carbon use efficiency of microorganisms, although kinetic characteristics of enzymes also had significant impacts. Thus EEZY provides a quantitative framework in which to interpret mechanisms underlying empirical patterns of extracellular enzyme activity.  相似文献   

17.
为提高废旧棉织物和农作物秸秆的利用率,对废旧棉纤维与水稻秸秆纤维混合制取地膜的工艺及性能进行了试验研究。以废旧棉纤维为"骨架",水稻秸秆纤维为填充辅料,添加功能助剂,应用四因素五水平二次正交旋转中心组合试验方法,以打浆度、棉纤维添加量、定量和湿强剂质量分数为影响因子,以混合地膜的干抗张强度、干伸长率、湿抗张强度、湿伸长率为响应函数,研究得出了定量77~90 g/m2、湿强剂质量分数1.5%~1.8%、棉纤维打浆度45°SR、棉纤维添加量25%的废旧棉与水稻秸秆纤维混合地膜最佳工艺参数组合,所得混合纤维地膜的干抗张强度大于32 N、干伸长率大于1.8%、湿抗张强度大于10 N、湿伸长率大于5.5%,可满足地膜田间覆盖机械性能要求。研究结果为综合利用废旧棉织物和水稻秸秆制备可降解地膜提供理论依据和技术支撑。  相似文献   

18.
Abstract. A potential technique for reducing overwinter leaching from high N containing crop residues is to immobilize the N released during decomposition by co-incorporating materials of a wider C : N ratio. This article describes the use of laboratory incubation experiments to investigate the effects of a wide range of such amendment materials on the mineralization of N from sugar beet and brassica leaf residues in a sandy loam and a silt loam. These materials were of varying quality, with C : N ratio ranging from 15 : 1 to 520 : 1, and cellulose content from 0 to 34%. Amendments were added at a fixed rate of 3.5 mg C g−1 of dry soil, equivalent to around 10 t ha−1 C (to 20 cm depth). The soils were then incubated at 15°C, and net mineral N derived from the leaves was measured at regular intervals over 168 days. Net mineralization of residue N was greatest with molasses (C : N ratio of 18 : 1), whereas paper waste (C : N ratio of 520 : 1) reduced N mineralized by up to 90% compared with a soil-only control. As the concentration of cellulose and lignin in the amendment materials increased, so the amounts of N mineralized decreased, with 62 and 54% of variance in N mineralized explained by cellulose and lignin content, respectively. Reduced levels of mineral N were associated with higher levels of biomass-N. The levels of N2O-N lost from sugar beet residues on day 14 were significantly reduced from 66 to 5 g ha−1 where compactor (cardboard) waste had been mixed into sandy loam, but this effect was not observed in the silt loam. These techniques could lead to greater efficiency of N use in rotations through reduction in N losses, and provide alternative routes for disposal of wastes when the EC Landfill Directive is implemented.  相似文献   

19.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

20.
大豆红冠腐病是一种真菌引起的土传病害,其蔓延已经影响到大豆产业的正常发展。将腐熟的有机肥与3种生防细菌(枯草芽孢杆菌、巨大芽孢杆菌和胶质芽孢杆菌)结合,制备成生物有机肥,并通过盆栽试验方法,研究了上述生物有机肥对大豆红冠腐病的防效和对土壤酶活性的影响。结果表明,施用生物有机肥可以显著降低红冠腐病的发生,在CPC处理的防效指定为0时,生物有机肥的两个处理防效分别达到84.74%和81.30%,远远高于普通有机肥处理的防效(24.24%)。在有效养分相同的情况下,BOF处理的大豆株高、鲜重、干重和主茎节数均高于OF处理,达到显著水平,表现出显著的促生效果。施用生物有机肥以后,土壤脲酶、磷酸酶、过氧化氢酶和蔗糖酶的活性均高于对照和普通有机肥的处理,表明生物有机肥可以在一定程度上提高土壤酶的活性,改善土壤质量和肥力状况,具有防病促生的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号