首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
为了明确秦岭山地降水时空变化的特征,为秦岭生态环境保护提供气候依据,基于秦岭地区1964-2017年32个气象站的逐月降水数据资料并采用AUSPLIN插值法将其转为区域面上数据,结合小波分析、趋势分析等方法,研究了不同时空尺度下秦岭山地1964-2017年降水变化特征及其南北差异性。结果表明:(1)近54年秦岭全区年均降水量呈减少趋势,速率为-11.95 mm/10 a,降水变化存在明显的周期性及显著的空间差异,降水主要集中在中南部。(2)季尺度上,近54年秦岭山地的降水变化存在显著的季节差异,空间上尤以春季在高海拔区的减少趋势最为显著。(3)秦岭山地降水变化存在着明显的南北差异,近54年北坡年均降水呈减少趋势,平均速率为-7.1 mm/10 a,南坡则呈增加趋势,速率为35.1 mm/10 a;气温突变前,北坡降水变化趋势不明显而南坡以增加趋势为主;气温突变后,南北坡均以增加为主,而北坡全区均呈增加趋势。54 a来,秦岭以南地区降水强度大,夏冬两季容易导致干旱、极端降水等自然灾害,进而对生命财产安全造成威胁,应增强旱涝灾害的预防。  相似文献   

2.
基于Anusplin秦岭地区近50多年来的降水时空变化   总被引:1,自引:2,他引:1  
为了更精确地评估山地生态系统,降水栅格数据的获取显得尤为重要。基于澳大利亚专业气象插值软件Anusplin,以秦岭1959—2015年31个气象站点的降雨资料为基础,获得秦岭地区降水栅格数据以揭示秦岭地区降水的时空变化规律。结果表明:(1)秦岭地区年均降水的变化范围为545.44~1 155.46 mm,平均降雨量为824.76 mm;南坡平均降雨量为847.37 mm,北坡平均降雨量为737.25 mm,南北坡平均降水差异为110.12 mm;秦岭山地四季平均降水量大小依次为:夏(403.76 mm)秋(237.26 mm)春(169.11 mm)冬(25.62 mm),且南坡降水大于北坡降水。(2) 1959—2015年秦岭地区年均降水变化率为-3.02~0.83 mm/10 a,并未通过显著性检验,降水减少区域主要在秦岭主峰太白山和秦岭南坡的安康等地,平均海拔分布在1 177 m;而降水增多发生地主要在秦岭南坡的略阳、商南和石泉等地,平均海拔分布在811 m。其中秦岭地区东部商南地区变化率最大,达到0.83 mm/10 a。  相似文献   

3.
1961-2010年锡林郭勒盟气温和降水时空变化特征   总被引:1,自引:1,他引:0  
佟斯琴  刘桂香  武娜 《水土保持通报》2016,36(5):340-345,351
[目的]分析内蒙古自治区锡林郭勒盟气温和降水量时空变化规律,为草原区环境演化提供科学支撑,同时也对气温和降水的短期预警提供依据。[方法]利用研究区境内15个气象站点1961—2010年的逐月平均气温和月降水资料,结合一元线性回归分析、趋势分析、M K突变检验以及M o rlet小波分析方法,分析近50 a来锡林郭勒地区气温和降水时空变化特征及周期。[结果]近50 a来锡林郭勒地区气温以0.44℃/10 a的速率呈显著上升趋势,其中冬季温度上升最明显;年均气温有较明显的突变特征,突变点出现在1991年,突变前后2个时段平均气温相差1.32℃;存在28,9和5 a的周期律,未来几年仍处于暖期。降水呈波动下降趋势,速率为3.9 mm/10 a ,夏季降水下降最明显;年降水量没有明显的突变点,存在25和7 a的震荡周期,未来几年仍处于少雨阶段。[结论]近50 a来锡林郭勒盟地区气候呈明显干旱化趋势。  相似文献   

4.
三北防护林工程区气候变化分析   总被引:2,自引:0,他引:2  
利用三北防护林工程区内气象站点近52 a气温与降水资料,研究了工程建设前后该区的气候变化特征。结果表明:(1)近52 a工程区增温趋势明显,增温速率为0.346℃/10 a; 1960-1977年为相对低温期,1978-1995年气温逐渐上升,建设后期1996-2011年气温显著增高;增温趋势具有明显的南北分异特征,显著升温区主要分布在工程区北部内蒙古高原、松嫩平原和吉林西部平原。(2)年降水量呈下降趋势,下降速率为3.554 mm/10 a;建设之前降水偏少,建设初期有所增加,1996年以来又呈明显减少趋势;降水变化东西差异明显,东部除嫩江平原、内蒙古阴山地区降水增多外,其他地区普遍减少,而西部大部降水呈增加趋势。(3)工程区气候变化空间差异明显,暖湿化区域主要集中在西部阿勒泰地区、柴达木盆地和东部内蒙古阴山地区、河套平原和松嫩平原,而其他地区如呼伦贝尔草原、大兴安岭山区、辽嫩平原则暖干化趋势显著。  相似文献   

5.
川滇地区气候特征与旱涝灾害变化趋势分析   总被引:1,自引:1,他引:0  
以川滇地区70个气象观测站点1961-2011年的降水、气温资料为基础,采用线性回归、M-K突变检验、反距离加权空间插值、小波变换等方法,分析了川滇地区近51a来气候变化特征和旱涝灾害趋势。结果表明:(1)近51a来川滇地区气温总体上呈增加趋势,气温倾向率为0.21℃/10a,增温趋势系数高达0.71,气温存在极其显著的长期增温趋势。川西高原年平均气温最低,云南省南部地区气温最高,海拔高度是影响该区气温空间差异的重要因素。(2)近51a来川滇地区降水量总体上呈减少趋势,平均递减率为10.76mm/10a。受西南季风与海拔高度的影响,降水量在空间分布上差异极大,川西高原与四川盆地西南周边地区降水量相对较少,四川盆地降水相对丰富,滇西南地区降水量最为充沛。(3)川滇地区气候暖干化趋势明显,分别在1997和1999年发生了增温和降水量减少的突变,旱涝灾害存在10~15a和28a的周期振荡,该区涝灾向旱灾转化的趋势明显。  相似文献   

6.
利用聊城地区代表站1959-2008年气温及降水资料,用一元线性回归、相关分析等数理统计学方法,对聊城地区近50a来气候变化做了分析。结果表明:聊城地区近50a来年均气温呈上升趋势,增温率为0.07℃/10a,20世纪90年代-21世纪初增温尤其明显。不同季节气温的变化趋势不同,春季变暖趋势最明显。根据冷暖波动情况,可划分成一个冷期和两个暖期;近50a降水量则呈下降趋势,倾向率为-25.22mm/10a,2002年降水最少。各季节中,夏、秋、冬季降水呈下降趋势。根据降水变化可分为三个多雨期和三个少雨期。  相似文献   

7.
秦岭不仅是中国南北方地理—生态过渡带,也是中国重要的自然、经济和农业区划界线。在当前秦岭气候增暖背景下,再识别气候分界指标时空变化规律,对科学进行自然区划实践具有重要指导意义。为了明确这一气候特征,基于秦岭山地1970—2020年126个气象站点降水、气温观测资料,选取年降水量、1月和7月均温指标,采用薄盘样条插值、趋势分析方法,对研究区年降水量、1月和7月均温时空特征进行分析,进而选择秦岭太白山、伏牛山剖面探讨气候分界指标高度的趋势变化。结果表明:(1)薄盘样条插值可获得精度较高的年降水量和1月均温序列,相关系数为0.712~0.919; 误差分析表明,7月均温插值较观测值偏差为2~3℃,得到秦岭山地7月均温校正系数为0.893,经校正插值结果显著改善(误差缩小3~6倍);(2)时空趋势上,近51 a秦岭山地东部“暖干化”、西部“暖湿化”,秦岭北部、西部增暖显著(p<0.05);(3)年降水量800 mm高度变化呈“东西反向”,1月0℃和7月25℃高度变化呈“东西同向”,西部平均速率大于东部,如年降水量800 mm高度(西部:-166 m/10 a,东部:49 m/10 a)和1月0℃高度(西部:70 m/10 a,东部:37 m/10 a);(4)1970—2020年秦岭气候分界指标位置高度沿山地呈上升或下降变化,但在2010s(2010—2019年)时段,气候分界指标位置高度北坡为800~1 400 m、南坡为800~1 300 m均未越过秦岭主脊,秦岭山地气候分界作用仍具有稳定性。  相似文献   

8.
李成    王让会    黄进 《水土保持研究》2013,20(6):117-124
根据天山北麓8个气象站1961—2010年气温和降水资料,采用线性趋势分析、Mann-Kendall检验、Hurst指数等方法,分析了天山北麓气温和降水的变化特征。结果表明:(1)50 a来,天山北麓年平均气温和年降水量均呈增加趋势,其变化率分别为0.26 ℃/10 a、15.67 mm/10 a;冬季增温最为明显,升温幅度达0.49℃/10 a左右,降水倾向率表现为夏季最大,为5.44 mm/10 a;(2)年平均气温和年降水量的突变年份分别在1996年和1983年;未来两者整体上呈增加趋势;(3)极端高(低)温指数在近50 a呈现增加(减少)趋势;极端降水指数中零降水日数和最长连续无降水日数呈不同程度的递减趋势,1日最大降水量和极端强降水日数以1.36 mm/10 a和1.81 d/10 a的速率递增,各极端气候指数空间差异明显;极端气温指数与年平均气温、极端降水指数与年降水量均有很好的相关性。  相似文献   

9.
利用东天山北坡5个国家级地面气象站1961—2016年逐日气温和降水量资料,采用线性趋势分析、累积距平、滑动平均及Mann-Kendall突变方法,对该区域气温、降水变化特征进行了分析。结果表明:近56 a东天山北坡年、季、月平均气温均呈上升趋势,年增温率为0.34℃/10 a,四季中秋季增温最显著,各月中2月增温最明显,空间分布上以巴里坤为低值中心逐渐向两侧增大,1993年为气温突变年。年降水量以13.02 mm/10 a速率增加,四季均表现为增湿,且以夏季增湿最显著,空间分布上以木垒为大值中心逐渐向两侧减小,降水在1992年发生由少到多的突变。东天山北坡近56 a气候总体呈现明显的暖湿化变化趋势。  相似文献   

10.
为了研究降水与气候变化之间的关系,借助武功地区1955—2015年逐月降水量和气温实测资料,采用线性倾向估计、Mann-Kendall非参数检验、Morlet小波分析等方法,对武功地区近61年来气候变化背景下的降水特征进行了研究。结果表明:武功地区年降水量总体上呈-15.56 mm/10 a的减少趋势,其中春、夏季降水量下降显著,秋、冬季则较为平缓;年和季节降水量的典型突变时间节点在1983年附近,表明了年降水量和季节降水量变化趋势的一致性,也印证了20世纪90年代关中平原西部降水趋势发生了突变;武功地区气候偏冷期主要在1955—1994年,气温降低使得年降水量呈39.46 mm/10 a的减少趋势;气候偏暖期主要在1995—2015年,气温升高使得年降水量呈98.63 mm/10 a的增加趋势;气候冷暖变化通过影响蒸发量、蒸腾量和水汽输送速度,来影响武功地区年降水量;降水量增多有利于解决当地水资源短缺问题,同时也增加了极端天气和洪涝灾害发生的几率。  相似文献   

11.
气候变化背景下秦岭水源涵养功能时空变异特征   总被引:1,自引:0,他引:1  
水源涵养功能的变化对流域生态水文及其供水安全产生重要影响,稳定良好的水源涵养功能是区域经济社会高质量发展的基础。基于InVEST产水量模块、水源涵养模型、逐像元线性拟合,模拟1981—2015年秦岭及秦岭南北水源涵养时空变异,分析水源涵养对气候变化的响应,探讨气候波动背景下水源涵养演变趋势。结果表明:(1)近35年来秦岭水源涵养呈下降趋势,年变化速率-1.44 mm/a,秦岭北坡水源涵养下降趋势大于秦岭南坡;(2)近35年来秦岭水源涵养空间变化趋势呈空间异质性,除汉江南岸玉带河上游、牧马河上游、褚河上游年均水源涵养量略有增加外,其他流域呈整体下降趋势,且秦岭中部水源涵养下降幅度大于外围区域;(3)降水减少和参考蒸散发增加是影响秦岭水源涵养量减少的主要因素,在气候暖干化的背景下,秦岭水源涵养功能有进一步下降的可能。掌握区域水源涵养功能时空变异特征,对科学评估区域用水安全、预判未来水资源变化趋势和气候变化背景下水资源管理具有指导意义。  相似文献   

12.
近50年来河南省气温和降水时空变化特征分析   总被引:2,自引:1,他引:1  
在全球变暖大背景下,对河南省近50年来气温和降雨的时空变化与突变特征进行了分析研究。基于河南省17个气象站1965—2014年的日平均气温和逐日降水资料,采用气候倾向率法、累积距平法、Mann-Kendall秩相关检验、Morlet小波分析、Kriging空间插值等方法,分析研究了河南省近50年来的气温和降水量时空变化特征。河南省近50年来平均气温总体呈增暖趋势,气候倾向率为0.19℃/10a(p0.01),春季升温最快,秋冬次之,夏季气温趋势反而略有下降,年均气温在80—90年代有短暂下降,90年代后开始变暖;河南省降水量整体略呈增加趋势,但变化趋势不明显,气候倾向率为2.8mm/10a(p0.05),夏季降水量增加较快,春秋降雨量略有减少。近50a来年降雨量经历了增—减—增—减的变化,60年代到80年代增加,80年代到90年代中旬减少,90年代到21世纪初再次增加,2003年至今持续减少。河南省气温存在27年的强显著周期,此外还有15a的周期变化;而降水量则存在12a的显著周期,此外还有5a和30a的周期。空间分布上,气温有东南高西北低的特点,且中部升温更快;降水量则南多北少,南部有减少趋势,中部、东部有增多趋势。  相似文献   

13.
根据秦岭南北54个气象站1960—2011年逐日数据,采用周广胜—张新时模型、Penman-Monteith模型、气候倾向率、相关分析和Spline插值等方法分析近52 a气象要素的时空变化特征及其对植被净初级生产力的影响。结果表明:1)秦岭南北多年平均植被净初级生产力由北向南逐步上升,排序为巴巫谷地〉汉水流域〉秦岭南坡〉秦岭以北,各子区植被净初级生产力变化趋势不一,植被净初级生产力上升的站点占本区站点总数的比例顺序为汉水流域〉秦岭南坡〉巴巫谷地〉秦岭以北,秦岭以南地区增加更为明显,生态区23个站点中植被净初级生产力年际波动并不大,介于1.34~1.89之间;2)植被净初级生产力与湿润指数、降水量和相对湿度呈显著水平(P〈0.01)的正相关关系,相关系数排序为降水量〉湿润指数〉相对湿度,降水的增多会促进植被净初级生产力的累积,水分是主要制约因素;3)植被水分利用效率由南向北递减,排序为巴巫谷地〉汉水流域〉秦岭南坡〉秦岭北坡,绝大部分地区呈现不显著的上升趋势,近52 a来,水分利用效率普遍呈上升趋势,但并不显著,整体上维持相对稳定水平。  相似文献   

14.
根据秦岭南北54个气象站1960—2011年逐日数据,利用FAO Penman-Monteith公式计算各站的潜在蒸散量和湿润指数;采用样条曲线插值法(Spline)、气候倾向率、相关分析等方法对该区气温、降水、潜在蒸散和湿润指数的时空变化特征以及影响其变化的气象要素进行分析。结果表明:1)秦岭南北多年平均气温由北向南逐步上升,1993年是气温变化的转折点,1993年以前秦岭以南地区降温更明显,1994年起绝大部分站点气温显著(P<0.01)上升,秦岭南北无明显差异;2)多年平均降水量由南向北递减,1995年以前各区降水量均表现出下降趋势,秦岭以北地区降水量下降更明显,1995年以后70%以上站点降水量增多,秦岭以北地区有变干趋势,秦岭南坡微弱变湿,其余地区整体升降趋势不明显;3)潜在蒸散量呈东高西低的分布格局,各子区蒸散量呈现较为一致的下降趋势(P<0.05),但无明显转折点,秦岭以南的广大地区相对于秦岭以北蒸散量下降更明显;4)湿润指数由南向北递减,秦岭以北地区以暖干化为主,而秦岭以南以暖湿化为主,季节尺度上,4个子区表现出的变化规律较为一致,春季和秋季绝大部分站点的湿润指数呈下降趋势,而夏季和冬季则以上升趋势为主;5)湿润指数与日照时数、最高气温、平均气温和蒸散量呈显著水平(P<0.01)的负相关关系,与最低气温和风速相关关系不显著,降水量和空气湿度的增加会对湿润状况的改善起到正向作用。  相似文献   

15.
孟清    高翔  白红英    张扬    王辉源   《水土保持研究》2019,26(6):171-178,183
极端降水是气候变化的重要研究内容之一。在全球气候变化背景下,探究秦岭地区的极端降水变化,对于明确区域极端气候差异及探究其机理具有重要的意义。基于秦岭地区1960-2015年29个气象站点降水数据以及秦岭25 m×25 m分辨率的DEM数据集,选取6个极端降水指数,运用最小二乘回归法、Man-Kendall突变检验法、5年滑动趋势法和克里金插值法研究了56年来秦岭地区极端降水的时空变化特征。结果表明:(1)秦岭地区极端降水分布存在明显空间差异性,西北部是年均连续无雨日数高值区,中西部为连续降水日数高值区;强降水日数、强降水量、5日最大降水量和降水强度等指数呈"南高北低"的分布格局,位于秦岭最南端的紫阳县是各个极端降水指数极大值区。(2)56年来,秦岭地区极端降水的持续性整体呈减少趋势;强度呈增加趋势。秦岭山地降水时间短、强度大,尤其是在秦岭南部地区,应加强防备,以免引起洪水灾害造成的重大破坏。  相似文献   

16.
通过推算历年二十四节气的划分时间,利用华北地区63个气象站点1961-2014年逐日地面观测资料,分析每个节气期间平均气温、最高/低气温、≥0℃积温的线性变化趋势;基于春分、秋分日计算分析研究区各站点无霜期的终/始日与春分/秋分日差值和无霜期≥0℃积温的时空分布变化特征.结果表明,华北平原气温(平均、最高、最低)最高为大、小暑节气,最低为小、大寒节气.无霜期由北向南递增,终霜日平均发生在春分节气,沿纬度方向由南向北推迟,初霜日平均发生在霜降节气,沿纬度方向由南向北提前.1961-2014年华北地区二十四节气内热量资源(气温、≥0℃积温)均呈现上升趋势,冬春季的节气升温幅度大于夏秋季.雨水节气平均气温、最高、最低气温增幅在二十四节气中最大,分别为0.63、0.74和0.53℃·10a-1.最低气温增幅大于平均气温和最高气温,对气候增暖的贡献较大.近54a来研究区无霜期内≥0℃积温平均增加442.8℃·d.气候变暖同时延长了华北地区的无霜期,研究区无霜期气候倾向率平均为3.9d·10a-1,该变化由初/终霜日的变化共同作用引起,且春季终霜日提前(气候倾向率为2.1d·10a-1)比秋季初霜日推迟(气候倾向率为1.9d·10a-1)更明显.  相似文献   

17.
采用线性回归分析以及Mann-Kendall和累积距平等突变检验方法对新疆东部地区1961—2011年的气温和降水两个指标进行研究,从而揭示该地区气候变化的事实及趋势,探讨了其对区域生态环境的影响。研究显示新疆东部地区及各站点年平均和四季平均气温在过去50多年内均呈上升趋势,达0.42℃/10 a,增温率是IPCC第四次报告中全球近50 a增温率的三倍多,高于中国和西北干旱区的增温率,并且在1993年发生增温速度的突变。四季气温中,冬季气温升高对年气温上升贡献最大。新疆东部地区各站点年降水量在研究时段内有增有减,巴里坤站呈较为明显增加趋势,增幅为9.77 mm/10 a,而十三间房站年降水量呈微弱的下降趋势,下降了1.97 mm/10 a,其余各站均有增加趋势,但趋势不显著,并且在1976年发生了增湿突变。新疆东部地区温度升高,降水量增加,总体向暖湿化发展,这种变化对该地区水资源和沙尘暴天气事件等生态环境有重要的影响,具体的影响评估需要进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号