首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 670 毫秒
1.
果园升降平台自动调平控制系统设计与试验   总被引:7,自引:6,他引:1  
为提高果园升降平台调平精度和稳定性,设计了一种自动调平控制系统。通过调平机构动力学分析,建立了调平控制系统数学模型;利用融合卡尔曼滤波的模糊PID控制电磁阀驱动油缸伸缩调整工作台姿态,实现其自动调平。对控制系统进行仿真,结果表明:模糊PID控制较PID控制性能好,峰值时间缩短47.82%,调节时间缩短48.10%,最大超调量减小52.78%,经卡尔曼滤波后控制误差降低44.57%;对系统响应时间和调平效果进行测试,结果表明:自动调平控制系统响应时间为0.078 s;在平台不升降和升降2种工况下,最大坡度满载下自动调平最大误差分别为1.08°和1.74°,调平精度相对原果园升降平台调平系统分别提高了1.69°和1.91°,较好的实现了工作台自动调平控制。该研究为农业机具调平控制提供参考。  相似文献   

2.
针对当前植保四轴飞行器在作业过程中自身载荷发生改变后的飞行控制性能下降、抵抗环境扰动能力差的问题,该文改进了传统比例积分微分(proportion,integration,differentiation,PID)控制算法,提出了一种模糊PID控制算法。该文通过研究四轴飞行器的姿态解算和飞行原理,设计了以STM32系列的单片机为核心处理器的四轴飞行控制系统。采用AHRS模块实时解算飞行器姿态参数,结合模糊控制和PID控制算法调节电机的输出量来控制飞行姿态。试验结果表明:与传统PID相比,模糊自整定PID控制算法适应性强,参数整定简单,系统的动态响应能力和稳定性获得了提高,实现了四轴飞行器的稳定飞行。该文为植保无人机控制算法研究提供了一定的参考。  相似文献   

3.
针对在稻谷变温干燥过程中变温节点不明确、温度波动范围大和响应时间慢等问题,该研究设计了一种基于玻璃化转变的稻谷变温干燥控制系统。根据稻谷玻璃化转变曲线,确定变温控制策略,运用Logistic回归分析建立混配阀门开度和稻谷温度之间的控制模型并通过最小二乘法辨识模型参数。利用遗传算法对模糊隶属度函数进行优化,目标函数值迭代至0.118收敛,寻得最优幅宽。在Simulink仿真试验中,稻谷温度设定为42 ℃时,模糊PID控制的响应时间为66.43 s,且超调量为3.600%,优化后的模糊PID控制响应时间为37.06 s,且超调量为0.120%;在150 s加入5 s的外部信号干扰,优化后的模糊PID控制比模糊PID控制的调节时间少4.19 s且超调量减小0.050%;在稳态时输入升温信号,优化后的模糊PID控制比模糊PID控制的调节时间少16.79 s且超调量低0.338%。利用自主研制的干燥试验台进行变温试验,在变温响应试验中,优化后的模糊PID控制比模糊PID控制在目标温度和梯度升温调节时间中分别缩短了37.56 s和18.63 s;在温度稳定性试验中,稻谷温度变化范围为41.9~42.1 ℃,平均相对误差小于0.4%,变异系数小于0.5%;在建三江国家农业高新技术示范区浓江农场进行生产性验证,优化后的模糊PID控制系统响应时间小于30 s,稳态温度误差在±0.15 ℃,平均相对误差小于0.5%。测试数据表明变温干燥控制系统性能稳定,满足实际干燥作业的生产工艺需求。  相似文献   

4.
基于改进多目标进化算法的温室环境优化控制   总被引:5,自引:4,他引:1  
该文围绕温室环境控制问题,以温湿度2个主要环境因子为研究对象,建立了温室环境动态模型。设计1种基于改进的非支配排序多目标进化算法(modified non-dominated sorting evolutionary algorithm,MNSEA-II)的双比例积分微分(proportional integral derivative,PID)控制器的多输入、输出温室控制系统,以误差平方矩的积分型(integrated time square error,ITSE)为性能指标,使用多目标进化算法对其确立的目标函数进行寻优,求出Pareto最优解,进而对PID控制器的参数进行整定,使系统获得良好的控制性能。本文以Matlab/Simulink为仿真环境,对此温室控制系统进行了仿真研究。结果表明了温室模型的合理性和多目标进化算法优化的PID控制方法的有效性。  相似文献   

5.
针对大型载重车辆电液转向系统的研究,建立了转向执行机构——电液比例阀控液压缸的数学模型。采用PID控制策略对液压缸的位置进行控制。由于传统的PID控制器参数整定不容易,该文将模糊控制应用到PID控制中,在线调整PID参数。利用MATLAB中SIMULINK模块搭建包含Fuzzy控制的系统模型。仿真结果表明:模糊PID控制改善了控制系统的动态特性,增强实用性。  相似文献   

6.
为解决自动移栽机作业过程中由于机械手定位误差导致的抓取失败、伤苗及漏苗问题,实现整排取苗机械手准确快速定位,该文采用模糊PID控制算法实现自动取苗机械手的步进定位控制。根据整排取苗试验平台分析了机械手水平和竖直方向的定位精度需求,以两相混合式步进电机为对象建立步进电机角速度控制模型,设计模糊规则,建立模糊PID控制器,通过对误差及误差变化率的在线修正,来满足不同误差和误差变化率情况下的控制要求。应用MATLAB/Simulink进行系统仿真,从超调量、响应时间和稳定性指标验证了控制方法的可行性;以单位阶跃信号作为激励,分析PID和模糊PID的控制效果,结果表明:通过固定参数PID仿真分析,获得系统最优PID参数为KP=20,KI=0.2,KD=1,达到稳态所需的时间为0.285 s。在此参数下,模糊PID控制达到稳态所需时间为0.25 s,响应速度优于固定参数PID控制,系统无超调。固定参数PID和模糊PID控制加入扰动后的控制效果分析表明,模糊PID控制系统超调量为40%,达到稳态所需时间为1.34 s,均明显小于固定参数PID控制43%和1.45 s,表明模糊PID在具有扰动的环境中控制效果明显优于固定参数PID控制,步进电机系统快速响应,控制稳定。系统试验结果,模糊PID控制算法的最大误差为2.8 mm,定位平均相对误差为0.81%,定位准确度高,可以满足机械手水平定位精度要求。  相似文献   

7.
果园高位作业平台自动调平前馈PID控制方法   总被引:1,自引:1,他引:0  
为提高果园高位作业平台自动调平控制系统性能,该研究基于已开发的果园高位作业平台调平机构,提出了前馈PID控制的自动调平控制方法。首先对果园高位作业平台自动调平控制系统进行动力学分析,建立被控对象数学模型。然后在数学模型的基础上设计前馈PID控制算法,并对控制系统进行仿真分析。仿真结果表明,前馈PID较传统PID的控制性能更优,系统上升时间缩短18%,调节时间缩短19%,稳态误差控制在0.6%以内。最后,搭建果园高位作业平台自动调平控制系统,并对调平系统进行静态与动态试验。试验结果表明:前馈PID控制的调平性能优于传统PID控制,静态调平中,前馈PID上升时间平均缩短20%,调节时间平均缩短30%,稳态误差控制在0.6%以内;动态调平中,果园高位作业平台以2 km/h的速度行驶于起伏较大的路面,工作台俯仰角绝对值差最大为2.99°,平均绝对误差为0.79°,均方差误差为0.58°,工作台倾角稳定在±3°以内,较好地实现了果园高位作业平台自动调平控制,满足果园作业需求。  相似文献   

8.
基于无线传感器网络的水产养殖池塘溶解氧智能监控系统   总被引:2,自引:6,他引:2  
为了便于对规模化水产养殖池塘溶解氧的监控,该文研制了一种基于无线传感网的水产养殖池塘溶解氧智能监控系统,实现对池塘溶解氧的分布测量、智能控制和集中管理。针对常规模糊PID控制器自适应能力低,提出了一种可变论域模糊PID控制器,根据溶解氧误差和误差变化的大小动态调整模糊控制单元的输入输出变量论域,能较好地解决了模糊控制规则数量与溶解氧控制精度之间的矛盾,实现了PID控制器参数的自整定。根据池塘溶解氧变化的非线性、大时滞和大惯性等特点,设计基于变论域模糊PID控制器与增氧机转速PID调节器构成的池塘溶解氧串级控制系统,溶解氧控制器的输出为增氧机转速调节器的输入,增氧机转速调节器输出改变增氧机转速使溶解氧浓度快速跟踪目标值。根据溶解氧测量数值序列的变化趋势,基于灰色理论和权重构建组合灰色溶解氧预测模型,以预测值作为变论域模糊PID控制器的反馈值,实现对溶解氧的预测控制,起到超前调节的目的。在试验池塘和对照池塘分别采用变论域模糊PID控制器和模糊PID控制器对池塘溶解氧进行调控,对照池塘溶解氧的响应时间比试验池塘延长15 min左右,超调量扩大2.96倍,对照池塘溶解氧的标准差、均方差、最大误差和最小误差指标比试验池塘扩大3~4倍。试验结果表明可变论域模糊PID控制器能够改善池塘溶解氧控制系统的动态性能,提高控制系统的稳态精度,有效地抑制影响池塘溶解氧稳定的诸多不确定因素的干扰,满足水产养殖对池塘溶解氧的要求,为解决非线性和大时滞复杂对象的控制问题提供一个新的控制思路。  相似文献   

9.
基于性能指标的农用车辆路径跟踪控制器设计   总被引:1,自引:1,他引:0  
该文以农用车辆为控制对象,设计了路径跟踪PID控制器。基于性能指标—ISE、IAE、ITAE和ITSE分别整定了PID控制器参数,给出了最优PID控制器,同时进行了仿真对比分析。仿真结果表明,以超调量和调节时间这2个时域指标为评价标准,基于上述4种性能指标准则,系统在所给控制器作用下均能获得令人满意的动态和稳态性能。ISE准则整定的PID控制器使闭环系统单位阶跃响应的超调量为25.55%,调节时间为5.07s。相比ISE准则,由IAE、ITAE和ITSE准则整定的控制器使闭环系统单位阶跃响应的超调量更小,为10.03%,调节时间更短,为3.95s。利用本文方法能够获得较好的PID控制器参数,可为农用车辆控制器设计提供理论依据。  相似文献   

10.
插电式四驱混合动力汽车能量管理与转矩协调控制策略   总被引:4,自引:2,他引:2  
为克服传统比例-积分-微分(proportion integration differentiation,PID)以及模糊逻辑算法的缺陷、保障汽车经济性并改善乘员的乘坐舒适性,该文采用自适应模糊PID算法,建立了驾驶员模型。使用基于发动机输出转矩最优的能量管理控制策略,简述了驱动模式判别条件及转矩分配方法。提出1种"发动机调速+离合器模糊PID控制+发动机动态转矩查表+双电机转矩补偿控制"转矩协调控制方法,简述了模式切换步骤。在dSPACE实时仿真系统上对控制策略进行了硬件在环仿真。仿真结果表明,该控制策略在能量管理方面控制效果良好,动力部件的输出与控制策略完全吻合且平均车速误差下降37.1%。引入转矩协调之后,整车最大冲击度下降47.5%。该文的研究方法可以为制定复杂混合动力系统的控制策略提供参考。  相似文献   

11.
基于Smith-模糊PID控制的变量喷药系统设计及试验   总被引:11,自引:7,他引:4  
为实现精准变量喷药技术,该文设计了旁路节流式变量喷药控制系统用于变量喷药和幅宽调节控制,运用流体网络理论建立系统的数学模型,将模糊PID控制与基于喷药流体网络模型的Smith预估控制结合起来喷药量的调节,并对国产3W-250型喷杆喷雾机进行改造并构建喷药试验平台。试验结果表明,基于喷药流体网络模型的Smith-模糊PID控制算法的动态响应更快,降低了变量喷药系统滞后性和非线性的不利影响,超调量小于13.1%,稳态误差小于3.52%,且具有较好的适应能力和鲁棒性,为精准变量喷药控制提供一种实现方法。  相似文献   

12.
基于遗传算法的液肥变量施肥控制系统   总被引:4,自引:4,他引:0  
为解决大田牵引式液肥施肥机的变量施肥作业精度不高、施肥流量不均匀以及肥料浪费问题,该研究针对液肥变量施肥控制系统,基于遗传算法的模糊PID(Proportion Integral Derivative)对电动比例阀的控制过程进行优化。首先对牵引式液肥变量施肥机的控制过程进行分析,建立液肥变量施肥控制系统的负反馈控制模型。根据控制系统要求,将模糊控制规则进行染色体编码,通过选择、交叉、变异等遗传算子对模糊控制规则进行仿真寻优,得到最优模糊控制规则表。依据得到的最优模糊控制规则对模糊PID控制器进行设置,并通过MATLAB软件进行仿真分析,结果表明,基于遗传算法的模糊PID控制的响应时间为4.86 s,小于传统PID控制的8.4 s和模糊PID控制的7.32 s。搭建试验平台进行液肥变量施肥控制系统流量控制的稳定性试验和变量控制试验,得到传统PID、模糊PID以及基于遗传算法的模糊PID在系统稳定运行时流量控制的相对误差分别为5.19%、3.40%、1.14%,响应时间分别为5.19、4.12、3.21 s,基于遗传算法的模糊PID较传统PID的相对误差减少了4.05个百分点,响应时间减少了1.98 s;基于遗传算法的模糊PID较模糊PID的相对误差减少了2.26个百分点,响应时间减少了0.91 s。基于遗传算法的模糊PID对液肥流量的控制效果优于传统PID和模糊PID,本文控制方法为变量施肥的研究提供了一种可行方案。  相似文献   

13.
针对多用户配水状态下灌区流量、压力需求变化范围大,传统流量、压力控制响应速度慢等问题,建立适用于多用户灌区配水的灌溉系统首部控制技术。该研究通过分析供水系统流量、压力调节方式,提出了流量、压力PID(Proportion Integration Differentiation)耦合调节方法,建立以电动阀开度为流量控制量、变频器频率为压力控制量对流量和压力进行调控的灌溉首部控制系统。为了减少系统的调节时间,提高系统的运行效率,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)建立流量、压力和电动阀控制模拟量、变频器控制模拟量间的预测模型,形成神经网络PID控制模型(GRNN_PID),并进行模型精度和控制精度验证。GRNN训练结果显示,变频器控制模拟量的相对误差为0.11%~3.86%,电动阀控制模拟量相对误差为0.09%~5.74%,模型精度较高。使用3个调节过程模拟3个用户的需水行为对模型进行验证,结果表明,GRNN_PID模型3个过程的调节时间分别为11.6、10.7和7.2 s,PID模型3个过程的调节时间分别为31.7、29.6和16.9 s,GRNN_PID模型大幅减少了系统的调节时间,提高了系统的运行效率;分别计算了2种模型的控制精度,GRNN_PID调节方法和传统PID调节方法的稳态流量和压力误差都在1%以内,最大超调量为8%,控制精度较高但相差不大,表明GRNN是从策略上加速系统调节速度,其本身并没有对PID的参数进行调整,因此对系统的控制精度影响不大。研究可为灌溉系统流量压力快速控制提供参考。  相似文献   

14.
为提高电机转速控制精度,分析了PID控制算法和变论域模糊控制算法原理,分别使用这2种控制算法控制年轮测量仪直流电机,并对落叶松、油松、云杉、山杨、白桦、红桦、辽东栎等7个树种圆盘进行测试,每个树种测试10次。变论域模糊控制算法电机转速在电机启动后约90 ms后进入稳定状态,PID控制算法约需要160 ms才进入稳定状态。在70组测试数据中,变论域模糊控制算法的误差标准差的总平均值是33.8r/min,PID控制算法的误差标准差的总平均值是40.3 r/min,模糊控制算法的控制精度比PID控制算法高0.21%。试验结果表明:变论域模糊控制算法与PID控制算法相比,变论域模糊控制算法响应速度快、鲁棒性好、稳态误差小。在变论域模糊控制算法的控制下,年轮测量仪对7个树种的平均年轮测量精度是84.38%,而PID控制算法下的平均测量精度是78.13%。因此,年轮测量仪直流电机控制算法选用变论域模糊控制算法。  相似文献   

15.
柴油机高压共轨系统轨压模糊控制与试验   总被引:1,自引:1,他引:0  
为了改善发动机的冷起动性能以及有利于各工况切换时喷油的精确控制,该文针对采用高压共轨系统的柴油机,建立了基于模型的轨压控制策略,首先分析推导其数学模型;然后利用MATLAB/Simulink建立了轨压控制模型,轨压控制设计了前馈控制加反馈控制的轨压控制器,轨压反馈控制设计了传统的增量式PID(比例-积分-微分,proportion-integration-differentiation)控制器和模糊自适应PID控制器;最后对轨压控制模型进行了离线仿真验证;在此基础上利用硬件在环系统进行发动机台架试验,比较了2种控制器的控制效果。仿真和台架试验结果表明,模糊自适应PID控制器在目标轨压突变时的响应性(响应时间小于0.3 s)和跟随性以及稳定工况下轨压的稳定性(稳态误差小于2 MPa)方面都优于传统的增量式PID控制器,从而验证了控制策略模型的正确性。该研究提出的基于模型的轨压控制策略有助于实现柴油喷油的精确控制,可为柴油机共轨技术国产化提供参考。  相似文献   

16.
湿式双离合器自动变速器换档最优控制   总被引:3,自引:1,他引:2  
针对装配有湿式双离合器自动变速器车辆的换档问题,制定了分阶段换档策略,建立了换档动力学模型,结合换档品质评价指标,选定冲击度和滑摩功作为二次型性能指标函数,利用最优控制理论,得到换档过程中各个阶段的离合器压力最优控制轨迹,实现了换档过程中离合器压力的最优控制,并进行了实车换档试验,以验证换档最优控制的有效性。试验结果表明,换档过程中,滑摩功和冲击度得到了合理有效的平衡,换档最优控制能够满足汽车换档过程的平顺性和快捷性要求,使车辆具有良好的换档品质。  相似文献   

17.
针对精准对靶喷药系统作业中由于不同数量喷头反复启闭造成管路压力波动严重的问题,该研究开展了对靶喷药系统回流比例对管路压力波动影响的研究。设计了对靶喷药压力波动试验平台,基于AMESim建立对靶喷药压力波动系统仿真模型。设置系统初始压力0.2~0.4 MPa,回流比例为0~0.9,分别关闭1/5~4/5的喷头数量进行了仿真试验。结果表明,关闭喷头的占比越大,管路压力波动越大,当系统初始压力0.2 MPa,回流比为0,关闭4/5数量的喷头,管路压力从0.2 MPa上升至5.15 MPa,波动率达2 400%;系统初始工作压力越大,关闭喷头数量对压力波动影响越大。设置回流管路可有效减小管路压力波动,且回流比越大效果越明显,当系统初始压力0.2 MPa时,回流比例为0.6时,部分喷头关闭的压力波动率最大为64.53%。兼顾泵的利用率,回流比例建议小于0.6。系统初始压力0.3 MPa时,回流比例建议小于0.7;系统初始压力0.4 MPa时,回流比例建议小于0.8。根据对靶喷药压力波动容忍度要求,系统初始压力0.2 MPa时,喷施靶标在作业行中的占比量最佳回流比例关系为:靶标占比1/5的最佳回流比例区间为0.5~0.6;靶标占比2/5的最佳回流比例区间为0.4~0.5;靶标占比3/5的最佳回流比例区间为0.2~0.3;靶标占比4/5的最佳回流比例区间为0~0.1。系统初始压力0.3 MPa时,喷施靶标在作业行中的占比与最佳回流比例区间关系为:靶标占比1/5的最佳回流比例区间为0.5~0.6;靶标占比2/5的最佳回流比例区间为0.5~0.6;靶标占比3/5的最佳回流比例区间为0.2~0.4;靶标占比4/5的最佳回流比例区间为0~0.1。初始压力为0.4 MPa时,靶标占比1/5的最佳回流比例区间为0.7~0.8;靶标占比2/5的最佳回流比例区间为0.6~0.7;靶标占比3/5的最佳回流比例区间为0.4~0.5;靶标占比4/5的最佳回流比例区间为0~0.3。研究结果可为农业植保作业对靶变量施药技术应用及工况参数的选择提供依据,为精准对靶施药装置的进一步优化提供支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号