共查询到10条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
黄花梨是中国的一种重要水果,果径和果面缺陷面积是黄花梨分级的两项关键指标。通过研究黄花梨的分光反射特性,研制了一套适合黄花梨品质检测的机器视觉系统。为了适应实际生产中水果方向的随机性和水果外形的不规则性的要求,使水果尺寸检测的方法有更好的适应性,设计了一种利用水果的最小外接矩形(MER)法求最大横径的方法,并进行了试验验证,得出了表示实际最大横径与预测最大横径的关系的回归方程式,两者的相关系数为0.9962。分析了黄花梨缺陷区域的R、G、B各分量灰度的变化特点,利用R分量灰度和G分量灰度在缺陷区域和完好区域交界处有明显突变这一特点,采用梯度算法求得了可疑缺陷点,然后再用区域生长法,找出了缺陷点像素的最大连通集及所有的缺陷区域;采用像素点变换法,实现了根据三维物体的二维投影图像恢复物体表面的真实几何面积的设想,大大降低了缺陷面积计算的误差;另外,还提出了一种新的面积修正方法,即用实际缺陷面积等于经像素点变换后的缺陷面积减去缺陷区域周长的一半加上1个像素点的面积来进行修正,进一步提高了缺陷面积计算的精度,而且该修正方法同样适用于其它图像面积的计算 相似文献
5.
为提高合格和缺陷板栗分级检测识别精度,提出了近红外光谱和机器视觉的多源信息融合技术的板栗缺陷检测方法。试验以湖北京山板栗为试验对象,利用BP神经网络方法建立了基于近红外光谱、机器视觉和多源信息融合技术的板栗分级检测模型。试验结果表明,3种识别模型对对训练集板栗回判率分别为96.25%、96.67%和97.92%;对测试集板栗的识别率为86.25%、83.75%和90.00%。基于近红外光谱和机器视觉的多源信息融合技术进行板栗分级检测的方法是可行的,融合模型较单独采用机器视觉技术或近红外光谱分析技术建立模型的识别率均有显著提高。 相似文献
6.
介绍了当前应用机器视觉进行水果尺寸检测的现状。根据水果成像时水果、摄像机透镜、水果图像三者之间的相互关系,运用几何光学理论分析了尺寸检测中的各种误差及其原因。水果成像时,由于水果表面各点的高度变化,水果图像上各点所代表的实际长度不尽一致,形成标定误差;水果与摄像机透镜光心之间的距离不可能无穷远,成像后,水果图像的边缘点到形心的距离并不能真正代表水果的半径,形成半径误差;水果中心与摄像机光心偏离后,得到的图像存在形状误差。给出了标定误差的计算公式和半径的估算公式。 相似文献
7.
开发了一套罐装线实时在线质量检测视觉系统,用于装罐前桔瓣上头发等细长形杂质检测,以保证产品质量。硬件系统采用了6台彩色CCD摄像头,两台计算机的处理结构。软件系统依据杂质和背景在颜色分布及形状大小等特征上的差异进行分离,其核心是一种用于二值图像特征区域提取的新型连通算子—面积重构算子,利用该算子平滑图像时不破坏对象轮廓完整的优点,结合改进的区域生长、区域消减等算法,形成了一套完整的检测算法。试验显示系统处理能力约30片/s,错误率仅2%。该系统能满足实时生产准确性和在线处理的要求,为其实用化、商品化奠定了基础。 相似文献
8.
9.