首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of genetic relationships between 19 chickpea cultivars and five accessions of its wild progenitor Cicer reticulatum Ladizinsky were investigated by using RAPD and ISSR markers. On an average, six bands per primer were observed in RAPD analysis and 11 bands per primer in ISSR analysis. In RAPD, the wild accessions shared 77.8% polymorphic bands with chickpea cultivars, whereas they shared 79.6% polymorphic bands in ISSR analysis. In RAPD analysis 51.7% and 50.5% polymorphic bands were observed among wild accessions and chickpea cultivars, respectively. Similarly, 65.63% and 56.25% polymorphic bands were found in ISSR analysis. The dendrogram developed by pooling the data of RAPD and ISSR analysis revealed that the wild accessions and the ICCV lines showed similar pattern with the dendrogram of RAPD analysis. The ISSR analysis clearly indicated that even with six polymorphic primers, reliable estimation of genetic diversity could be obtained, while nearly 30 primers are required for RAPD. Moreover, RAPD can cause genotyping errors due to competition in the amplification of all RAPD fragments. The markers generated by ISSR and RAPD assays can provide practical information for the management of genetic resources. For the selection of good parental material in breeding programs the genetic data produced through ISSR can be used to correlate with the relationship measures based on pedigree data and morphological traits to minimize the individual inaccuracies in chickpea.  相似文献   

2.
Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and a semi-random PCR system were used to analyze the genetic diversity of 16 Italian common bean landraces and their relationship to four commercial cultivars. Of the primers tested, 8 ISSR, 6 RAPD and 7 semi-random primers produced polymorphic and reproducible DNA fragments. A higher proportion of polymorphic bands were observed using ISSR (85%) and semi-random (90%) primers than RAPD (69%) method. The combination of any two semi-random markers allowed the identification of all 20 bean genotypes. In contrast ISSR (except for primer (CAC)3GC) and RAPD markers appeared to be less informative as more than two markers were necessary to achieve the same diagnostic level. Moreover, 7 ISSR, 2 RAPD and 8 semi-random exclusive bands were identified as putative population-specific markers. Semi-random and ISSR derived dendrograms showed similar tendencies in terms of genetic relatedness, whereas clustering of genotypes within groups was not similar when compared with the RAPD technique. Despite the different ability to resolve genetic variation among the investigated landraces, two major clusters with less than 60% (ISSR) and 40% (RAPD and semi-random) genetic similarity were formed with all three marker systems. The two groups were correlated with the phaseolin patterns and seed size of the landraces. The analysis showed that the cultivar ȁ8Lingua di Fuocoȁ9 and most of the landraces (13 out of 16) collected in Italy belong to the Andean gene pool, whereas only the three populations from Pratomagno belong to the Middle American gene pool.  相似文献   

3.
Random amplified polymorphic DNA markers (RAPD) were used to estimate the variability of 35 tomato accessions (Lycopersicon esculentum Mill.). A total of 257 reproducibly scorable bands were obtained from 20 primers, 78.6% of which were polymorphic. The percentage distribution of RAPD markers shows a bimodal distribution, and the frequency of rare alleles is similar in commercial and landrace accessions. Genetic distances among accessions were calculated and a dendrogram showing the genetic relationships among them was constructed allowing for the separation of four groups. Twenty out of 23 Brazilian landraces fell within one group, whereas commercial cultivars were distributed in the four groups. AMOVA analysis of RAPD data showed that, despite the high within Brazilian landraces and commercial cultivars variation, these two groups are significantly different, indicating that landraces can be a source of variation for breeding programs.  相似文献   

4.
Levels of genetic variation and genetic structure of 15 wild populations and three domesticated populations of Capsicum annuum were studied by RAPD markers. A total of 166 bands (all of them polymorphic) and 126 bands (125 of them polymorphic) were amplified in wild and domesticated populations, respectively. Mean percentage of polymorphism was 34.2% in wild populations and 34.7% in domesticated populations. Mean and total genetic diversity were 0.069 and 0.165 for wild populations and 0.081 and 0.131 for domesticated populations. Parameters of genetic diversity estimated from 54 bands with frequencies ≥1 − (3/n) (n = sample size) showed that 56.7% of the total variation was within and 43.3% among wild populations, whereas 67.8% of the variation was within and 32.2% among domesticated populations. AMOVA indicated that total genetic diversity was equally distributed within (48.9 and 50.0%) and among (50.0 and 51.1%) populations in both wild and domesticated samples. Wild and domesticated populations were clearly resolved in a UPGMA dendrogram constructed from Jaccard’s distances (average GD = 0.197), as well as by AMOVA (17.2% of variance among populations types, p = 0.001) and by multidimensional scaling analysis. Such differentiation can be associated with domestication as well as different origin of gene pools of the wild (Northwestern Mexico) and cultivated (more probably Central Mexico) samples analyzed. The considerable genetic distances among cultivars (average GD = 0.254) as well as the high number of diagnostic bands per cultivar (33 out of 126 bands), suggest that genetic changes associated with domestication could have resulted from artificial selection intervening in different directions, but the inclusion of more domesticated samples might clarify the nature of distinctions detected here.  相似文献   

5.
Genetic variation of wild populations and cultivars of Luohanguo (Siraitia grosvenorii), a plant species endemic to southern China, was assessed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. Based on the results for 130 individuals from seven populations, a high level of genetic diversity of Luohanguo was observed at the species level. The percentage of polymorphic loci (P) was 89.4%, Nei’s gene diversity (H e) was 0.239, and Shannon’s information index (H o) was 0.373 based on the combined AFLP and RAPD data. There was a high degree of genetic differentiation, with 45.1% of the genetic variation attributed to differences between the populations. The genetic diversity of the Luohanguo cultivars is much lower than that of wild populations (P = 41.8%, H e = 0.141, H o = 0.211), and a distinct genetic differentiation is observed between the cultivars and wild accessions. The pool of genetic variation in the wild populations provides an excellent gene resource for Luohanguo breeding.  相似文献   

6.
A total of 242 accessions of common wheat (Triticum aestivum L.) released in China since the 1940s were evaluated with AFLP (amplified fragment length polymorphism) technique. Genetic diversity was analyzed using five pairs of polymorphic primer combinations with 245 polymorphic bands. The highest genetic diversity was found in the accessions of the 1950s, and in the next place was that in the 1940s. The genetic diversity began to descend in the 1960s, and fell to the lowest in the 1970s. After that, the genetic diversity came back to some extent in the 1980s, however, it became much lower in the 1990s compared with that in the 1940–1950s. Landraces and introduced accessions from foreign countries showed greater genetic diversity in comparison to improved varieties. In addition, greater genetic diversity was observed in winter wheat. It was emphasized that great attention should be paid on further exploration of genetic diversity in wheat breeding program.  相似文献   

7.
Thirty Portuguese and eight foreign olive (Olea europaea L.) cultivars were screened using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) markers. Twenty RAPD primers amplified 301 reproducible bands of which 262 were polymorphic; and 17 ISSR primers amplified 204 bands of which 180 were polymorphic. The percentage of polymorphic bands detected by ISSR and RAPD was similar (88 and 87%, respectively). The genetic variability observed was similar in the Portuguese and foreign olive cultivars. Seven ISSR and 12 RAPD primers were able to distinguish individually all 38 olive cultivars. Twenty specific molecular markers are now available to be converted into Sequence Characterised Amplified Region (SCAR) markers. Relationships among Portuguese and foreign cultivars is discussed.  相似文献   

8.
We analyzed the genetic diversity in 88 genotypes from 20 populations of wild barley (Hordeum spontaneum C. Koch) from Israel, Turkey and Iran, by randomly amplified polymorphic DNA (RAPD). Twenty two of the 33 primers used yielded scorable products with 1–11 polymorphic bands. No duplicate patterns were found except for four haplotypes.When the total genetic diversity was estimated, 75% of the variation detected was partitioned within the 88 genotypes and 25% among the populations. When variation between countries was assessed, no substantial differences were found, because most of the variation detected (97%) was partioned within the 20 populations and the remainder among countries. The results of this limited survey indicate that the extensive genetic diversity is present in natural stands of wild barley throughout the Fertile Crescent.  相似文献   

9.
The genetic variation existing in a set of barley (Hordeum vulgare L.) landrace samples recently collected in Morocco was estimated. Two kinds of genetic markers, seed storage proteins (hordeins) and random amplified polymorphic DNA (RAPD), were used. Only six out of 31 landraces were subjected to RAPD analysis. Both kinds of markers, RAPD and storage proteins, yielded similar results, showing that the level of variation observed in Moroccan barley was high: all landraces showed variability; 808 different storage protein patterns (multilocus associations) were observed among 1897 individuals (2.32 seeds per association, on average) with an average of 43 multilocus associations per accession. In general, genetic variation within accessions was higher than between accessions. The 100 polymorphic RAPD bands generated by 21 effective primers were able to generate enough patterns to differentiate between uniform cultivars and even between individuals in variable accessions. One of the aims of this work was to compare the effectiveness of RAPD versus storage protein techniques in assessing the variability of genetic resource collections. On average hordeins were more polymorphic than RAPDs: they showed more alternatives per band on gels and a higher percentage of polymorphic bands, although RAPDs supply a higher number of bands. Although RAPD is an easy and standard technique, storage protein analysis is technically easier, cheaper and needs less sophisticated equipment. Thus, when resources are a limiting factor and considering the cost of consumables and work time, seed storage proteins must be the technique of choice for a first estimation of genetic variation in plant genetic resource collections.  相似文献   

10.
The genetic diversity of 38 cultivated populations of Sesamum indicum L. from four different regions of Turkey was estimated at the DNA level with the random amplified polymorphic DNA (RAPD) technique. Sixty-one bands were obtained for all populations 78% of which were polymorphic. Analysis of molecular variance (AMOVA) was used to investigate the genetic diversity of the populations which yielded highly significant differences among populations within regions (91.9% of the total genetic diversity). According to AMOVA and Shannon's index that were performed separately for each region, the highest value of genetic variation was observed among Northwest region populations (CV = 7.7; H0 = 0.304) and lowest in the Southeast regions' populations (CV = 2.6; H0 = 0.068). Nei and Li's similarity index was calculated and phylogenetic tree was established using the neighbor-joining algorithm. This phenetic analysis grouped 35 of 38 accessions in six groups leaving three highly diverse accessions outside. Wagner phylogenetic method was used to assess the phylogenetic relationships among the populations. In the majority-rule consensus tree, only 7 of the 32 forks showed above 60% occurrence. Using Principal Coordinate Analysis (PCO) of the RAPD data set, the groups were clearly separated along the first three axis. These results indicate that RAPD technique is useful for sesame systematics, and should be valuable for the maintenance of germplasm banks and the efficient choice of parents in breeding programs.  相似文献   

11.
Analysis of the extent and distribution of genetic diversity incrop plants is essential for optimizing sampling and breedingstrategies. We used random amplified polymorphic DNA (RAPD)markers to assess genetic diversity and relationships in 22 Canadiancultivars, 29 selected world cultivars and 10 landraces of flax(Linum usitatissimum L.). RAPDvariation was generally low and more variation was detected among,than within, the investigated flax accessions. Based on 53 variableRAPD loci observed for the 61 accessions, the landraces had a lowerproportion of fixed recessive RAPD loci (0.427) (i.e.,more genetic variation) than all of the flax cultivars examined(0.492). The linseed cultivars had a lower proportion ofrecessive loci (0.469) than the fiber flax cultivars(0.529). Canadian linseed cultivars had a lower proportionof recessive loci (0.465) than the selected world flaxcultivars (0.512). A trend was also observed that the rateof loss in genetic variation in Canadian flax breeding programs overthe last fifty years was approximately two variable loci per 100 lociper 10 years. Clustering analyses based on similarity estimatesshowed that the fiber cultivars were more related (or similar toeach other) and were classified as a homogeneous group. All ofthe linseed cultivars were clustered in diverse groups with the ninelandrace accessions. Implications of these findings for flax breedingand germplasm management are discussed.  相似文献   

12.
Forty-three wild cranberry (Vaccinium macrocarpon Ait.) clones collected from four Canadian provinces and five cranberry cultivars were assessed for genetic variability by using random amplified polymorphic DNA (RAPD)-PCR. Fourteen primers generated 161 polymorphic RAPD-PCR bands. A substantial degree of genetic diversity was found among the wild cranberry collections. Cluster analysis by the unweighted pair-group method with arithmetic averages (UPGMA) separated the wild clones and three cultivars into five main clusters, and identified the two remaining cultivars as outliers. Furthermore, within four clusters, the genotypes tended to form sub-clusters that were in agreement with the principal coordinate (PCO) analysis. Geographical distribution explained 10% of total variation as revealed by analysis of molecular variance (AMOVA). The RAPD markers detected a sufficient degree of polymorphism to differentiate among cranberry clones and cultivars, making this technology valuable for germplasm management and the more efficient choice of parents in current cranberry breeding programs.  相似文献   

13.
Randomly amplified polymorphic DNA (RAPD) analysis was employed to assess genetic divergence among 29 neem accessions collected from two agro-ecological regions of India (11 agro-climatic sub-zones), which cover three states, Punjab, Haryana and Rajasthan. Out of 24, 10-mer random primers used for studying genetic divergence, 14 were polymorphic, generating a total of 73 amplification products with an average of 5.21 products per polymorphic primer and estimated gene diversity of 0.49. Genetic relationships among accessions were evaluated by generating a similarity matrix based on Jaccard’s coefficient, ranging from 0.70 to 0.96. The phenetic dendrogram generated by UPGMA analysis grouped accessions into five clusters. RAPD performed within accessions (individual seedlings collected from the same mother plant) showed no variation indicating homogeneous population within accessions. Primers OPA-18, OPC-08 and OPI-03 were found most informative based on their resolving power. The degree of genetic variation detected among the 29 accessions with RAPD analysis suggests that RAPD can be used for studying genetic diversity in neem. The study also demonstrated that neem germplasm collected from northwestern plains of India shows no eco-geographical isolation based on sub-zones because accessions collected from different sub-regions are grouping together in the genetic tree.  相似文献   

14.
Genetic diversity is an area of concern for sustaining crop yield. Information on genetic relatedness/diversity among Gossypium arboreum L. cultivars/genotypes is scanty. We have used random amplified polymorphic DNA (RAPD) analysis to assess the genetic divergence/relationship among 30 genotypes/cultivars of G. arboreum. Of 45 primers surveyed, 63% were polymorphic. Out of the total number of loci amplified, 36% were polymorphic. The calculated genetic similarity between the cultivars/genotypes was in the range of 47.05–98.73%. Two genotypes, HK-244 and Entry-17, were the most distantly related. The average genetic relatedness among all the genotypes was 80.46%. However, most of the cultivated varieties showed a close genetic relationship, indicating a narrow genetic base in comparison to the non-cultivated germplasm. The calculated coefficients were used to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA) algorithm, which grouped the genotypes/cultivars into two major and three smaller clusters. The study is the first comprehensive analysis of the genetic diversity of G. arboreum germplasm and identifies cultivars that will be useful in extending the genetic diversity of cultivated varieties and future genome mapping projects.  相似文献   

15.
As an oilseed crop, the cultivation of Ethiopian mustard (Brassica carinata) is restricted only to Ethiopia. Even though geographic diversity is a potent source of allelic diversity, the extent of genetic diversity among germplasm material of Ethiopian mustard from different countries has not been assessed. Forty-three accessions, comprising 29 accessions from eight different geographic regions of Ethiopia and 14 exotic accessions from Australia, Pakistan, Spain, and Zambia were analysed for their genetic diversity using random amplified polymorphic DNA (RAPD) technique. A set of 50 primers yielded a total of 275 polymorphic bands allowing an unequivocal separation of every Ethiopian mustard accession. The usefulness of the 50 RAPD primers in measuring heterozygousity and distinguishing accessions was variable such that polymorphic information content (PIC) varied from 0.05 to 0.40, band informativeness (BI) from 0.05 to 0.65 and primer resolving power (RP) from 0.15 to 6.83. Jaccard's similarity coefficients ranged from 0.44 to 0.87 indicating the presence of a high level of genetic diversity. On the average, Australian and Ethiopian accessions were the most similar while, Spanish and Zambian accessions were the most distant ones. Cluster analysis grouped the 43 accessions into four groups, which has quite a high fit (r = 0.80) to the original similarity matrix. With no prior molecular information, the RAPD technique detected large genetic diversity among the 43 accessions from five different countries and their grouping by dendrogram and principal coordinate analysis (PCoA) was inclined towards geographic differentiation of RAPD markers. Conversely, RAPD differentiation along geographic origin was not apparent within the Ethiopian accessions.  相似文献   

16.
DNA from twenty-three late maturing cultivars of Guinea yams (D. cayenensis/D. rotundata complex) from the Benin Republic that could not be separated using isozyme markers, were examined using randomly amplified polymorphic DNA (RAPD) markers with decamer primers of arbitrary sequence. All the twelve primers tested were informative and yielded 63 amplified DNA bands from which 47 (75%) were polymorphic. Although no single primer produced polymorphic bands in all cultivars, the great majority of the cultivars were separated with the combinations of polymorphic bands generated by various primers. Putative duplicates and cultivar misclassifications were identified. Many morphologically distinct cultivars were close. The dwarf cultivar Tam-Sam considered as derived from Tabane, appeared more distant from the latter than was believed. RAPD analysis was found as a practical tool for the identification of duplicates toward establishment of an accurate core collection of Guinea yams in Benin Republic and in the other countries of the African yam belt.  相似文献   

17.
This study characterized the genetic diversity of 18 Tunisian fig cultivars using random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR). Both random and ISSR primers tested generated a total of 116 RAPD and 47 ISSR markers. Considerable genetic variation was observed among fig cultivars sampled from two regional Tunisian collections with an average diversity of 4.57. RAPD and ISSR banding patterns and genetic distances values reflected the high level of diversity among the collections and lower variability between the two collections. The correlation between the RAPD and ISSR similarity matrices computed for the 153 pairwise comparisons among the 18 varieties was lower and significant. An analysis of molecular variance showed that 92% of the total genetic diversity resided within collections, whereas only 8% between collections. The results indicated that in the local fig germ plasm the information provided by RAPD and ISSR is not analogous, most likely as a consequence of the fact that the two classes of markers explore, at least in part, different portions of the genome.  相似文献   

18.
Randomly Amplified Polymorphic DNA markers were used to determine the genetic relationships among Turkish lentil cultivars and breeding lines. Fourteen cultivars and thirteen breeding lines were evaluated to determine genetic variability using nine random 10-mer primers (among 45 primers). Forty-one reproducible bands were obtained, 54% of which were polymorphic. Genetic distances among cultivars and breeding lines were obtained from the simple matching coefficients (SM). The lowest genetic distance was observed between the cultivars of Ali Dayi and Kafkas with 5.0%, while ‘Seyran-96’ and ‘Ozbek’ had the highest genetic distance with 58.3%. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis was performed on the distance matrix using Phylip software. The dendrogram clearly showed two distinct groups. The first group is composed of Akm 565 and Akm 563. The second group contains all the cultivars and remaining eleven breeding lines.  相似文献   

19.
大豆种质资源RAPD标记遗传多样性研究   总被引:1,自引:0,他引:1  
为深入研究并充分利用野生大豆资源,本文利用RAPD分子标记对40份大豆材料加以分析,旨在从DNA分子水平上探索野生大豆、地方品种和育成品种之间的遗传多样性状况。结果表明:50个RAPD引物筛选出具有多态性且扩增条带清晰的引物38个,共检测出407条带,其中多态谱带309条,多态性程度为75.92%。每个引物可扩增出2~14条多态性带,平均产生多态性谱带8.1条;平均多样性指数为2.3377,变幅范围为0.5865~4.2133。遗传相似系数变幅范围为0.44~0.92,平均为0.75。野生大豆的多态比例(94.35%)、多样性指数(2.2336)分别高于育成品种(87.47%、1.7331)和地方品种(83.54%、1.6198)。遗传相似系数为野生大豆(0.6498)地方品种(0.7015)育成品种(0.7177),育成品种与地方品种间为0.6599,育成品种与野生大豆间为0.6487,地方品种与野生大豆间为0.6045。UPGMA聚类分析结果表明,40份大豆材料聚为6类,育成品种和地方品种各自聚为一类,野生大豆聚为4类。野生大豆特异等位基因数远远高于育成品种和地方品种二者的相加之和。本研究从分子水平上揭示了野生大豆与栽培大豆区别明显,宜作为一个独立的种,同时野生大豆变异幅度大,遗传基础广,是大豆育种实践中的优良基因资源。  相似文献   

20.
Sesame (Sesamum indicum L.) is a traditional oil crop cultivated throughout South East Asia. To estimate the genetic diversity of this crop in parts at the region, 22 sesame accessions collected in Vietnam and Cambodia were analyzed using 10 RAPD markers. The 10 primers generated 107 amplification products of which 88 were polymorphic fragments (83%). Genetic diversity of all populations was Ht = 0.34 when estimated by Nei’s genetic diversity and species diversity was H′sp = 0.513 when estimated by Shannon diversity index. Genetic distance ranged from 0.03 to 0.43, with a mean genetic distance of 0.23. The unweighted pair group method with arithmetic averages (UPGMA) cluster analysis for the 22 accessions divided the material in four groups. The dendrogram revealed a clear division among the sesame accessions based on their geographical region. Interestingly, some geographically distant accessions clustered in the same group, which might indicate the human factor involved in the spreading of sesame varieties. The high level of polymorphism shown suggests that RAPD techniques can also be useful for the selection of parents in sesame (Sesamum indicum L.) breeding program and for cultivar differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号