首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were undertaken to investigate the effect of drip fertigation and conventional fertilizations with and without mulch on the productivity of apple. Soil moisture under fertigation remained greater in the upper 0–30 cm of soil, whereas under conventional surface irrigation, deeper layers registered greater values. Mulch application resulted in 2–4% greater moisture and raised the minimum but lowered the maximum soil temperatures, especially during later growth periods. Available nitrogen (N) and potassium (K) contents under fertigation closely followed the moisture distribution pattern. Irrespective of treatments, available phosphorus (P) remained confined within upper 0- to 20-cm soil depth. Fertigation resulted in 35% greater growth and yield over conventional fertilization with irrigations besides saving 25% in irrigation water. Joint use of fertigation and mulch resulted in comparable growth and yield as unmulched condition and saved 20% in fertilizers and 15% in irrigation water.  相似文献   

2.
Different methods of fertilizer application-drip fertigation and conventional fertilizer application under drip, surface irrigation, and rainfed conditions were evaluated during 2009–2012 at Krishi Vigyan Kendra, Shimla, India. The experiment was arranged in randomized block design (RBD), replicated thrice. Results suggest that fertigation significantly increased growth parameters over conventional methods. Fruit yield was significantly higher under fertigation (13.7 t ha?1) over conventional fertilizer application with drip (11.6 t ha?1), surface irrigation (10.6 t ha?1), and under rainfed (8.6 t ha?1). Fruit quality parameters were also superior under fertigation. Fertigation maintained higher available nitrogen (N) and potassium (K) content in 0-30 cm soil layers. Available phosphorus (P) was higher in 0-20 cm soil depths in all the treatments. Fertigation with 80 and 100 percent recommended NPK dose registered statistically comparable results. In addition to higher productivity, fertigation resulted in 20 percent fertilizer savings over drip irrigation and 20 percent fertilizer besides 40 percent water savings over surface irrigation.  相似文献   

3.
Studies were conducted during 2010–2012 at University of Horticulture & Forestry, Solan, Himachal Pradesh, India. Four fertigation levels were tested with humic acid (combined fertigation) and without humic acid (sole fertigation or fertigation alone). The experiment comprising eight treatment combinations in Randomized Block design, replicated four times. Investigations revealed that combined fertigation significantly increased plant height (5.7%), total dry matter (7.7%), leaf area index (3.2%), chlorophyll content (4.7%) and fruit yield (9.6%) over sole fertigation. Higher available N and K in was recorded in surface soils whereas, better translocation of available P was noted at 10–20 cm soil layers under combined fertigation. Higher nutrient recovery and fertilizer use efficiency was also noted in combined fertigation. Fertigation along with humic acid resulted in 20 per cent fertilizer savings over fertigation alone. It is concluded that efficiency of fertigation can further be increased by using humic substances in any agricultural production system.  相似文献   

4.
ABSTRACT

The present investigation was carried out to study the effect of irrigation intervals and fertigation on growth, yield, and quality of peanut as well as an account of fertilizer and water savings under drip irrigation combined with fertigation. Pod and haulm yields and economics of peanut with application of irrigation water at I1, i.e. 4 day interval through drip (10 day in surface irrigation) did not differ significantly compared with I2, i.e. 6 day interval through drip (15 day in surface irrigation). However, significantly higher kernel and oil yields were obtained at I1 and also recorded higher partial factor productivity (PFP). Our study showed that drip irrigation saved 37.2% irrigation water over surface method. Fertigation at 75% Nitrogen & potassium (NK) through drip with 75% P in soil (F3) significantly improved pod, haulm, kernel, and oil yields by 14.3%, 11.5%, 13.9%, and 12.3%, respectively, while net returns increased by INR 13,499 ha?1 over 50% NK through drip with 50% P in soil (F2) and at par with others. Fertigation at 50–100% NK with 50?100% P in soil (F2 to F4) could save 36.4–37.3% irrigation water over F1. Maximum PFP was recorded under F2.

Abbreviations: N: Nitrogen; P: phosphorus; K: potassium; M: million  相似文献   

5.
Abstract

Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Nitrogen fertilizer (15N‐labeled urea) and irrigation methods (drip and furrow) were evaluated on spring and fall potato cultivars under Syrian Mediterranean climatic conditions. Field experiments were conducted in the El‐Ghab Valley near Hama in fall 2000 and spring 2001 on a heavy clay soil. Four N‐fertilizer applications (70, 140, 210, and 280 kg N/ha) were applied in five equally split treatments for both irrigation methods. Potato was irrigated when soil moisture in the specified active root depth reached 80% of the field capacity as indicated by the neutron probe.

Higher marketable tuber yield of spring potato was obtained by fertigation compared to furrow irrigation; the magnitude of tuber yield increases was 4, 2, 31, and 13%, whereas for fall potato the tuber yield increases were 13, 27, 20, and 35% for N fertilizer rates of 70, 140, 210, and 280 kg N/ha, respectively. Shoot dry matter and tuber yields at the bulking stage were not good parameters to estimate marketable tuber yield. The effect of N treatments on potato yield with furrow irrigation and fertigation was limited and not significant. Drip fertigation improved tuber yield of fall potato relative to national average yield. Nitrogen uptake increased with increasing N input under both irrigation methods. Reducing N input under both irrigation methods improved N recoveries. Increasing N input significantly increased total N content in plant tissues at the bulking stage. Spring potato yields were almost double those of fall potato under both irrigation methods and all N treatments.

Nitrate (NO3) movement in the soil solution for fall potato was monitored using soil solution extractors. Furrow irrigation resulted in greater movements of NO3‐N below the rooting zone than drip fertigation.

Harvest index did not follow a clear trend but tended to decrease upon increasing N fertilization rates beyond 140 kg N/ha under both irrigation methods. Drip fertigation improved field water‐use efficiencies at the bulking and harvest stages. Fertigation increased specific gravity of potato tubers relative to furrow irrigation. Higher N input decreased specific gravity of potato tubers under both irrigation methods.  相似文献   

6.
Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water‐ and N‐use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe.

Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water‐use efficiencies of the drip‐fertigated treatments were in most cases 100% higher than those of the corresponding furrow‐irrigated treatments. The highest water demand was during the fruit‐setting growth stage. It was also concluded that under drip fertigation, 100–150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip‐fertigated treatments ranged between 101 and 118kg and 116 and 188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94 and 113 and 111 and 144 kg N/ha for the furrow‐irrigated treatments for 2001 and 2002, respectively.  相似文献   

7.
【目的】水肥一体化技术为改变我国长期以来设施栽培蔬菜"大水大肥"的传统管理方式,实现资源节约、环境友好发展提供了硬件物质基础和载体,但我国不同地区农业生产条件差异较大,适合当地土壤、气候、作物和栽培季节等特点的水肥一体化灌溉制度和施肥量相对缺乏。本文在陕西关中地区研究了水肥一体化条件下不同水肥处理对土壤水分状况及秋冬茬番茄养分吸收和产量等的影响,旨在制定适宜当地日光温室栽培番茄的科学合理的灌溉施肥制度。【方法】田间试验设常规水肥处理(CK)、植苗后水肥一体化灌水追肥期水肥分别减量20%(S1)及40%(S2)3个处理,其中常规处理灌水量为当季作物冠层水面蒸发量(100%ET),追肥量为当地农户的平均用量;水肥一体化为膜下滴灌+文丘里施肥系统。采用自动连续数采张力计(英国Skye Data Hog2)测定蔬菜生长期间各处理0—20 cm和20—50 cm土层土壤水势,并建立对应的土壤水分特征曲线,将土壤水势动态变化转换为土壤含水率动态变化;用直径20 cm蒸发皿测定当季番茄冠层的水面蒸发量,分析冠层水面蒸发量与土壤有效贮水量损失的关系;测定了不同水肥处理对番茄根、茎、叶、果实生物量及氮、磷、钾吸收量与产量和品质的影响。【结果】1)不同处理番茄生育期内0—50 cm土壤相对含水率均在75%以上,土壤水分供应充足。常规水肥处理灌水后0—20 cm土壤含水率达到或超过田间持水量,20—50 cm土层均超过田间持水量,表明土壤水分可下渗到50 cm以下,进而发生土壤养分的淋溶问题。追施期水肥减量40%处理的土壤水分大部分处在75%~85%的适宜值范围。2)随灌水量的减少,0—50 cm土壤有效贮水量损失降低,平均为番茄冠层水面蒸发量的65.4%,与追肥期水肥减量40%处理的灌水量相近。3)不同水肥处理番茄干物质累积、养分携出量、番茄产量、品质均无显著性差异,而灌水利用率从常规水肥处理的55.1 kg/m3提高到83.2 kg/m3,差异达极显著水平。【结论】从0—50 cm土壤水分状况、土壤有效贮水量损失及番茄冠层水面蒸发关系看,温室全覆膜滴灌条件下,当地适宜灌溉定额为作物冠层水面蒸发量的65%左右。根据番茄生育期内不同水肥处理对土壤水分状况、番茄养分吸收、产量及品质和灌水利用效率的影响,制定出适宜当地秋冬茬番茄的合理灌溉制度为:全生育期总灌溉定额为1057 m3/hm2,8~12月对应的灌水定额分别为168、169、132、105及50 m3/hm2,8~11月灌水周期分别为20~30 d、8~13 d、8~13 d和20~30d,12月份依天气少量补水或不灌水,1月份无需灌水。  相似文献   

8.
覆膜集雨与限量补灌对土壤水分及冬小麦产量的影响   总被引:8,自引:0,他引:8  
依据北京昌平2005-2006年冬小麦田间试验,探讨覆膜集雨和限量补灌措施对土壤水分及产量影响。结果表明:限量补灌明显的增加了田间土壤水分和耗水量,1.6 m土层耗水量比对照增加45.8%,比覆膜增加29%~39%,产量是对照的1.63~1.95倍,比单纯覆膜增产32%~58%,结合覆膜比单纯补灌略增加上层土壤水分,但产量效应不明显;在覆膜面积占种植面积40%,降雨是常年水平一半的条件下,覆膜集雨提升上层土壤水分,降低深层土壤水分,1.6 m土层耗水量较对照增加3.68%~12.23%,且对深层水的利用是对照的1.55~1.69倍,小麦抗旱能力增强,增产63%~95%, 1 m土层水分生产效率提高55.8%~73.8%;在都有覆膜的前提下,追肥比早秋施肥和一次基肥更好地保持了苗期土层水分。总体来看,覆膜结合补灌追肥和限量补灌措施抗旱增产效果显著,值得在华北地区旱地农田推广应用。  相似文献   

9.
ABSTRACT

There is a growing concern about excessive use of nitrogen (N) and water in agricultural system with unscientific management in Indian and developing countries of the world. Field experiments were conducted on the lateritic sandy loam soils of Kharagpur, West Bengal, India, during spring–summer (February-June) seasons for three years (2015–2017) to evaluate okra crop response under subsurface drip and conventional furrow irrigation with varying amount of nitrogen treatments. Irrigation treatments had three levels of soil water depletion from field capacity (i.e., 20%, 35%, and 50%) under subsurface drip system. There was no soil water depletion under conventional furrow irrigation system. There were four levels of nitrogen fertilizer treatments (i.e., 0, 80, 100, and 120 kg ha?1). This was supplied using urea as a nitrogenous fertilizer. The yield response of okra crop under subsurface drip was found to be 56.4% higher than that of the furrow irrigation treatment. Best yield response and maximum water use efficiency and nitrogen use efficiency were recorded under 20% soil water depletion with 100 kg ha?1 of nitrogen fertigation. Among the various soil moisture depletions, subsurface drip at 20% soil water depletion treatment responded least quantity of water lost through deep drainage and nitrogen loss beyond the root zone as compared to other irrigation treatments. The water loss through subsurface drainage was observed as 33.11 mm lesser under subsurface drip as compared to that of the furrow irrigation, and this may due to low-volume and frequent irrigation water application with subsurface drip. Hence, irrigation through subsurface drip should be used for improving water and nitrogen fertilizer use efficiency of okra crop cultivation.  相似文献   

10.
Fertigation techniques have been widely used in drip-irrigated cotton. The timing of nitrogen (N) fertilizer injections then becomes a management question producers need guidance on. This study investigated the effect of nitrogen (N) fertigation frequency on drip-irrigated cotton. Experiments were conducted in the Southeastern Anatolia Region of Turkey in 2011 and 2012. A split-plot experimental design was applied. The main plots contained two different lateral spaces: A, one drip-line (lateral) per row; and B, one lateral for every two rows. Sub-plots were designed with different frequencies of fertigation as follows: a, the application of fixed amount of N at each irrigation cycle (5 days); b, the application of fixed amount of N every two irrigation cycles (10 days); and c, the application of one-fifth of the total N between the first irrigation and first flowering, two-fifths between the first flowering and formation of the first boll, and one-fifth between the formation of the first boll and last irrigation cycle. One-fifth of the total N was applied to the soil at sowing in all treatment regimens. The maximum cotton yield (4120 kg ha?1) and highest total N content (2.57–2.94%) in the leaves were obtained with one lateral for every two rows and the application of fixed amount of N every two irrigation cycles (10 days). One-fifth of the total N might be applied to the soil at sowing, and the remaining N should be applied in equal doses (an average of 7 fertigations) every two irrigation cycles (10 days) by fertigation. However, further research fertigation methods for cotton, including the amount of N that needs to be applied and the use of different injection systems, is required.  相似文献   

11.
翻耕和覆盖对我国黄土区麦田土壤水分的影响   总被引:13,自引:0,他引:13  
Effects of different methods of tillage and mulch on soil moisture at fallow stage were studied in rainy and rain-deficient years.Soil moisture content per 20 cm was measured vertically within 0-300 cm soil layers in an experiment with five treatments:deep-loosening tillage(DLT),traditional tillage(TT),plastic mulch(PM),straw mulch(SM) and plastic plus straw mulch(PSM),All mulch treatments were under no tillage conditions.Total storage of precipitation in soil from 0 to 300cm was determined before sowing,Results showed that the new methods of tillage and mulch were the basic ways to improve water condition in dryland wheat fields.In a rainy year,PM with no tillage played a significant role in storing and conserving precipitation.while in a rain-deficient year,the role was not significant,Due to evaporation.DLT did not promote the storage of soil moisture,SM was the best way to store and conserve soil moisture,In SM treatment the wheat yields increased by more than 20%.  相似文献   

12.
【目的】黄淮海平原高产麦田水肥资源的大量投入带来了水肥利用率低、氮素损失量大等一系列问题,本文研究了滴灌施肥对黄淮海平原冬小麦大田氮素利用和损失的影响,以期为小麦高产高效施肥提供新的技术手段。【方法】以尿素、NH4H2PO4和KCl混合的水溶性肥料为材料,在山东桓台进行冬小麦主要生育期测墒补灌并随水施肥的田间试验,设置4个施氮量处理,即N0(不施肥)、N1(94.5 kg/hm2)、N2(189 kg/hm2)和N3(270 kg/hm2),分析了大田土壤NO-3-N空间分布、剖面累积及氮素的平衡。【结果】1)滴灌施肥24 h后,随施氮量的增加,在滴头周围水平方向上土壤NO-3-N从在湿润土体边缘聚集逐渐变化为在滴头下方聚集,当施氮量为189 kg/hm2时,滴灌施肥后滴头下方和湿润土体边缘的NO-3-N含量差异不显著,在滴头周围水平方向上均匀性最好;NO-3-N在滴头下方土壤内随水运移深度主要在60 cm以上,滴灌施肥后滴头下方垂直方向上NO-3-N没有在湿润体边缘聚集。2)冬小麦收获后,0—100 cm土壤剖面NO-3-N累积量随施氮量的增加而逐渐增加,且施氮量超过N 189kg/hm2后,土壤剖面NO-3-N累积量的增加幅度加大,0—40 cm土层的NO-3-N增加量显著高于其他土层,N0、N1、N2和N3处理0—40 cm土层NO-3-N累积量所占比例分别为66%、72%、72%和71%。3)随着施氮量的增加,冬小麦吸氮量和籽粒产量先增加后下降,而0—100 cm土层氮素残留量、表观损失量不断增加,滴灌施肥条件下氮素表观损失量较低,N1、N2和N3的表观损失率分别为20%、17%和16%。【结论】滴灌施肥措施下,合理的灌溉量可以调节滴灌施肥后硝态氮主要向下运移至作物根区范围,集中在作物根系最密集的0—40 cm范围内,肥液浓度对硝态氮运移深度影响不大。施入适宜量氮肥有利于提高滴头下方湿润体内水平方向上NO-3-N分布的均匀度,从而促进作物对氮素的吸收。施氮量为189 kg/hm2的N2处理获得了最高的籽粒产量和氮肥利用效率,播前和收获后根区土壤NO-3-N累积量基本达到平衡,是试验筛选出的最佳滴灌施氮模式。  相似文献   

13.
The effects of drip fertigation of NPK and vermicompost extract (VCE) on soil fertility status of arecanut-only and arecanut-cocoa systems were assessed in a 4-year field study. In arecanut, soil pH was reduced over initial levels. At 0–30 cm deep, fertigation of 75 percent NPK to arecanut only and organic-matter recycling in arecanut + cocoa maintained significantly greater soil organic carbon (SOC) and soil-test phosphorus (P). At the first depth, soil potassium (K) was significantly greater with 75 percent NPK (246 mg kg?1) than other treatments. In cocoa, soil pH varied significantly due to fertigation at both depths. The SOC was reduced due to 75 percent NPK at the first depth. In cocoa, the P availability increased significantly with application of VCE at 20 percent N. Fertigation of 75 percent NPK maintained significantly greater soil K and soil Mg than other treatments. The results suggest that drip fertigation of NPK sustains the soil fertility status in arecanut and cocoa.  相似文献   

14.
施肥对浑水灌溉滴头堵塞的加速作用   总被引:2,自引:6,他引:2  
为探究水肥一体化灌溉过程中,施肥对滴头堵塞的影响,分别配置了4个施肥浓度(0,0.4,0.6和1.2 g/L),3种泥沙级配,进行浑水间歇灌水堵塞试验,并用场发射扫描电镜分析了堵塞物的结构与成分。结果表明:施肥对于迷宫滴头堵塞具有明显的加速作用,施肥浓度越大,加速堵塞效果越明显,当施肥1.2 g/L时,3种级配浑水的有效灌水次数比未施肥的对照处理分别下降了36.4%,77.8%和78.8%;当施肥0.4 g/L时,有效灌水次数分别下降9.1%、33.3%和14.3%,施肥浓度≤0.4 g/L时,加速滴头堵塞的效果较小。浑水中增加化肥增强了水体中泥沙颗粒间的絮凝作用,促进了稳定而致密团聚体的形成,这是施肥加速滴头堵塞的主要原因;施肥后堵塞物表面结构复杂程度增加,堆积体间隙减小,堵塞以完全堵塞为主。该试验结果为水肥一体化滴灌技术推广提供理论依据。  相似文献   

15.
灌溉施肥的研究和应用   总被引:47,自引:8,他引:39  
本文论述了近代灌溉施肥的原理、管理及应用等方面的研究进展。着重讨论了灌溉施肥的方法 ,水分与养分在土壤的分布特点 ,作物最佳养分供应的影响因素 ,肥料的选择和用量 ,灌溉频率以及设施选用等。  相似文献   

16.
【目的】 膜下滴灌 (drip irrigation under mulch film, DI) 技术由于其高效节水的特点在新疆大面积推广使用,然而近期发现应用滴灌技术进行灌溉的作物根系出现了早衰,影响了地上部生长及产量的形成。本研究探讨了目前膜下滴灌技术体系棉花根系生长发育、空间分布的动态变化规律及地上部响应。 【方法】 采用田间试验方法,设置膜下滴灌、漫灌 (flood irrigation under mulch film, FI,对照) 两处理,采用 Monolith 法分 7 次采集根系,DT-Scan 软件测定根系长度,分析不同生育时期棉花根系在土壤空间中的变化特征,同时采集地上部样品并分器官测定干物质量。 【结果】 滴灌棉花根系表现出明显的浅层分布趋势:从播种后 96 d 开始,距地表 10 cm 范围内的根系长度明显大于漫灌处理,而 30—60 cm 土层则正好相反;在播种后 65~96 d 内,滴灌棉花根长增加速率明显低于漫灌;棉花生长发育后期 (播种后 125~160 d),滴灌处理棉花根系显著衰退,且主要集中在 0—40 cm 深度、距滴灌带 30—70 cm 土体范围内,播种后 160 d 与 125 d 相比,0—10 cm 土层下降了 13.8%,而 10—40 cm 衰退幅度更大 (22%),与此同时,漫灌处理除 0—10 cm 土层根长有所下降外 (7.7%),10 cm 以下依然保持增长状态 (10—40 cm 及 40—60 cm 层分别增加了 5.5% 与 10.2%);播种后 125 d,滴灌棉花地上部生长量明显高于漫灌,而根系正好相反,其冠根比较漫灌高,而在播种后 160 d 剧烈下降 (地上部叶片及蕾、铃的大量脱落所致 )。 【结论】 膜下滴灌棉花根系由于浅层分布,根系体积小,而地上部生物量过大,导致其在生长发育后期快速衰退。今后应研究适宜的水肥调控措施,以构建更早、更深的根系系统,控制生殖生长期内棉花的营养生长,实现膜下滴灌棉花的高产稳产。   相似文献   

17.
滴灌施肥时机对设施蔬菜产量品质与氮肥利用效率的影响   总被引:4,自引:1,他引:3  
为了提高设施蔬菜滴灌水肥利用效率,在日光温室内开展了为期15个月不同滴灌施肥时机对设施蔬菜产量品质、土壤-蔬菜系统中氮素分布、氮素平衡和氮素利用效率的研究。结果表明:滴灌施肥时机对果实产量、全氮和硝酸盐含量有显著影响,灌水中前期施肥处理产量、全氮和硝酸盐含量均较高,随着施肥时段向后推移,蔬菜吸收氮素先增大后减小;灌水后期施肥处理在收获后各层土壤硝态氮含量最低且消耗量最高,灌水中期施肥处理土壤-蔬菜系统表观损失和氮盈余小,较其他处理低15.35%~59.13%;灌水中期施肥处理氮肥偏生产力和氮肥表观利用率高于前后期施肥处理,3茬平均氮肥表观利用率T2处理高于其他处理7.09%,7.41%,11.48%。施肥时机对土壤-蔬菜系统产量品质和氮素分布等综合影响明显,推荐滴灌施肥过程中尽量使施肥时机保持在灌水过程的中期。  相似文献   

18.
以节水节肥、稳产高产为目标,在生产试验的基础上,从播前准备、适期播种、水肥管理、田间质量管理、病虫害防治、收获等方面总结了玉米品种五谷568膜下滴灌水肥一体化制种栽培技术。  相似文献   

19.
冬小麦不同畦灌施肥模式水氮分布田间试验   总被引:7,自引:2,他引:5  
基于冬小麦生长期间施用尿素获得的试验观测结果,分析不同畦灌施肥模式下沿畦长土壤水氮空间分布差异,开展畦灌施肥模式田间试验评价,探讨适宜的畦灌施肥运行方式。研究结果表明,畦灌施肥模式差异对有效贮存在作物根系层的土壤水分和土壤硝态氮占0~80 cm土层相应值的比重以及土壤水分空间分布均匀性不产生显著影响,但对沿畦长土壤硝态氮空间分布均匀性的影响却较为明显。基于入畦单宽流量4 L/(s·m)和灌溉全程均匀施肥的畦灌施肥运行方式,可在冬小麦生长期返青水和扬花水灌后2 d的作物有效根系层内,形成相对较高的土壤水氮空间分布均匀性,适合当地生产实践中采用。  相似文献   

20.
滴灌压差施肥系统灌水与施肥均匀性综合评价   总被引:6,自引:5,他引:1  
为优化滴灌压差施肥系统的设计与运行,通过田间试验综合评价了施肥罐两端压差(0.05、0.10、0.15、0.20和0.25 MPa)和管道布置方式(纵向一端、纵向中间、横向一端和横向中间供水)对系统灌水与施肥均匀性的影响。结果表明,施肥罐两端压差与管网布置方式对灌水均匀性的影响均不显著,但管道布置方式对灌水均匀性的影响强于施肥罐两端压差。对于纵向一端和纵向中间供水,施肥罐两端压差对施肥均匀性的影响达到显著水平(P0.05),而横向一段和横向中间供水时施肥罐两端压差对施肥均匀性影响不显著。总体而言,滴灌压差施肥系统灌水均匀性优于施肥均匀性,横向供水方式均匀性高于纵向供水方式。为了同时保证滴灌压差施肥系统灌水与施肥的均匀性,建议优先采用横向供水管道布置方式,同时尽量降低施肥罐两端差压,延长系统施肥时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号