首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
【目的】钾是植物生长发育所必需的营养元素之一,缺钾影响棉花的生长。钠与钾有一些相同的生理功能,钠钾替代和协同作用是提高作物钾效率有效途径之一。研究钠钾替代对不同基因型棉花钾效率的影响,旨在为生产中科学高效利用钾肥提供依据。【方法】于2013~2014年在华中农业大学利用盆栽试验,筛选并获得了钾高效高增产潜力棉花基因型103和钾低效低增产潜力棉花基因型122为试验材料,采用营养液培养对不同K+、Na+浓度处理条件下棉花苗期农艺性状(株高、根长和叶片数)、干物质积累与分配、各部位(根、茎、叶和柄)钾钠含量和钾钠积累量等进行了研究,探讨了钠钾替代作用对其钾素利用效率的影响。【结果】缺钾的条件下,施钠增加了两个基因型的根长,且103增加的幅度大于122;增加了103和122各部位干重和根冠比,而减少了根和茎的钾含量,对各部位钾积累量影响不明显,施钠还能显著提高基因型棉花103的钾利用效率,其为不施钠时的1.37倍。另外,适钾的条件下施钠,两个基因型的根长都有所增加,且103增加的幅度大于122;103和122各部位干重和总干重都显著增加,但二者根和叶钾含量显著降低,除了叶和柄其他各个部位的钾积累量都不同程度的提高;同时,103和122的钾利用效率均增加,103增加了28%,大于122的19%。此外,钾钠交互作用对根长和株高的相对生长速率,各部位干物重和根、叶中钾、钠含量和积累量以及全株钾利用效率都有显著影响。【结论】无论是否施钾、施钠均能增加两个基因型棉花的根长,通过促进根系的伸长来提高棉花对钾的吸收和生物量的积累。缺钾时施钠显著增加了103的钾效率,且适钾时施钠高效基因型103的钾效率增加幅度大于低效基因型122,表明钠钾替代和协同效应对钾高效基因型103比低效基因型122更显著。  相似文献   

2.
不同基因型棉花苗期钾效率差异及其机制的研究   总被引:13,自引:4,他引:13  
用营养液培养研究了103、138、163、1651、22和169等6个棉花基因型苗期钾效率差异及其初步机制。根据不同基因型钾效率系数和增长潜力的差异,区分为高效高潜(103、138)、高效低潜(163、165)、低效高潜(122)和低效低潜(169)基因型。在钾胁迫时,1031、38长势较好,单株干物重最大,而钾含量最低,它们能以较低钾含量构建较多的生物量,因此对钾的利用率大;由于其干物质冠根比大,因而能使较少的根系物质维持较多的地上部生长;与此相应,其单株钾积累量较大,且地上部钾积累量占较大比重,表明其吸收和转运钾素的能力较强;其叶绿素含量是上部叶高于下部叶,且二者差值较大,从而较好地促进上部叶的生理功能。而122、169则正好相反,缺钾时它们具有较高的钾含量,干物重却最小,其中169干物重仅为103的43.93%,因而钾积累量也最少,其吸收、积累和利用钾的能力弱。163、165的单株干物重、增长潜力以及地上部钾积累量比重均较低,其吸收和转运钾的能力属中低水平。  相似文献   

3.
以钾高效高潜基因型HG103和低效低潜基因型LG122为材料,在盆栽条件下研究了钾对不同棉花基因型叶片解剖结构的影响。结果显示:花铃期施钾条件下HG103上部叶主叶脉的上、下表皮细胞排列较LG122紧密和整齐,而下部叶片则相反;缺钾后HG103上部叶主叶脉比LG122发育得好;HG103叶脉维管束木质部具有较多导管数,利于养分和水分等的运输,而LG122木质部导管数相对较少;HG103上部叶叶脉的韧皮部比LG122较为发达,利于光合产物运输。花铃期施钾条件下HG103上部叶的叶肉细胞结构与LG122差别不大,下部叶的栅栏组织则没有LG122排列的整齐。缺钾时,HG103上部叶叶肉的上表皮细胞比LG122排列的较为整齐,栅栏组织和海绵组织形状较规则;而下部叶LG122栅栏组织和海绵组织比HG103分化得好。  相似文献   

4.
不同基因型大麦对钾的吸收、积累及分配特性   总被引:1,自引:1,他引:0  
通过不同供钾水平的土培试验,研究了钾高效基因型大麦Sandrime和钾低效基因型大麦ACWestech对钾素的吸收、积累和分配特性。结果表明:在各生育期,钾高效基因型Sandrime株高和生物量均大于钾低效基因型AC Westech,根冠比小于低效基因型,但钾低效基因型缺钾症状比高效基因型严重;不同钾效率基因型大麦各器...  相似文献   

5.
钾高效基因型棉花的筛选及其生理机制的研究   总被引:3,自引:0,他引:3  
通过营养液培养,设缺K和适K处理,进行棉花苗期培养,以苗期干物质的K效率系数(-K/ K)评价K效率差异,从86个不同系谱的棉花品种中分次逐步筛选,获得4个候选品种.对候选品种进行全生育期土培试验,设施K和不施K处理,获得皮棉产量,以皮棉产量的K效率系数(-K/ K)来反映品种间的K效率差异,确定103为K高效高潜力基因型,122为K低效低潜力基因型,163和165为K高效低潜力基因型.103具有较强的吸收土壤速效K、活化土壤缓效K的能力,并以较低的K含量往繁殖器官运输分配,建成较多的子棉和皮棉,这可能是其K高效的机制之一.  相似文献   

6.
不同钾硼水平下棉花生长及钾硼利用效率的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
用鄂抗8号棉花为试验材料,以水培的方法研究了不同钾、硼水平下棉花的生长状况及钾、硼的利用效率。结果表明:与正常处理(K 20 mg/L,B 0.2 mg/L)棉花相比,(1)缺钾(K 2 mg/L,B 0.2 mg/L)阻碍棉花地上部正常生长、干物质的积累,叶绿素合成受阻,但促进了根的伸长,缺钾不利于棉株对硼的吸收和利用,增加钾供应量可以促进硼的吸收利用。(2)缺硼(K 20 mg/L,B 0.002 mg/L)不利于棉株生长,棉株干物质积累量减少,不利于棉花对钾的吸收利用。(3)缺钾缺硼(K 2 mg/L,B 0.002 mg/L)时,棉花的生物量、SPAD值和钾、硼积累量均显著降低,钾的利用效率升高了143%,但对硼的利用受到抑制。研究结果表明,缺钾阻碍棉花对硼的吸收利用,缺硼不利于棉花对钾的吸收利用,而缺钾缺硼时,棉花对钾的利用受到促进,对硼的利用受到抑制。  相似文献   

7.
不同棉花品种钾素吸收利用差异的比较   总被引:2,自引:0,他引:2  
采用砂培方式,对苗期筛选出的钾高效的新陆早6号、新陆中15号、新海16号,钾低效的石K7、新陆早10号等5个棉花品种进行了钾吸收与利用效率差异比较。结果表明,在不施钾和施钾条件下,钾高效与钾低效棉花品种在各时期的含钾量、钾积累量和地上部分干物重存在显著差异性。其中,以不施钾条件下钾高效品种新陆中15号表现最为突出,其整个培育期的含钾量、钾积累量和地上部分干物重分别是钾低效品种石K7的1.17、1.47和1.25倍。不同棉花品种钾利用指数也存在差异,以施钾条件下差异明显;生长80、120和140 d,钾高效品种新路中15号钾利用指数分别是钾低效品种石K7的1.40、1.31和1.34倍。  相似文献   

8.
【目的】不同氮磷钾配施对棉花生长、养分积累量、产量及肥料利用效率的影响,实现沙雅县棉田减肥增效和丰产增收。【方法】以棉花为供试材料,在施肥处理氮、磷、钾肥用量一定的情况下,设置对照(CK)、氮磷(NP)、氮钾(NK)、磷钾(PK)和氮磷钾配施(NPK)5个处理,系统分析不同氮磷钾肥配施棉花各个生育期的单株干物质量和养分积累量的变化响应特征,探究氮磷钾配施对棉花养分吸收、产量和肥料利用率的影响。【结果】随着棉花生育期的递进,不同氮磷钾配施处理的整株干物质量呈现逐渐递增的趋势,最大值出现在花铃期-吐絮期;在棉花蕾期,氮、磷肥与植株干物质量呈显著相关;NPK施肥处理下的根、生殖器官和整株的氮素养分积累量呈递增趋势,而茎和叶呈先升高后降低的趋势,在棉花吐絮期时,氮、磷、钾养分积累量达最大值;NPK施肥处理棉花籽棉产量最高达4583kg hm-2,较NP、NK和PK处理分别增产5.92%、9.93%和11.10%;棉田氮、磷、钾素肥料利用率分别为41.59%、14.52%和69.29%。【结论】当施氮量为300 kg hm-2,施磷量为150 kg h...  相似文献   

9.
不同基因型棉花磷效率的差异特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以水培方法研究不同施磷水平对不同基因型棉花4个生育期干物质积累和磷效率的影响。结果表明,无论低磷条件或是高磷条件磷高效基因型棉花的生物量明显高于磷低效基因型,磷高效基因型含磷量显著低于磷低效基因型,说明高效基因型棉花能以较低的磷积累较多的干物质。各基因型棉花均表现出高磷条件下磷吸收效率大于低磷,而低磷条件下磷利用效率大于高磷;磷高效型品种的磷吸收效率和磷利用效率均高于磷低效型。其中磷吸收效率表现突出的是磷高效品种新陆早19号,4个时期中,低磷和高磷条件的平均值分别是14.62、137.48 mg/株;磷利用效率能力较强的是磷高效品种中棉42号,低磷和高磷条件下4个时期的平均值分别是590.71、182.27 g/g。  相似文献   

10.
川中丘陵春玉米适宜钾肥用量研究   总被引:4,自引:0,他引:4  
【目的】采用两年田间定位试验,探讨施钾量对川中丘陵春玉米产量、 钾素吸收和利用特性的影响规律,以期为川中丘陵高产春玉米的钾肥管理提供科学依据。【方法】以正红505为试验材料,在施N 225 kg/hm2、 P2O5 90 kg/hm2的基础上,设置5个施钾量(K2O)处理,分别为0、 45、 90、 135、 180 kg/hm2,每个处理3次重复,完全随机区组设计。在玉米大喇叭口期、 吐丝期、 灌浆期(吐丝后21天)和成熟期采集植株样品,测定干物质积累量和器官含钾量,并计算植株钾积累量、 钾素利用和转运,在玉米成熟期测定玉米产量。【结果】随施钾量的增加春玉米产量、 钾素农学利用率先升高后逐渐降低,钾生理效率、 钾素利用效率和钾素当季回收率随施钾量的增加呈降低趋势,钾素吸收效率、 钾肥偏生产力随施钾量的增加显著降低,增施钾肥对钾素收获指数影响不显著。通过二次曲线模拟,在施钾量为K2O 96.1 kg/hm2时玉米产量最高,达到最高产量时,每生产100 kg玉米籽粒需吸收K2O 1.55 kg。玉米植株对钾素的吸收主要在吐丝之前,其吸收量占全生育期总量的72.7%~88.9%,灌浆初期也仍有较大量的吸收积累; 籽粒中的钾素大部分来源于营养器官的转移,施用钾肥促进了钾素向籽粒的转运。【结论】本试验条件下,川中丘陵春玉米施K2O为90 kg/hm2左右时,可获得较高钾肥利用率,并获得高产。  相似文献   

11.
Potassium (K) deficiency is one of the main limiting factors in cotton (Gossypium hirsutum L.) production. To study the mechanism of high K‐use efficiency of cotton, a pot experiment was conducted. The experiment consisted of two cotton genotypes differing in K‐use efficiency (H103 and L122) and two K‐application levels (K0: 0 g (kg soil)–1; K1: 0.40 g (kg soil)–1). Root‐hair density and length, partitioning of biomass and K in various organs, as well as K‐use efficiency of the two cotton genotypes were examined. The results show that there was no significant difference in K uptake between the two genotypes at both treatments, although the genotype H103 (high K‐use efficiency) exhibited markedly higher root‐hair density than genotype L122 in the K1 treatment. Correlation analysis indicates that neither root‐hair density nor root‐hair length was correlated with plant K uptake. Furthermore, the boll biomass of genotype H103 was significantly higher than that of genotype L122 in both treatments, and the K accumulation in bolls of genotype H103 was 39%–48% higher than that of genotype L122. On the other hand, the litter index (LI) and the litter K‐partitioning index (LKPI) of genotype H103 were 14%–21% and 22%–27% lower than that of genotype L122. Lastly, the K‐use efficiency of total plant (KUE‐P) of genotype H103 was comparable with that of genotype L122 in both treatments, but the K‐use efficiency in boll yield (KUE‐B) of genotype H103 was 24% and 41% higher than that of genotype L122 in K0 and K1 treatments. Pearson correlation analysis indicated that KUE‐P was positively correlated with BKPI and negatively correlated with LKPI, while KUE‐B was positively correlated with BKPI and boll‐harvest index (HIB), and negatively correlated with LKPI. It is concluded that there were no pronounced effects of root‐hair traits on plant K uptake of the two genotypes. The difference in K‐use efficiency was attributed to different patterns of biomass and K partitioning rather than difference in K uptake of the two genotypes.  相似文献   

12.
To study the differences in growth and potassium (K)–use efficiency of two different K-use-efficiency cotton genotypes, a pot experiment was conducted in 2007. Experimental materials include two cotton genotypes (HG103 and LG122) and two K application levels (0 and 0.23 g kg–1 soil). The initial dates of various growth stages, plant heights, numbers of leaves, squares, and bolls, and the amount of litter during the whole growing season were recorded. The distribution and accumulation of dry matter and K content in various organs were measured to compare the differences in K-use efficiency. Significant differences (P < 0.05) between the two genotypes and K levels were found in initial bolling time. At the reproductive growth stage, the plant heights and leaf number of HG103 were less than those of LG122. Greater numbers of squares and bolls were recorded from HG103 than LG122 with K application. Significant differences (P < 0.05) existed in dry matter and K contents in each organ in the two genotypes and K-application levels. The seed cotton yields of HG103 were 3.24 times larger than those of LG122 with K application and 1.77 times larger than those of LG122 with the marginal K treatments. Reproductive-to-vegetative ratios (RVR) and harvest indices (HI) of LG122 were less than those of HG103 whether K was applied or not. The ratios of K in reproductive organs to vegetative organs for LG122 were 0.47 and 0.51 with K application and the marginal treatments, respectively, and for HG103 were 0.66 and 0.75 respectively. The K accumulations in root, stem, and litter of LG122 were more than those of HG103, whereas those in leaves and bolls were less than those of HG103. These results indicated that HG103 transferred more photosynthesis products and K to cotton reproductive organs than LG122.  相似文献   

13.
为探讨不同土壤全氮含量水平下棉花的氮肥施用效应,采用盆栽试验,研究不同土壤全氮含量(0.58、0.64、0.74、0.83、1.29 g·kg~(-1))和施氮水平(每盆施加量分别为0、1.75、3.50 g)对棉花籽棉产量、氮素吸收、氮肥利用率的影响。结果表明,棉花单株籽棉产量和干物重随施氮量增加而显著增加,土壤全氮含量与施氮水平对棉株根、茎、铃壳部位的干物质积累具有显著的互作效应。同一土壤条件下,棉花单株氮素积累量随施氮水平增加而显著增加。氮肥表观回收率随土壤全氮含量上升呈先降后升的变化趋势,且在土壤全氮含量0.74 g·kg~(-1)时较低,但土壤全氮含量在0.58~0.83 g·kg~(-1)内,不同施氮处理间氮肥表观回收率差异不显著。氮肥农学利用率随土壤全氮含量增加呈下降趋势。土壤全氮含量0.74 g·kg~(-1)时的氮肥生理利用率高于土壤全氮含量0.58、0.64和0.83 g·kg~(-1)。土壤全氮含量1.29g·kg~(-1)条件下,低氮水平氮肥利用效率(表观回收率、农学利用率、生理利用率)显著优于高氮水平;土壤全氮含量0.58~0.74 g·kg~(-1)时,高氮可实现增产增效;土壤全氮含量0.83~1.29 g·kg~(-1)时,低氮能维持较高的产量和氮肥利用率。本研究结果为不同土壤全氮条件下棉花氮肥投入提供了参考。  相似文献   

14.
Genotypic differences in potassium (K) uptake and utilization were compared for eight cotton cultivars in growth chamber and field experiments. Four of the cultivars (‘SGK3’, ‘SCRC18’, ‘SCRC21’ and ‘SCRC22’) typically produce lower dry mass and the other four (‘Nannong8’, ‘Xiangza2’, ‘Xinluzao12’ and ‘Xiangza3’) produce greater dry mass in K-deficient solution (0.02 mM). The mean dry weight of seedlings (five-leaf stage) of cultivars with greater biomass was 155% higher than that of cultivars with lower biomass yield under K deficiency. However, all the genotypes had similar dry matter yields in K-sufficient solution (2.5 mM). Thus, the four cultivars with superior biomass yield under low K medium may be described as K efficient cultivars while the inferior cultivars may be described as K inefficient. Although seeds of the studied cultivars originated from different research institutes or seed companies, there were little differences in seed K content among them, irrespective of their K efficiency. Consequently, there were no significant differences in K accumulation in seedlings (4 d after germination in a K-free sand medium) just before transferring to nutrient solutions. However, the K efficient genotypes, on average, accumulated twice as much K at 21 d after transferring to K-deficient solution (0.02 mM). A much larger root system as well as a slightly higher uptake rate (K uptake per unit of root dry weight) may have contributed to the higher net K uptake by the K efficient cultivars. In addition, the K efficiency ratio (dry mass produced per unit of K accumulated) and K utilization efficiency (dry mass produced per unit of K concentration) of the K efficient cultivars exceeded those of the K inefficient genotypes by 29% and 234%, respectively, under K deficiency. On average, the K efficient cultivars produced 59% more potential economic yield (dry weight of all reproductive organs) under field conditions even with available soil K at obviously deficient level (60 mg kg?1). We noted especially that the four K inefficient cultivars studied were all transgenic insect-resistant cotton, suggesting that the introduction of foreign genes (Bt and CpTI) may affect the K use efficiency of cotton.  相似文献   

15.
Abstract

Granular application of potassium (K) in soils testing high is generally not recommended. However, the effect of foliar K on rainfed wheat (Triticum aestivum L.) under these soil conditions is largely unknown. The objective of this work was to identify the effect of K fertilizer on K use efficiency (KUE), grain yield and yield components of wheat. The data were collected until 2017 in an ongoing trial established in 2007 with eight treatments; two granular K rates (0 and 50?kg K ha?1); two foliar N rates (0 and 3?kg N ha?1); and two foliar K rates (0 and 3?kg K ha?1) in a split-split plot arrangement. Treatments were applied to the same plots each season. Treatment with foliar K resulted in the highest KUE response but the effect size varied according to the accumulated precipitation during the reproductive stage. On average, KUE was enhanced in crop seasons with water constrains (<179?mm) during the growth period but the converse was true as the amount of precipitation increased. In contrast, granular K had no effect on KUE irrespective of precipitation conditions. Application of foliar K increased grain yield as compared to granular K from 2988 to 3089?kg ha?1. This enhancement was attributed to an increased number of grains per head. Therefore, foliar K application to wheat is suitable in a soil testing high K to enhance KUE and grain yield, overall in crop seasons with water constrains.  相似文献   

16.
Potassium (K) is an essential macronutrient for plant growth and development. Plant growth and development can be seriously affected by K deficiency. However, plants with different K efficiencies behave differently. It is still not fully understood how plants with higher K efficiency could maintain better growth in a low K environment and what is the relationship between K recycling and photosynthesis metabolism. The aim of this study was to investigate whether the difference in K re-translocation and photosynthesis transportation can explain genotype differences in K efficiency between K-efficient genotype 103 and K-inefficient genotype 122. Results of this study showed that the dry matter accumulation of genotype 122 decreased much more than that of genotype 103 affected by K deficiency environment. Root growth of the two genotypes was inhibited by K deficiency, but genotype 122 was affected more than genotype 103. Using the K utilization index as an evaluation factor for K efficiency, it was found that genotype 103 was significantly higher than genotype 122. Potassium affected the K distribution in plants for both the genotypes. Potassium was distributed more to the stem and leafstalk in a normal K environment whereas it was more to the leaf and root in a low K environment, especially for genotype 103. Potassium also affected photosynthetic products’ distribution. The leaf of genotype 122 accumulated most of its photosynthetic product while genotype 103 had better ability to transport it into the root to maintain better growth under a K-deficient environment. Results of this study indicated that more K recycling into the root and more efficient transport of the photosynthetic product into the root contribute to better root growth and therefore increased tolerance to K deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号