首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为对我国华北平原冬小麦-夏玉米轮作体系秋季一次基施有机肥的氮素环境效应提供评估依据,本文分别在山东陵县和天津蓟县以不施肥、分次施用硫酸铵为对照,对秋季一次基施牛粪的产量水平、氮素损失及利用等进行了研究。其中,山东陵县试验采用15N示踪技术。结果表明,秋季一次基施牛粪15N在冬小麦夏玉米轮作周期的损失率为30%~38%,与硫酸铵15N损失率无显著差异。牛粪氮施用N 300 kg/hm2时,损失量为N 89 kg/hm2;牛粪氮施用量增加50%,其氮损失量增加91%。冬小麦、夏玉米收获后,施牛粪处理080cm土壤硝态氮含量分别为N 38~95、18~28 kg/hm2,低于分次施用硫酸铵处理。长期施用有机肥农田,秋季一次基施牛粪处理冬小麦、夏玉米子粒产量与分次施硫酸铵处理无显著差异,因此从环境角度分析,秋季一次基施有机肥可继续应用和大力推广,但施用量以不超过N 300 kg /hm2为宜。  相似文献   

2.
茶树对可溶性有机和无机态氮的吸收与运转特性   总被引:1,自引:0,他引:1  
【目的】 揭示亚热带茶树能否直接吸收利用分子态可溶性有机氮,探讨茶树吸收可溶性有机和无机氮后的运转特性差异。【方法】 采用13C、15N双标记甘氨酸、15N标记硫酸铵和15N标记硝酸钾为同位素示踪剂,采用茶树(黄金桂)幼苗为试验材料进行同位素示踪盆栽试验,用同位素质谱仪测定茶树植株地上和地下部的13C、15N丰度。【结果】 供试土壤施用13C、15N双标记甘氨酸态有机氮后,2 h和6 h茶苗地下部和整株中的13C增量/15N增量比值均接近于1:1的理论值;2 h和6 h茶苗地上部未检出13C增量,而72 h地上部13C增量达0.284 μmol/(g,DW);施用铵态氮2 h、6 h和72 h茶苗地下部、地上部和整株中的15N增量均极显著高于施用硝态氮和甘氨酸态有机氮;施用铵态氮6 h茶苗地上部15N增量/地下部15N增量比率分别比硝态氮和甘氨酸态有机氮的比率高34.7%和65.0%,72 h茶苗地上部15N增量/地下15N增量比率分别比硝态氮和甘氨酸态有机氮的比率高88.6%和133.0%,差异均达极显著水平。【结论】 黄金桂茶苗具有从土壤中直接吸收利用甘氨酸分子态有机氮的能力,但吸收量不及铵态氮和硝态氮;吸收的可溶性分子态有机氮可以从茶树根系运转至地上部;不同形态氮素在茶树植株体内的迁移能力高低表现为:铵态氮>硝态氮>甘氨酸态氮,该研究结果进一步证明陆地生态系统植物直接吸收利用可溶性有机氮是普遍存在的现象。  相似文献   

3.
不同有机肥对采煤塌陷区土壤氮素矿化动态特征研究   总被引:1,自引:1,他引:0  
为揭示不同有机肥对煤矿复垦土壤氮素矿化特性的影响,以山西省孝义市水峪煤矿采煤塌陷复垦土壤为研究对象,采用室内好气培养法,研究在40%含水量和30℃培养条件下,施用3种有机肥(鸡粪、猪粪、牛粪)后在0~161天的氮素矿化动态特征,以明确不同有机肥对该矿区复垦土壤氮素矿化特征,从而预估不同有机肥的供氮特性,为合理施用有机肥进行低产农田的培肥改造提供科学依据。结果表明:(1)各处理0~14天铵态氮含量均随培养时间的延长迅速下降,与培养时间呈极显著负相关关系(P<0.01),14~161天土壤铵态氮含量维持在较低水平,培养结束时,各处理铵态氮含量均低于1.31mg/kg。(2)各处理土壤硝态氮含量、累积量及矿质氮累积量变化均呈近似的“S”形曲线递增,表现为0~56天缓慢增加,56~84天迅速增加,84天至培养结束(161天)其含量基本不变。培养结束时不同处理间硝态氮含量、累积量及矿质氮累积量整体上均表现为鸡粪>猪粪>牛粪>空白,且鸡粪较猪粪和牛粪处理间存在显著差异,猪粪和牛粪较空白处理间存在显著差异(P<0.05)。(3)不同施肥处理出现氮素净矿化的时间点不同,其中鸡粪处理在第14天时最早出现净矿化现象,而猪粪和牛粪在培养28天后才出现明显的氮素净矿化。(4)不同施肥处理在培养的不同阶段硝态氮和矿质氮累积速率不同,但整体趋势一致,表现为培养0~84天各处理土壤累积矿化波动较大,56~84天达到峰值,培养84~161天各处理矿化速率平稳下降。总体来看,有机肥的施入能有效促进煤矿复垦土壤氮素矿化,从而提高土壤氮素有效性。其中,施鸡粪较猪粪和牛粪对提高矿区复垦土壤有效氮效果更好。4种处理的氮素矿化效果总体表现为鸡粪>猪粪>牛粪>空白。  相似文献   

4.
采用15N同位素示踪技术,开展了贝加尔针茅草原氮素去向的研究。结果表明:贝加尔针茅草原植物对标记氮素的回收率为28.36%~37.03%,施氮肥显著影响植物对15N的回收,随着施氮量的增加,植物地上和地下器官对15N的回收量均显著提高。凋落物的15N回收率为2.06%~3.28%。标记氮素的土壤存留率为35.86%~44.32%,大致分布在地表0~40 cm的土层范围内;各土层存留的15N量均随着施氮量的增加而显著升高。标记氮素的当季损失率为19.68%~32.99%。风险/收益比分析表明,在该试验条件下,添加10 gN·m-2的处理风险最低、收益最高,可为草原生态系统的氮素管理提供参考。  相似文献   

5.
大理是我国南方地区发展奶业最早的地区之一,伴随着奶牛养殖业的快速发展,奶牛粪便已成为洱海流域农业面源污染的重要来源。通过在洱海流域内设置2年田间定位试验,研究施用牛粪对土壤-油菜系统氮素转化的影响,为洱海流域畜禽粪便资源化还田利用提供理论依据。在大理洱海流域水稻-油菜水旱轮作模式下,设置不施肥(CK)、施用化肥(NPK)、化肥与牛粪配施(NPK+S)、牛粪施用(2S)、倍增牛粪施用(4S)五种处理的田间小区试验,研究施用牛粪对油菜季土壤铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、可溶性有机氮(DON)、微生物量氮(SMB-N)和全氮(TN)的影响,及对油菜地上部氮素养分吸收利用的情况。施用牛粪处理的土壤铵态氮、硝态氮、可溶性有机氮含量均低于化肥单施处理,微生物量氮高于化肥单施处理,施用牛粪可减控土壤可溶性氮素流失,提高土壤微生物氮库容量,但不同牛粪施用量处理间差异较小,牛粪与化肥配施效果最好,牛粪施用对提高和保持土壤全氮含量的效果随时间延长,其效果显著,相比CK提高土壤全氮含量8.74%~13.69%,相比NPK提高9.53%~14.53%。牛粪施用处理相比化肥单施能提高油菜籽粒的吸氮量,提高幅度达8.51%~17.96%,倍增牛粪施用相比牛粪施用未能提高油菜籽粒吸氮量,仅提高油菜秸秆的吸氮量。综合土壤肥力和油菜产量,洱海流域油菜季较优施肥方式是牛粪与化肥配施,能提高油菜氮收获指数,促进氮养分向油菜籽粒转移,增加经济产量,同时能提高和保持土壤微生物量氮和全氮含量,增强土壤供氮能力。  相似文献   

6.
在根系分隔盆栽条件下,采用15N土壤稀释标记方法,研究了“小麦/玉米/大豆”三熟套作体系不同作物间的相互作用及氮素的转移、吸收利用特性。结果表明,“小麦/玉米/大豆”套作体系促进小麦对肥料氮和土壤氮的吸收,不分隔处理的生物产量、15N总吸收量和总回收率得到显著提高,土壤残留15N丰度及总氮含量明显降低;玉米表现出套作优势(Awc<0,NCRwc<0),不分隔处理的籽粒产量、籽粒15N吸收量、15N总回收率、土壤残留15N丰度及总氮含量较分隔处理提高17.17%、24.52%、17.63%、13.9%和10.1%;大豆表现出套作劣势,不分隔处理的15N总吸收量、籽粒15N吸收量、15N总回收率和土壤残留15N丰度降低,土壤总氮含量提高6.06%。“小麦/玉米/大豆”套作体系存在氮素的双向转移,以玉米向小麦、大豆向玉米转移为主。  相似文献   

7.
甘薯对不同形态氮素的吸收与利用   总被引:11,自引:2,他引:9  
为探讨氮素形态对甘薯氮素吸收、利用及其氮素生产效率的影响。在大田生产条件下,分别施用酰胺态氮、铵态氮和硝态氮肥料,研究了甘薯生长发育过程中吸收根活力变化和氮素吸收动态、收获期氮素积累量和分配以及块根产量。结果表明,与酰胺态氮处理相比,铵态氮和硝态氮处理的吸收根活力和氮素积累起始势较高,氮素积累量、肥料氮素利用率及其生产效率也较高,块根产量提高了16.37%和10.52%。与硝态氮处理相比,铵态氮处理的氮素积累量较低,肥料氮素在块根中的分配比例较高,块根产量、氮素生产效率和肥料氮素生产效率分别提高了5.30%、13.28%和5.29%。甘薯施用铵态氮肥有利于高产和高效。  相似文献   

8.
旱地土壤氮素矿化参数与氮素形态的关系   总被引:41,自引:4,他引:37  
应用间歇淋洗培养方法 ,以长期不同培肥定位试验土壤为研究对象 ,求得土壤氮素矿化参数 ,并探讨氮素矿化潜势 (N0)、碱解氮、微生物氮、可浸提易矿化氮、全氮之间的关系。结果表明 ,在 35℃和 20℃条件下培养 ,一级动力学模型能够很好的拟合试验数据 ,模拟方程和模拟参数均达到极显著水平。经过 15年的培肥和轮作 ,无论是单施氮肥区 ,还是氮肥与有机肥配合施用区 ,N0均有不同程度的增加 ,这标志着土壤活性有机氮库增加。k值变化范围在0.004628~0.013148d-1之间 ,说明可矿化氮以每天 0.46 %~1.31%的平均速率矿化释放。而且 ,在本试验条件下 ,淋洗液中均含有一定数量的可溶性有机态N ,因此进行氮素矿化研究时 ,同时测定NH4-N、NO3-N和Norg的含量是必要的。 35℃下 ,N0 占全氮的比例为 7.23%~17.36% ,变异系数30.4% ;易矿化有机态氮占全氮的比例为0.27%~0.48% ,变异系数 200% ;碱解氮占全氮的比例为 5.55%~6.54% ,变异系数仅 5.8% ;微生物氮占全氮的比例在 2.16%~5.18%之间 ,变异系数28.8%。从几种指标测得的平均值看 ,N0碱解氮 微生物氮 易矿化氮 ,而变异系数是N0微生物氮 易矿化氮 碱解氮。虽然N0的绝对值远高于田间实际矿化量 ,  相似文献   

9.
为提高玉米生产过程中的氮素利用,减少氮素损失,采用田间原位试验法,在农民习惯施用酰胺态尿素的基础上研究相同施氮量下不同形态氮素对玉米干物质积累量、氮素吸收利用、产量及土壤氮素的影响。设置不施氮肥(CK)、酰胺态氮肥(T1)、铵态氮肥(T2)、硝态氮肥(T3)和硝/铵态氮肥(T4)5个处理。结果表明:(1)成熟期各处理干物质和氮素积累量均为T4>T3>T1>T2>CK,T4的干物质累积量较其他施氮处理显著提高6.3%~15.0%,氮素累积量较其他施氮处理增加6.4%~30.1%;该处理延长了玉米干物质和氮素积累旺盛期,推迟了玉米干物质和氮素积累速率最大时间。(2)与T1、T2比较,T4的土壤氮素依存率、氮素表观损失分别显著减少10.9%~23.1%、12.8%~49.1%。整个生育期,各施氮处理的土壤硝态氮含量明显高于铵态氮,且各处理的土壤硝态氮含量降幅大于铵态氮。(3)T4的氮肥利用效率、氮肥生产效率、氮肥农学效率及玉米产量均较优,其氮肥利用效率、氮肥生产效率、氮肥农学效率分别较其他施氮处理提高6.8%~25.9%、7.3%~14.4%、21.3%~48.3%,产量显著增加7.3%~14.4%。因此,硝/铵态氮肥配施在河北黑龙港地区比农民习惯施用尿素更能促进玉米增产和氮素利用,有效减少氮素表观损失。  相似文献   

10.
通过采集2014年设置于甘肃省定西市李家堡镇的不同碳源配施氮素田间定位试验土壤进行120天的室内培养试验,利用Stanford间歇淋洗培养法研究了无碳素和氮素添加(N0)、只施氮素(N100)、秸秆配施氮素(SN100)和生物质炭配施氮素(BN100) 4种施肥方式对陇中黄土高原旱作农田土壤氮素矿化的影响。结果表明:秸秆和生物质炭配施氮素提升了表层土壤氮素矿化量,分别比只施氮素显著提升16.5%和15.4%;土壤氮素矿化呈现先快速增加而后迅速下降,降速逐渐转为慢速直至稳定的趋势,硝化速率,氨化速率分别在7,15天时达到最大,45,30天时趋于稳定。秸秆和生物质炭配施氮素均可显著提升上层土壤氮素矿化速率,硝化速率和氨化速率则处于一种相对平衡的状态。土壤各有机氮组分在培养前后的变化量与土壤氮素矿化量之间的冗余分析结果表明,对土壤可矿化氮贡献最大的是氨基酸态氮,酸解未知氮次之;矿质态氮与未酸解氮呈负相关,与各酸解有机氮组分均呈正相关。此外,相比于不施氮,在施氮条件下添加秸秆和生物质炭增加了表层土壤各有机氮组分的变化量,说明添加秸秆和生物质炭可通过改变各有机氮组分占全氮的比例来增加易矿化氮的含量,从而促进有机氮组分的矿化,以提升土壤供氮潜力。  相似文献   

11.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   

12.
15N标记绿肥喂猪后还田的转化和效益的研究   总被引:6,自引:1,他引:6  
本文用15N标记绿肥与无N淀粉配制成饲料喂猪,猪体平均回收饲料15N23.51%;猪粪回收15N23.85%,猪尿回收15N28.76%;饲料绿肥N的总回收率为76.12%。猪粪,尿还田,水稻全株对N的回收分别相当于饲料绿肥N的3.75%和7..25%。其中转化至稻谷的分别为2.51%和4.82%。以经济产品计算,猪体和稻谷共回收饲料绿肥15N30.84%,比15N绿肥与尿素配施还田稻回收的绿肥N  相似文献   

13.
In order to produce an effective organic fertilizer, cattle manure was cocomposted with chemical fertilizer. And the kinetics of nitrogen uptake by rice plants from the co-compost was investigated using the 15N labelled co-composts on either cattle manure or chemical fertilizer. As a control, nitrogen kinetics from the mixture of cattle manure and chemical fertilizer without co-composting was investigated. At the early stage, rice growth may have been promoted by co-composting, while, it may have been promoted by the larger N-content of cattle manure at the harvesting stage. The ratios of nitrogen uptake by rice plants and residual nitrogen in soil from the cattle manure and chemical fertilizer were determined by measuring 15N -atom%. The N -uptake ratios by rice plants from the cattle manure in the co-composted plot were about 2–4 times higher than those from the cattle manure without co-composting. However, the N -uptake ratios from the chemical fertilizer in the co-composted plot were lower than those from the chemical fertilizer without co-composting. The N -content of the rice plants derived from chemical fertilizer without co-composting decreased consistently after 28 d. The nitrogen from chemical fertilizer in the co-compost was absorbed again in the latter period of rice growth. The total nitrogen uptake by rice plants from cattle manure and chemical fertilizer was similar regardless of co-composting. However, co-composting would be advantageous at least· in terms of the following aspects: increase of the N -uptake by rice plants from cattle manure, slow-release ability of nitrogen from chemical fertilizer, decrease of nitrogen loss by denitrification.  相似文献   

14.
Pot experiments that lasted for 3 y were conducted to investigate the dynamics of nitrogen derived from plant residues (rice root, hull, straw, corn root, and rapeseed pod-wall), and composts (rice straw compost, cattle manure compost, and cattle manure sawdust compost), which were labeled with 15N. The rates of nitrogen uptake by rice (=N efficiency), denitrification, and immobilization derived from the organic materials incorporated before the first year of cultivation were investigated throughout 3 y of cultivation. At the end of the first year of cultivation, relatively high rates of N efficiency were obtained for rapeseed pod-wall (24.6%), rice straw (19.1%), and rice hull (18.6%), while corn root and cattle manure sawdust compost displayed a noticeably high denitrification rate. Corn root, cattle manure sawdust compost, rice hull, and rapeseed pod-wall exhibited remarkably high N mineralization rates ranging from 60 to 75% of the organic materials N applied. Cumulative rates of N efficiencies from the organic materials applied before the first year of cultivation fitted well to a first-order kinetic model and their asymptotes were compared among the organic materials. The asymptotic rates of N efficiency tended to depend on the rates at the end of the first year of cultivation.  相似文献   

15.
A laboratory incubation trial and a field litterbag study were conducted to determine the rate and magnitude of mineralization of dairy manure N components in a south central Wisconsin silt loam. Dairy manure components (urine, feces, or bedding, each 15N-labeled and the other components left unlabeled) were incubated in soil at 11, 18, or 25°C. Samples were taken at 14, 21, 42, 84, and 168 days and analyzed for mineralized N ( and ) and 15N abundance in the inorganic and organic fraction (at day 168 only). In the field study, nylon mesh (38 μm) litterbags filled with 15N-labeled manure (2000) or unlabeled manure (2000 and 2002) were placed 7.5 cm below the surface and excavated at 7, 14, 21, 28, 35 (2000 only), 42, 56, 84, 98, and 126 days after burial and at corn (Zea mays L.) harvest, after 142 days in 2002 and 154 days in 2000. In the incubation study, 50−60% of applied urine N was mineralized showing the importance of this manure N component as a source of plant available N. About 14−19% of applied N was mineralized from the fecal and bedding components. In the litterbag experiment, approximately 70% of the dry mass and 67% of the N was mineralized from the litterbags with similar amounts measured using either labeled or unlabeled N. Rates of manure organic matter decomposition and N mineralization were best predicted using single exponential models for both years with most of the release occurring during the first 21 days.  相似文献   

16.
(Jpn. J. Soil Sci.Plant Nutr., 77, 283–291, 2006)

Nutrient amounts in livestock manure management, including manure treatment and use, were estimated using published statistical data and other information. The eight categories for manure treatment were defined in this study as composting at facility, composting at stockyard, raw feces, dried feces, urine, slurry, purification and other. The three categories for use of manure were defined as application to farmland, sale and exchange and other.

The regional daily excretion units per head of dairy and beef cattle, including the amount of excreta, nitrogen (N), phosphorus (P) and potassium (K), were calculated based on the quantities and qualities of feed in each region. There was found to be a difference in the values for Hokkaido and other regions.

Concerning manure treatment methods in the dairy sector, the sum of the proportion of raw feces and compost at stockyard was high in Hokkaido. On the other hand, the sum of the proportion of composting at facility and dried feces was high in Hokuriku, Tokai, Kinki and Shikoku. In Kyushu, the proportion of slurry production was higher than in any other region.

The amounts of N, P, and K in compost estimated in this study were compared with those calculated from published statistics. The results were as follows. The amounts of N, P, and K in dairy cattle compost, N and K in beef cattle compost, and N in poultry compost in this study were similar to the amounts cited in reported statistics. The amounts of P in beef cattle, swine, and poultry compost in this study were lower than those cited in reported statistics.

As for the use of manure, application to farmland is the most common use of manure in the dairy and beef cattle sector. The proportions of purification, and sale and exchange were high for the swine and poultry sectors, respectively.

Large amounts of liquid manure, such as urine and slurry, are applied to farmland. To clarify the nutrient load resulting from liquid manure, the usable amount of dairy slurry was calculated based on both the standard application rate of fertilizer and the area of grassland and forage crops. As a result, the amount of usable N was lower than the amount of liquid manure N in the Kanto-Tosan, Tokai and Kinki regions.  相似文献   

17.
Utilization of N in cattle slurry and liquid manure with Dicyandiamide in field trials In several field trials on deep loess soils, effects of DCD on utilization of N in cattle slurry and liquid manure by silage maize, sugar beets and turf was tested. DCD inhibited nitrification of NH4 nitrogen added with slurry or liquid manure and thus decreased losses by infiltration or leaching considerably. If measured as so called “Nmin nitrogen” at the start of vegetation, amounts of nitrogen actually present in the soil are underrated in plots with slurry or liquid manure + DCD. Addition of DCD at a rate of 30 kg/ha to slurry and 15–30 kg to liquid manure improved in all cases utilization of N in slurry applied in April or between August and November and of liquid manure applied in November. By use of the nitrification inhibitor Dicyandiamide as complement to slurry or liquid manure it is therefore possible to inhibit decomposition of ammonium nitrogen in these organic manures for 2–4 months depending on temperature, and to “preserve” it during periods without vegetation when soils are especially exposed to leaching. By this means, utilization of slurry-nitrogen by the following crop can be improved considerably.  相似文献   

18.
Influence of fertilization on nitrogen leaching after cultivation of maize for silage over four successive seasons In a field trial, nitrogen leaching from soil was determined between February 1983 and May 1986 by analyzing soil water from 50, 80 and 110 cm below the soil surface every 14 days. On a Stagno-gleyic Luvisol, maize after maize was cultivated over four successive seasons. Nitrogen was applied either minerally in spring according to Nmin or as a semiliquid cattle manure. The time of application (autumn and/or spring), application rate and use of nitrification inhibitor dicyandiamide (DCD) were varied. Under very low N-fertilization (underground fertilization only), nitrate nitrogen losses by leaching dropped from 100 kg N/ha in the first year to 33 kg N/ha in the 3rd. Nitrogen leaching from the various treatment plots depended on the maize growth and rainfall conditions. Because of an intensive and long lasting seepage of gravitational water, nitrogen leaching from the root zone ranged from 113 to 208 kg N/ha during the fall and winter seasons of 1983/84 and 1984/85. Under the more balanced infiltration conditions of the leaching period 1985/86, and after a high yield of maize in 1985, losses due to leaching were reduced to values between 69 to 108 kg N/ha. Under these experimental conditions (deliberately high quantities of semiliquid cattle manure; DCD-application in autumn) no reduction in nitrogen losses could be proved due to the addition of dicyandiamide.  相似文献   

19.
红壤地区草-牛-沼生态系统中养分循环利用的研究   总被引:4,自引:0,他引:4  
在中度熟化的红壤岗地上采取种植黑麦草和玉米饲喂肉牛,牛粪尿沼气发酵后的沼肥与化肥配施养草的方式,并以单施化肥养草喂牛的方式为对照,进行2年试验研究草-牛-沼生态系统中的养分循环。结果表明,沼肥与化肥配施处理玉米植株的产量和养分积累量都高于单施化肥处理,而黑麦草产量和养分积累量都稍低于单施化肥处理,但由于配施沼肥可节省一半的化肥投入,其效益都很显著。牛对不同施肥处理同种饲草中养分的消化率差异不显著,牛粪尿对养分的回收率也差异不明显,但不同种或同种而收获期不同的饲草消化率和回收率都差异明显。牛粪尿经沼气发酵后回收的养分量可节约饲草生产中近一半的化肥投入。且沼肥施用后土壤肥力得以保护和改善,为后续的饲草生产提供了较好的土壤条件,从而有利于养分循环利用。  相似文献   

20.
Abstract

Recovery of residual nitrogen (N) from the subsoil by maize (Zea mays L.) was studied by injecting 15N‐labeled nitrate at 110 cm for treatments with and without N fertilizer in a calcareous soil on the North China Plain. The results show that the recovery of 15N‐labeled nitrate diffusing in the 90‐ to 130‐cm soil horizon was 11.9% with N fertilizer application and 6.7% without N application in maize. Nitrogen fertilizer applied to topsoil stimulated growth of maize roots in the subsoil, thus increasing the recovery of 15N‐labeled nitrate. In the relatively dry growing season in this experiment, the 15N‐labeled nitrate did not move downward because there was no downward water flow at 110 cm. Hence, under dry weather conditions, the maize crop can re‐utilize a small part of the residual soil nitrate in deep soil layers. Most of the nitrogen uptake was in the 0‐ to 80‐cm layer during the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号