首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
A 40-day gnotobiotic microcosm experiment was carried out to quantify the effect of bacterial-feeding nematode on plat growth and nutrient absorption.The results showed that inoculation of bacterial-feeding nematode Protorhabditis sp.stimulated the growth of wheat (Triticum aestivum) and the uptake of N.By the end of the 40-day incubation wheat biomass and N uptake in the treatment with nematode and bacteria (Pseudomonas sp.)increased by 6.5% and 5.9%,respectively,compared with bacteria alone treatment.The presence of nematode mainly accelerated the growth of aboveground of wheat,while it slightly inhibited the root development.There was little difference in plant tissue N concentration between treatments.P concentration and uptake of wheat,however,were generally reduced by nematode, It appears that the enhancement of plant growth and nitrogen uptake is attributed to the enhancement of nitrogen mineraliztion induced by nematode feeding on bacteria,and the reduction of phosphorous uptake is the result of ewak root status and comptetition by bacteria immobilzation.  相似文献   

2.
The effects of bacterial-feeding nematodes on bacterial number, activity, and community composition were studied through a microcosm experiment using sterilized soil inoculated with soil bacteria (soil suspension) and with bacteria and three species of bacterial-feeding nematodes ( Cephalobus persegnis, Protorhabditis filiformis, and Caenorhabditis elegans). Catalyzed reporter deposition-fluorescence in situ hybridization, CO2 evolution, and denaturing gradient gel electrophoresis (DGGE) of PCR ampli- fied 16S rRNA gene fragments were used to investigate bacterial numbers, antivity, and community composition, respectively. Our results showed that bacterial numbers and activity significantly increased in the presence of bacterial-feeding nematodes, which indicated that bacterial-feeding nematodes had a significant positive effect on soil bacteria. The different nematode species had different effects on bacterial numbers and activity. C. persegnis and P. filiformis, isolated from native soil, increased the bacterial number and activity more than C. elegans. The DGGE analysis results showed that dominant bacterial species significantly differed among the treatments, which suggested that bacterial-feeding nematode species modified the bacterial community composition in soil. Further gene sequence analysis results showed that the dominant bacterial species in this study were gram-negative bacteria. Given the completely same conditions except nematode species, the varied selective feeding behavior of different nematode species was the most likely reason for the altered bacterial community composition. Overall, the alteration of bacterial numbers, activity and community composition resulting from the bacterial-feeding nematodes may ult!mately affect soil ecological functioning and processes.  相似文献   

3.
接种食细菌线虫对小麦生长和N、P吸收的影响   总被引:1,自引:0,他引:1  
LI Hui-Xin  HU Feng 《土壤圈》2001,11(1):57-62
A 40-day gnotobiotic microcosm experiment was carried out to quantify the effect of bacterial-feeding nematode on plant growth and nutrient absorption. The results showed that inoculation of bacterial-feeding nematode Protorhabditis sp. stimulated the growth of wheat (Triticum aestivum) and the uptake of N. By the end of the 40-day incubation wheat biomass and N uptake in the treatment with nematode and bacteria (Pseudomonas sp.) increased by 6.5% and 5.9%, respectively, compared with bacteria alone treatment. The presence of nematode mainly accelerated the growth of aboveground of wheat, while it slightly inhibited the root development. There was little difference in plant tissue N concentration between treatments. P concentration and uptake of wheat, however, were generally reduced by nematode. It appears that the enhancement of plant growth and nitrogen uptake is attributed to the enhancement of nitrogen mineralization induced by nematode feeding on bacteria, and the reduction of phosphorous uptake is the result of weak root status and competition by bacteria immobilization.  相似文献   

4.
A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation(AB), banana-papaya rotation(BB) and banana monoculture(CK) in a conventional tillage system. Soil samples were taken at depths of 0–10, 10–20 and 20–30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity(H′), dominance index(λ), maturity index(MI), plant parasite index(PPI), structure index(SI), enrichment index(EI), and channel index(CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister(c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation.Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices(λ and MI).  相似文献   

5.
中国小麦田土壤线虫对生物炭添加的响应   总被引:1,自引:0,他引:1  
While studies have focused on the use of biochar as soil amendment, little attention has been paid to its effect on soil fauna. The biochar was produced from slow pyrolysis of wheat straw in the present study. Four treatments, no addition (CK) and three rates of biochar addition at 2 400 (B1), 12 000 (B5) and 48 000 kg ha-1 (B20), were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China. The B5 and B20 application significantly increased the total organic carbon and the C/N ratio. No significant difference in total nematode abundance was found among the treatments. The biochar addition to the soil significantly increased the abundance of fungivores, and decreased that of plant parasites. The diversity of soil nematodes was significantly increased by B1 compared to CK. Nematode trophic groups were more effectively indicative to biochar addition than total abundance.  相似文献   

6.
The interaction of Pb-Cd can be observed not only in the uptake process of elements by plants and in their influence on the growth,but also in rhizosphere.The changes in extractable Cd and Pb concentrations in the rhizosphere soil of rice plants ,root exudates from wheat and wheat plant and their complexing capacity,with Pa and Cd were investigated under different Pb and Cd treatments.Results showed that the concentration of extractable Cd in the rhizosphere of rice in red soil was markedly increased by Pb-Cd interaction,It increased by 56% in the treatment with Pb and Cd added against that in the treatment with only Cd added in soil . The considerable differences in both composition and amount of root exudate from wheat and rice were found among different treatments.Pb and Cd might be complexed by root exudates ,The concentrations of free Pb and Cd in the solution were increased markedly by adding root exudate from wheat and decreased by that from rice due to Pd-Cd interaction.The distribution patterns of Pb and Cd in roots were affected by Pb-Cd interaction,which accelerated transport of Pb into internal tissue and retarded accumulation of Cd in external tissue.  相似文献   

7.
线虫区系对科尔沁沙地草地退化的响应   总被引:1,自引:0,他引:1  
The responses of soil nematode communities to grassland degradation were studied under undegraded grassland (UG), degraded grassland (DG), and improved grassland (IG), in Horqin Sandy Land, Inner Mongolia, Northeast China. Soil samples were collected at depths of 0-10, 10-20, and 20-30 cm. Total organic carbon (TOC) and total nitrogen (TN) exhibited positive effects on the total number of nematodes and trophic groups. Significant treatment effects were found in the total number of nematodes, plant parasites, and omnivores-predators. Measures taken in the improved grassland could improve the number of omnivorepredators, especially in the deeper soil layers. Nematode richness was lower in the DG treatment than in the IG and UG treatments. The food web structure index (SI) was significantly higher in the UG and IG treatments than in the DG treatment. A higher SI suggested a food web with more trophic linkages and relatively healthy ecosystems.  相似文献   

8.
M. SHARIF  N. CLAASSEN 《土壤圈》2011,21(4):502-511
A pot experiment was conducted to investigate the action mechanisms of arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake of Capsicum annuum L.in a sterilized fossil Oxisol.Three P levels of 0,10 and 200 mg kg-1 soil (P0,P10 and P200,respectively) without and with AM fungal inoculation were applied as Ca(H2PO4)2·H2O.Shoot dry matter yields and shoot P uptake increased significantly (P > 0.05) by the inoculation of AM fungi at P0 and P10.Root length and P concentration in soil solution increased with the inoculation of AM fungi but the root:shoot ratio decreased or remained constant.Around 50% roots of inoculated plants were infected by AM and the external hyphae amounted to 20 m g-1 soil at P10 and P200.The hyphae surface area of the infected root cylinder amounted to 11 and 2 cm-2 cm-2 root at P0 and P10,respectively.The increased P uptake of inoculated plants was mainly because of an up to 5 times higher P influx of the infected root.Model calculations showed that the root alone could not have achieved the measured P influx in both infected and non-infected roots.But the P influx for hyphae calculated by the model was even much higher than the measured one.The P uptake capacity of hyphae introduced in the model was too high.Model calculations further showed that the depletion zone around roots or hyphae was very narrow.In the case of the root only 7% of the soil volume would contribute P to the plant,while in the case of hyphae it would be 100%.The results together with the model calculations showed that the increased P uptake of AM inoculated plants could be explained partly by the increased P concentration in the soil solution and by the increased P absorbing surface area coming from the external hyphae.  相似文献   

9.
To determine the effect of agricultural management on the dynamics and functional diversity of soil nematode communities in a carrot field at Kibbutz Ramat Hakovesh, Israel, soil samples from 0--10 cm and 10--20 cm depths were collected during the growing season of carrot. Indices were used to compare and assess the response of soil free-living nematode communities to agricultural management. Eighteen nematode families and 20 genera were observed during the growing period, with Cephalobus, Rhabditidae, Aphelenchus, Tylenchus, and Dorylaimus being the dominant genera/families. During the planting, mid-season and post-harvest periods the total number of nematodes at both depths was significantly lower (P < 0.01) in the carrot treatment than in the control plots, while during the harvest period at both depths total nematodes and bacterivores were significantly higher in the treatment plots (P < 0.01). The values of the maturity index (MI) at both depths were found to be significantly lower in the treatment plots than in the control plots during the pre-planting period (P < 0.05). Overall, WI, MI and PPI were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in a Mediterranean agroecosystem.  相似文献   

10.
AM真菌群落改善保护地退化土壤质量和黄瓜生长的效应   总被引:5,自引:0,他引:5  
A pot experiment was performed to determine the effects of arbuscular mycorrhizal fungi(AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous cucumber monoculture in a greenhouse for 15 years.In the experiment,AMF communities(created by combining various AMF species that were found to be dominant in natural farm soil) were inoculated into the degraded soil,and then the soil was planted with cucumber.Inoculation with AMF communities did not affect soil pH but increased soil aggregate stability and decreased the concentrations of salt ions and electrical conductivity(EC) in the soil.Inoculation with AMF communities increased the numbers of culturable bacteria and actinomycetes but reduced the number of fungi.AMF communities increased plant growth,soluble sugar content,chlorophyll content,and root activity compared to non-mycorrhizal or a single AMF species treatments.Improvements of soil quality and plant growth were greatest with the following two communities:Glomus etunicatum + G.mosseae + Gigaspora margarita + Acaulospora lacunosa and G.aggregatum + G.etunicatum + G.mosseae + G.versiforme + G.margarita + A.lacunosa.The results suggested that certain AMF communities could substantially improve the quality of degraded soil.  相似文献   

11.
Twenty strains of arbuscular mycorrhizal fungi (AMF), native to West Africa, and three commercial AMF, were evaluated for their protective effect against root-knot nematodes, Meloidogyne spp., in pots and field experiments in Benin. In pots, these strains were assessed in sterilized soil following inoculation of nematodes and in non-sterilized soil naturally infested with nematodes using tomato. The four strains showing greatest potential in suppressing nematode development were further assessed in the field with a relatively high natural infestation level of nematodes (155 per 100 cm3 soil) over a tomato–carrot double cropping. In the pot experiments, most native strains provided significant suppression of nematode multiplication and root galling, but in most cases the level of nematode control depends on either sterilized or non-sterilized soils. In the field experiments, application of AMF mostly resulted in significant suppression of nematode multiplication and root galling damage on both crops indicating that the AMF persists and remains protective against root-knot nematodes over two crop cycles. Field application of AMF increased tomato yields by 26% and carrot yields by over 300% compared with the non-AMF control treatments. This study demonstrates for the first time, the protective effect of indigenous West African AMF against root-knot nematodes on vegetables. The potential benefits of developing non-pesticide AMF-based pest management options for the intensive urban vegetable systems are evident.  相似文献   

12.
A reduction of arbuscules in roots of grapevines (Vitis vinifera) observed when ring nematodes were added to field microplots led to the hypothesis that nematode feeding suppresses arbuscules by competing for root carbohydrates. Support for this hypothesis was tested by growing ‘Pinot noir’ grapevines in a factorial experiment with three levels of initial nematode densities (0, 0.1, 1.0 nematodes g?1 soil), two levels of light (full sun, 50% sun), and two levels of AMF (nonAMF, +AMF). Effects on plant growth were primarily driven by a light and AMF treatment interaction, such that low light increased stem dry matter accumulation at the expense of roots in +AMF vines only. Nematodes had only a minor influence on plant growth (leaf mass was reduced at the highest nematode density), but nematodes did not affect overall plant dry matter accumulation. Since nonAMF vines were severely limited by P and their growth was so poor, the impact of nematode and light treatments was further analyzed in +AMF plants only. Nematode populations, AMF colonization, and root carbohydrates were differentially affected by initial nematode density or light levels. Root biomass, and reducing sugar and starch concentrations in fine roots were reduced by low light, but the final nematode populations and arbuscule frequencies in roots were unaffected by light. Nematodes reduced arbuscules and starch concentrations in fine roots, but did not affect total colonization by AMF (hyphae, vesicles or arbuscules). Nematodes reduced plant P and K uptake at the highest density, and low light reduced Mg uptake. These findings are consistent with the hypothesis that ring nematodes suppress arbuscules in roots via competition for root carbohydrates. However, the lack of a treatment interaction between light and nematodes in our study suggests that ring nematode–AMF interactions in grape roots are controlled by more than competition for photosynthate.  相似文献   

13.
丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)能与多数陆生植物共生,促进植物吸收养分尤其是磷。解磷细菌(Phosphate-solubilizing bacteria,PSB)可以活化土壤中难溶性无机磷和有机磷。本研究采用苯菌灵对田间低磷土壤中土著AM真菌进行灭菌,并接种外源AM真菌(Glomusversiforme,G.v)和PSB(Pseudomonassp.),研究AM真菌和PSB接种对不同生育期玉米生长、磷养分吸收和产量的影响。结果表明,施用苯菌灵能够有效地抑制土著AM真菌对玉米根系的侵染,未施用苯菌灵处理中土著AM真菌促进了玉米前期和收获期的生长,提高了玉米吸磷量;接种Pseudomonas sp.促进了玉米六叶期根系的生长;接种外源AM真菌G.v促进了玉米六叶期和收获期地上部的生长,但降低了玉米产量。双接种Pseudomonas sp.和G.v对玉米生长、吸磷量和产量未表现出显著的协同效应。  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems.  相似文献   

15.
为明确丛枝菌根(AM)真菌对促进绿化苗木镉(Cd)吸收的影响,通过盆栽试验比较接种不同AM真菌对12种绿化苗木Cd吸收的差异,并进一步分析接种对金叶六道木根际微生物数量和AM真菌群落结构的影响。结果表明,12种绿化苗木,加Cd处理6个月后,其叶片浓度的变化范围为0.25~2.59 mg·kg-1。接种AM真菌处理组的叶片Cd含量均高于不接菌处理组。相比未接种,接种AM2摩西球囊霉(BGCAM00164)后金叶六道木叶片中Cd含量增加147.9%,故选择金叶六道木进行后续研究。接种AM212个月后,金叶六道木的根、枝、叶Cd浓度分别为164.7、22.86和10.57 mg·kg-1,为不接菌处理的2.64倍、2.06倍和1.76倍,全株总Cd含量达5078μg·株-1,显著高于不接菌对照(1745μg·株-1)。相比不接菌对照,接种AM2后降低了转移系数,将其更多吸收的Cd固定在根内,从而减少对植株的损害。接种AM真菌增加了AM真菌PLFA生物量,但降低了根际土壤微生物细菌和真菌PLFA生物量。所有样本中丰度较高的AM真菌为球囊霉科(Glomus)、类球囊霉科(Paraglomus)和原囊霉科(Archaeospora)。球囊霉科占总AM真菌的55%以上,是金叶六道木根际的主要优势种群。接种AM2后球囊霉丰度显著增加,由对照的61.8%上升至77.4%,但AM真菌的整体多样性和丰富度则表现为下降。接种AM1后类球囊霉科丰度显著增加,由对照的13.1%上升至17.8%,但球囊霉丰度无显著变化。主成分分析结果表明Cd和AM真菌接种可以改变金叶六道木根际AM真菌群落结构。总体而言,接种AM真菌(摩西球囊霉)能提高金叶六道木对土壤重金属Cd污染的修复效率,其联合修复技术可扩展Cd污染土壤植物修复的应用范围。  相似文献   

16.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

17.
The effects of seed inoculation with the Pseudomonas fluorescens strains F113lacZY [a genetically marked biocontrol agent producing the anti-fungal agent 2,4-diacetylphloroglucinol (DAPG)] and F113G22 [a genetically modified (GM) derivative strain of F113lacZY incapable of producing DAPG] on associated nematode communities were investigated over 17 days of plant growth. Plant growth measurements and colony forming unit counts (CFU) derived from rhizosphere soil indicated only small and transient perturbations as a result of introductions of the GM bacteria. Total nematode numbers were increased significantly in the rhizosphere of inoculated plants compared with the non-inoculated control treatments. These increases were mainly due to increases in bacterial feeding nematodes. This indicates that inoculation with the GM P. fluorescens strains induced high bacterial growth rates in the rhizosphere of plants inoculated with these strains. No indication of greater root colonisation by fluorescent Pseudomonas spp. could be found using CFU counts on Pseudomonas-selective media. Numbers of fungal feeding nematodes decreased initially, probably as a result of lack of intact hyphae in the soil. However, inoculation with the two different GM P. fluorescens strains resulted in a rapid recovery of fungal feeding nematode populations, whereas in the non-inoculated control populations of fungal feeding nematodes remained small. This result is surprising as one of the strains (F113lacZY) produces the anti-fungal agent DAPG and it would be expected that this agent would result in a decrease in fungal activity.  相似文献   

18.
张立丹  张俊伶  李晓林 《土壤》2011,43(3):426-432
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能够与大多数陆地植物互惠共生,促进植物对养分的吸收,提高植物对各种生物和非生物胁迫的抗逆性,对植物健康生长有重要的作用。在土壤中丛枝菌根真菌与植物寄生性线虫共同依靠寄主植物根系完成生命循环,但二者对寄主植物作用完全相反,引起研究者广泛兴趣,成为菌根研究的热点和焦点之一。本文分析了丛植菌根真菌与植物寄生线虫的相互作用,并探讨了菌根提高植物对线虫抗性的可能机制:菌根真菌改善植物的生长和营养状况、改变植物根系形态结构、影响根系分泌物和根际微生物区系、诱导寄主植物产生防御反应等,旨在深入挖掘丛枝菌根真菌的生物学功能,进一步发挥其在农业生产中的应用潜力。  相似文献   

19.
A total of 237 Plant Introduction in eleven Trifolium species were evaluated for resistance to Meloidogyne arenaria (Neal) Chitwood race 1, M. hapla Chitwood, M. incognita (Kofoid & White) Chitwood race 3, and M. javanica (Treub) Chitwood. Plants were infected with 1500 nematode eggs collected from 'Rutgers' tomato (Lycoperiscon esculentum Mill.) roots with 0.5% NaOCl. Ratings of galling severity and egg mass production were assigned to each plant 8 wk after inoculation. Host plant reaction was classified as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, susceptible, and highly susceptible according to the resistance index . More than 95% of 171 white clover accessions were moderately to highly susceptible to all four nematodes species. The best white clover accessions were only moderately resistant to either M. arenaria (PI 291843 and PI 306286) or M. hapla (PI 100250 and PI 204930). Accessions with moderate resistance or resistance to root-knot nematodes were found among relatives of white clover, with T. ambiguum M. Bieb. exhibiting the greatest resistance level. Among the other Trifolium species evaluated, T. carolinianum Michx. PI 516273 was immune or highly resistant to all four nematode species while accessions of T. hirtum All. showed a wide range of reaction to root-knot nematodes. Identified germplasm of white clover relatives with resistance to root knot nematodes should be useful for the selection of parents in white clover breeding programs.  相似文献   

20.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号