首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
川中丘陵区小流域土壤侵蚀空间分异评价研究   总被引:4,自引:4,他引:4  
将地理信息系统(GIS)技术Arc/Info与通用土壤流失方程(USLE)相结合进行了小流域土壤侵蚀量的估算。以盐亭农田生态系统国家野外科学观测研究站内的截流村小流域(简称截流村小流域)为研究对象,依据实地调查资料及地形、土地利用、土壤和植被等数据,建立了小流域空间数据库,利用GIS的栅格数据空间分析功能,将小流域空间离散化为10 m×10 m的栅格,在栅格内根据合适的USLE因子算法进行了土壤侵蚀量估算,进而对小流域内土壤侵蚀强度空间分异和小流域内侵蚀量进行了统计分析。结果表明,截流村小流域年均输沙模数为1244.7 t/(km2.a),侵蚀强度属轻度;坡耕地占流域面积的44.17%,年均土壤侵蚀模数为2195.0 t/(km2.a),其侵蚀总量占流域总侵蚀量77.93%,表明坡耕地是该小流域水土流失的策源地,小流域水土流失治理的关键是实现流域内坡耕地的合理利用。同时对于林地和小于10°坡耕地的侵蚀模数结果与相关研究仅相差19.8%和4.4%,证实了该模型的准确性和可靠性。  相似文献   

2.
针对京津水源区生态环境脆弱,水土流失空间分异大,突发性强等问题,选择河北省滦平县西北沟小流域为研究对象,利用气候、土壤、地形、土地利用及植被盖度等数据,运用GIS和RUSLE的方法对小流域土壤侵蚀强度及其空间分异特征进行了研究。结果表明,流域多年平均侵蚀模数为3 816.835t/(km2.a),属中度侵蚀;潜在侵蚀模数为31 583.150t/(km2.a),是现实侵蚀模数的8.28倍;不同土地利用方式中,零星分布的大坡度坡耕地侵蚀强度最大,其次为高度风化,坡度较大的退化荒草地,退化荒草地面积占流域总面积的59.38%,侵蚀量占总量的88.48%,是最主要的泥沙来源地;不同坡度土壤侵蚀强度随坡度加大而显著增加,流域坡度>25°的面积约占流域总面积的1/3,侵蚀量约占2/3;不同坡向的土壤侵蚀空间分异也十分明显,表现为正阳坡>半阳坡>半阴坡>正阴坡>平地。  相似文献   

3.
基于GIS和USLE模型对滇池宝象河流域土壤侵蚀量的研究   总被引:18,自引:4,他引:18  
滇池已被列入国家“三河三湖”治理的重点,也是云南省9大高原湖泊治理的重中之重。非点源污染是滇池污染的主要原因,而水土流失则是非点源污染的主要来源,占非点源污染总量的80%。运用GIS栅格模块的空间分析功能,根据USLE模型的各个因子进行图形运算,估算了小流域土壤侵蚀量。结果表明,流域的年均土壤侵蚀模数为983.51 t/km2,侵蚀强度为轻度,占流域面积91.53%的区域土壤侵蚀强度在轻度以下,对流域土壤侵蚀量的贡献率为52.80%;而流域47.2%的土壤侵蚀来自于占流域面积8.5%的中度以上侵蚀区域。  相似文献   

4.
丹江鹦鹉沟小流域土壤侵蚀和养分损失定量分析   总被引:5,自引:1,他引:4  
小流域土壤侵蚀量和养分损失量的定量研究可为南水北调水源区的生态保护、水土保持和生态补偿提供重要的依据.该文在地理信息技术(geographic information system,GIS)的支持下,应用修正通用土壤流失方程(revised universal soil loss equation,RUSLE)估算了丹江鹦鹉沟流域的土壤侵蚀量和养分损失量,并进行了土壤侵蚀强度分级.结果表明,流域的年均土壤侵蚀模数为3140 t/km2,侵蚀强度为中度.其中强度侵蚀以上的土地面积占流域总面积的24.1%,侵蚀量为4573.0 t,却占年侵蚀总量的84.8%,其主要是坡度较大的坡耕地,是流域需要重点治理的区域.不同土地利用类型的土壤侵蚀量差异较大,林地、草地和农地的年均土壤侵蚀模数分别为509.7、1511.8和4606.5 t/km2.林草地年侵蚀量较小,农地土壤侵蚀量占流域总侵蚀量的95.3%.坡度每增加5°,不同土地利用的土壤侵蚀模数增加量比坡长每增加5 m的增加量要大1~2倍.研究区表土流失造成的全氮、全磷和有机质损失量分别为3.81、3.52和101.45 t,其中农地的养分损失量最为严重.流域泥沙中全氮、全磷和有机质的年均流失模数分别为1.01、0.75和38.43 t/(km2×a).该研究可为水源区水土流失和非点源污染治理以及清洁小流域建设提供科学依据.  相似文献   

5.
为探讨西藏地区水土流失特点及防治途径,以茶巴朗小流域为研究对象,对其遥感影像进行了解译和信息提取。结果表明:与西藏地区主要侵蚀类型为冻融侵蚀不同,水力侵蚀是茶巴朗小流域水土流失的主要类型,面积为51.80km2,占流域面积的66.05%;其次是冻融侵蚀、风力侵蚀,分别占流域面积的5.74%、3.66%,且侵蚀强度以中度为主,并依海拔梯度呈现出条带状分布特征。茶巴朗小流域土壤侵蚀模数为4 087 t/(km2.a),主要分布在流域内的中山区和河谷区。针对该流域水土流失特点,提出了"开展生态移民,控制牲畜规模"、"调整土地利用结构,实施退耕还林还草"、"科学布局小水电站开发项目,构建以电代柴生态补偿机制"、"加强土壤侵蚀动态监测研究,完善工程项目水土保持管理"的防治对策。  相似文献   

6.
岷江流域土壤侵蚀变化与治理对策研究   总被引:2,自引:0,他引:2  
以1995年、2000年遥感土壤侵蚀调查(RS)资料为基础,结合2005年实地调查资料,研究岷江流域土壤侵蚀的演变规律,应用马尔柯夫模型对流域土壤侵蚀的发展趋势进行预测,同时探讨岷江流域水土流失治理分区与对策。结果表明:(1)岷江流域土壤侵蚀现状表现为:侵蚀总面积19 907.7 km2,占幅员面积的43.77%;侵蚀类型以水蚀为主,占侵蚀面积的88.24%;侵蚀等级以中度侵蚀为主,占侵蚀面积的44.07%。与1995年相比,土壤侵蚀面积减少369.6 km2,减少比例为0.81%。计算表明岷江流域2000年土壤侵蚀量为8.94×107t,平均侵蚀模数1 966 t/(km2.a)。(2)应用Markov模型对2005-2025年岷江流域土壤侵蚀面积的预测结果显示:岷江流域土壤侵蚀面积将呈逐年减少趋势。到2025年,土壤侵蚀面积将比2000年减少1 452.87 km2;未来20年内土壤侵蚀量每5 a以3.17×107t的速度减少。(3)岷江流域水土流失治理应在以全流域综合治理为目标,在科学规划基础上,选择优先治理区和重点治理区,以不同类型的治理工程为主要途径,推动岷江流域水土流失的有效治理。  相似文献   

7.
铜矿沟小流域水土流失面积10.7 km2,占流域面积的68.15%,年土壤侵蚀总量达5.69万t。水土流失使铜矿村这个本来就贫穷和落后的小山村更加贫穷和荒凉。1989年,会理县被列入长江上游水土保持重点防治县,铜矿沟小流域被列入首批治理。通过综合治理,年土壤侵蚀总量下降至1.23万t,小流域的生态环境得到改善,水土资源得到可持续利用,农民收入大幅度增加,群众生产生活条件大大改善,对水土保持的认识也进一步提高。1998年该流域被水利部、财政部联合命名为“十百千”示范小流域。  相似文献   

8.
<正>1 流域概况石人沟小流域位于哈尔滨市东郊太平区东风镇境内,距市区仅有10km,流域总面积为10.42km~2,其中耕地面积849hm~2,人口密度为149人/km~2.该流域地形复杂,沟壑纵横,流域大体呈东西走向,最大长度8.5km,最大宽度2.5km.有大小侵蚀沟58条,总长度36.07km,沟壑密度达3.46km/km~2,沟岸扩张在剧烈发展的侵蚀沟有7条.多年来,由于自然和人为因素,流域内植被遭到破坏,水土流失严重,生态环境恶化.到治理前为止,水土流失面积已达8.98km~2,占流域面积的86.18%,年平均侵蚀模数为1670.38t/km~2.严重的水土流失给农业生产和人民生活造成极大威胁,阻碍了流域内各行业的发展.  相似文献   

9.
辽宁省现有土壤侵蚀面积46 341.3 km2,占全省土地总面积的31.7%。其中:水力侵蚀为40 429.1km2,风力侵蚀3 318 km2,人为侵蚀2 593.3 km2。全省年土壤侵蚀总量为1.31亿t,水土流失区平均土壤侵蚀模数为2 834 t/(km2.a)。地域分布主要在辽西4市及辽东32个县(市、区)。地类分布:林草地中共有水土流失面积2 551.3 km2,占全省总侵蚀面积的55%。旱作坡耕地侵蚀面积18 131.3 km2,占全省侵蚀总面积的39.1%,主要发生在3°~5°坡耕地上,占耕地侵蚀面积的71.8%。防治对策:认清形势,继续加大治理力度,改善林草地环境质量,发挥植被防御功能;加强坡耕地治理,改变小地形及退耕还林;沟壑治理必须防御性治理与开发性治理相结合。建立监测预警机制,控制水土流失。  相似文献   

10.
基于~(137)Cs、~(210)Pb和CSLE的三峡库区小流域土壤侵蚀评估   总被引:1,自引:1,他引:0  
综合应用137Cs和210Pb技术和中国土壤流失方程CSLE(Chinese soil loss equation)进行三峡库区腹地工农沟小流域土壤侵蚀的定量评价研究,尝试基于核素示踪技术计算的土壤侵蚀模数评估CSLE在库区林地小流域的估算效果。结果表明:(1)借助210PbexCRS计年模式获得了工农沟塘库沉积柱芯不同质量深度的沉积年代,与137Cs 1963年断代结果相比基本一致,定年结果可靠;(2)基于核素示踪技术(137Cs和210Pb)计算的小流域2002—2014年土壤侵蚀模数为269.09t/(km2·a),侵蚀强度属于微度侵蚀,年土壤侵蚀量为22.87t/a;(3)依据CSLE和考虑沟蚀因子的CSLE估算的小流域2002—2014年土壤侵蚀模数分别为256.07t/(km2·a)和317.53t/(km2·a),年土壤侵蚀量分别为21.77t/a和26.99t/a;(4)与核素计算的结果相比,CSLE和考虑沟蚀因子的CSLE的估算精度均≥80%,说明采用CSLE估算库区林地小流域土壤侵蚀量结果合理。  相似文献   

11.
基于SPOT和TM融合遥感影像和GIS技术,采用通用土壤流失方程RUSLE作为评价模型,计算了庆城项目区土壤侵蚀量,并结合土壤侵蚀强度分级标准,生成流域土壤侵蚀强度等级图。结果表明,项目区年平均输沙模数为7058 t/km~2,侵蚀级别属强度。研究区62.2%的泥沙来自于占流域面积仅24.8%的极强度和剧烈侵蚀区域。经分析,项目区25°以上的坡度土壤平均侵蚀量大于10168t/km~2,是水土流失治理的关键。  相似文献   

12.
基于GIS和USLE的九龙江流域土壤侵蚀量预测研究   总被引:63,自引:1,他引:63  
探讨了GIS和USLE相结合预测南方中等尺度流域土壤侵蚀量、标识流域土壤侵蚀严重区域。运用GIS建立九龙江流域基础地理数据库,利用ARC/INFO的栅格数据空间分析功能,根据USLE土壤侵蚀预测模型对数据库进行图形运算,预测了九龙江流域的土壤侵蚀量。结果表明,流域的年均侵蚀模数为2730.3t/km^2,侵蚀强度属中度。占流域面积85.72%的区域土壤侵蚀强度在中度以下。这一区域对流域土壤侵蚀量的贡献率为58.26%,而流域41.74%的侵蚀泥沙来自于占流域面积14.28%的强度以上侵蚀区域。在流域侵蚀强度的空间分布上,8个子流域属中度侵蚀区,其中船场溪、花山溪和雁石溪三个子流域侵蚀强度较大;6个子流域属轻度侵蚀区,其中漳州平原的龙海和浦南两子流域侵蚀强度最弱。  相似文献   

13.
基于GIS和USLE的龙墩水库小流域土壤侵蚀评估研究   总被引:1,自引:0,他引:1  
陈玉东  陈梅  孙旭  刘臣炜  张龙江  苏良湖 《土壤》2016,48(5):1007-1014
本研究以南京市高淳区龙墩水库流域为研究对象,利用通用土壤流失方程(USLE)模型与地理信息系统(GIS)技术结合的方法对流域土壤侵蚀进行模拟预测。结果表明:整个流域年均土壤侵蚀模数为4 343.46 t/km~2,属中度侵蚀。整个流域微度和轻度侵蚀所占面积比例相对较大,两者所占面积比例之和超过了63%,极强度和剧烈侵蚀虽然所占面积较小,但却产生了超过了70%的侵蚀量。不同土地利用类型中土壤侵蚀强度差异较大,年均侵蚀模数旱田草地水田林地,侵蚀量旱田水田草地林地。通过GIS将整个流域划分为13个子流域,子流域4、5、10由于区域内大部分是旱田,土壤侵蚀模数较大,为流域内土壤侵蚀的关键源区,子流域10侵蚀模数和侵蚀量都比较大,应该重点关注;而子流域1、9和12由于侵蚀总量较大,也应该保持一定的关注。所有子流域土壤侵蚀量都主要来自高强度侵蚀等级,其中以剧烈侵蚀为主。因此,控制土壤侵蚀应该优先考虑高强度侵蚀等级区域。  相似文献   

14.
应用地理信息系统软件的空间分析功能,从土壤侵蚀空间分布特征和流域平均土壤侵蚀模数的角度对草海流域土壤侵蚀现状进行了分析,并提出了水土保持建议.研究表明:草海流域土壤侵蚀面积占流域总面积30.58%,以轻度侵蚀为主,草海流域平均土壤侵蚀模数为870t/km2·a,属于轻度侵蚀地区,中度以上侵蚀主要分布在西南部、东部、南部...  相似文献   

15.
黄土高原土壤侵蚀严重,为此中国从1999年起实施了大规模的退耕还林工程。为了分析退耕还林土地利用变化对土壤侵蚀的影响,该研究以黄土高原清水河流域为研究区域,将2000—2020年流域退耕还林工程的实施依据主要措施的不同划分为4个阶段,应用RUSLE(revised universal soil loss equation)模型分析土壤侵蚀强度的变化特征,采用情景模拟方法提出一个区分土地利用变化和降雨变化对土壤侵蚀影响程度的算法,判别土地利用变化对土壤侵蚀的影响程度,将土地利用变化分解为土地利用转换和改造2种形式,在剔除降雨变化影响的基础上分析土地利用变化对土壤侵蚀的影响过程。结果表明:1)2000、2005、2011、2014和2020年流域平均侵蚀模数分别为36.21、41.02、24.93、23.72和8.24 t/(hm2·a),土壤侵蚀强度明显下降;土地利用变化和降雨变化对土壤侵蚀的阶段平均影响程度分别为75.23%和24.77%,土地利用变化在流域土壤侵蚀的变化中起了主导作用。2)流域土地利用转换区侵蚀强度的变化直接受转换过程中地类类别变更及所实施主要相关措施差异的影响,改造区侵蚀强度的变化直接受改造过程中所实施主要相关措施的影响。剔除降雨变化的影响后:改造区的阶段平均起始侵蚀模数较转换区高43.47%,其水土流失综合治理的难度总体上大于转换区;转换区侵蚀模数的阶段平均下降量较改造区高50.80%,改造区侵蚀量的阶段合计减少量占流域阶段合计减少量的71.16%,土地利用转换在降低其实施地区土壤侵蚀强度方面发挥了重要作用,而土地利用改造因实施面积较大在减少流域土壤侵蚀总量方面发挥了重要作用。3)剔除降雨变化的影响后,草地侵蚀量的阶段合计变化量占流域阶段合计变化量的70.51%,且草地阶段合计变化量中改造区占67.41%,其变化特别是其改造对流域土壤侵蚀的影响最大。该研究在分析土地利用变化对土壤侵蚀的影响程度和过程方面作了一些尝试,研究结果可为黄土高原退耕还林成果巩固及高质量发展有效措施的制定提供科学依据。  相似文献   

16.
长期野外监测红壤裸露坡地侵蚀性降雨分布及产沙分析   总被引:5,自引:3,他引:2  
侵蚀性降雨及其侵蚀泥沙分布特征研究是掌握土壤侵蚀规律的基础,同时也可为水土保持综合治理提供理论依据。研究选择红壤裸地坡面径流小区为研究对象,利用实际观测法收集到2001-2016年的565次长序列侵蚀性降雨及其径流泥沙资料,运用数理统计方法分析侵蚀性降雨及其泥沙的发生频率和强度的分布特征,在此基础上分析降雨类型对侵蚀产沙的影响。研究结果表明,研究区侵蚀性降雨量占总降雨量的87.82%,主要分布在降雨量为25 mm以上和降雨强度5mm/h以下的降雨事件。次降雨侵蚀强度小于100t/km~2的侵蚀次数占总次数的76.81%,而其侵蚀总量只占总量的7.28%;侵蚀强度大于500t/km~2的降雨侵蚀次数只占总次数的6.36%,但其侵蚀泥沙量可占总量的60.96%,次降雨侵蚀产沙量分布极为不均。降雨量25~100mm且平均雨强小于20mm/h的降雨类型造成研究区土壤侵蚀量最大。次降雨量100 mm和降雨强度20 mm/h可作为红壤裸露坡地水土流失防御的设计暴雨特征值。研究结果有助于揭示红壤坡地次降雨侵蚀规律和水土保持措施布设。  相似文献   

17.
定量评估区域坡耕地土壤侵蚀分布规律,是科学制定坡耕地水土流失综合治理规划、开展坡耕地质量建设的基础,然而目前针对省域尺度坡耕地土壤侵蚀和养分流失规律的研究较少。该研究基于GIS空间分析技术和通用土壤流失方程(Universal Soil Loss Equation,USLE),在模型参数率定与计算精度验证基础上,定量评价云南省坡耕地土壤侵蚀和养分流失特征。结果表明:1)云南省坡耕地土壤侵蚀面积为421.38万hm2,侵蚀总量为376.58×106 t/a,占全省侵蚀总量的63.02%,坡耕地是区域侵蚀产沙的主要策源地;坡耕地平均侵蚀模数为7 986.31 t/(km2.a),总体处于强烈侵蚀等级,剧烈侵蚀、极强烈侵蚀和强烈侵蚀是坡耕地侵蚀产沙的主要来源;不同分区坡耕地侵蚀模数和侵蚀量差异显著,滇西南区侵蚀强度最大,滇东南区侵蚀强度最小。2)随着坡度增加,坡耕地侵蚀面积比例、侵蚀强度、侵蚀量均呈较快增加趋势,土壤侵蚀主要来源于15~25°、>25°、>8~15°3个坡度级坡耕地。3)坡耕地流失土层厚度集中分布在0~12 mm/a之间,平均流失土层厚度为7.31 mm/a;耕层更新周期集中分布在20~200 a之间,均值为175.6 a,耕层更新周期-面积分布曲线呈先快速递增,并在某一峰值之后出现快速递减趋势。4)坡耕地养分流失空间分布存在差异性,土壤有机碳、全氮、速效钾、有效磷流失模数分别为223.60、23.94、1.59、0.15 t/(km2·a),坡耕地养分流失是区域养分流失量的主要来源。研究可为区域坡耕地水土流失治理和坡耕地质量建设提供科学依据。  相似文献   

18.
东北坡耕地春季融雪侵蚀观测研究   总被引:5,自引:4,他引:1  
为研究东北地区坡耕地的春季融雪侵蚀特征及其影响因素,选取吉林省吉兴小流域内坡耕地进行原位观测,通过分析融雪过程中径流量和含沙量的变化,以及融雪径流、土壤解冻深度等指标对融雪侵蚀的影响,探讨坡耕地融雪侵蚀过程及变化规律。结果表明,在日平均温度0~3.8℃的气象条件下,春季融雪侵蚀较为集中,径流与含沙量变化均先增加后减少。融雪径流与表层土壤解冻深度是影响融雪侵蚀的重要因素,初期融雪产流,土壤未解冻,径流急剧增加,径流量占融雪期总径流量的59.15%;中期积雪融化趋于稳定,土壤表层开始解冻,径流减少含沙量增加,侵蚀量达到最大且占融雪期总侵蚀量的41.74%;末期融雪产流停止,土壤解冻深度增加,含沙量达到最大(8.00kg/m~3)。坡耕地融雪侵蚀受垄作区域与集水洼地地形变化的影响,产流产沙具有较强规律性,二者峰值出现频次一致时,径流—泥沙呈"8"字循环滞后关系,反之呈复式循环滞后关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号