首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here the results of a study conducted to evaluate a terminal restriction fragment length polymorphism (TRFLP) approach targeting rRNA genes for determination of ectomycorrhizal (ECM) communities colonizing the roots of loblolly pine (Pinus taeda L.). Root tips separated from soil cores were classified according to morphological characteristics and DNA was then extracted from each group of morphotyped tips. Labeled primers were used to generate terminal restriction fragments (TRF) for molecular fingerprinting of root colonizing fungi and to determine how well TRFLP could be used to discriminate between ectomycorrhizal types. Morphotypes generally correlated well with specific TRFs and sequence analysis confirmed that TRFs could be used to discriminate among fungal types. Sequence analysis indicated that important ECM fungi including Russulaceae, Thelephorales, and Tricholomataceae could be fingerprinted with TRFLP. In addition, a fixed proportion of the DNA extracted from each morphotype from the same core was used in a pooling experiment used to assess whether previously identified fungal species types could be distinguished from one another within reconstructed communities. Since some morphotypes share TRFs, dual analysis of ITS1 and ITS2 was necessary for accurate fingerprinting of fungal types. Approximately, 5.0±0.3 phylotypes were detected per core with TRFLP-corrected morphotyping as compared to 4.0±0.4 phylotypes using TRFLP on pooled community samples. TRFLP made on experimental sporocarp communities suggested that reduced ECM richness with TRFLP may be partly caused by differences in the amount of DNA available for PCR and primer bias. Nonetheless, TRFLP on pooled morphotypes accounted for more than 93% of colonized root tips. The method can be used to facilitate analysis of mycorrhizal communities using root tips collected from soil cores.  相似文献   

2.
The ectomycorrhizal community of an oak forest has been monitored monthly throughout fifteen months. Eight enzymatic activities secreted by the ectomycorrhizal root tips and involved in the mobilization of nutrients from soil organic matter have been measured using microplate assays, resulting in potential activity patterns of individual fungal species. Both the species structure of the community and the specific activity level of each individual species changed with the season and soil horizon. This versatility may be an adaptative response of the ectomycorrhizal fungal community to a highly variable environment. The results also suggest that some ectomycorrhizal fungi behave as occasional saprobes and contribute to the decomposition of soil organic matter and nutrient cycling together with true saprotrophic fungi.  相似文献   

3.
The roles of ectomycorrhizal fungi and bacteria associated with corresponding fungal species in distribution of heavy metals within roots and shoots of inoculated pine (Pinus sylvestris L.) seedlings were determined in this study. The mycorrhizal fungi forming different morphotypes were identified by PCR-RFLP using respective primers for an internal spacer transcribed region (ITS) of fungal rDNA. Amongst five fungal species detected, three were identified as Scleroderma citrinum, Amanita muscaria and Lactarius rufus. These fungi used for inoculation of pine seedlings significantly reduced translocation of Zn(II), Cd(II) or Pb(II) from roots to shoots, and the pattern of metal-accumulation was dependent on the fungal species. Ectomycorrhizae-associated bacteria identified as Pseudomonas were used as an additional component of the pine inoculation. These dual root inoculations resulted in higher accumulation of the metals, especially Zn(II), in the roots compared to the inoculation with fungal species alone. Consequently, dual inoculation of pine seedlings could be a suitable approach for plant protection against heavy metals and successful planting of metal-polluted soils.  相似文献   

4.
Ectomycorrhizal fungi may provide plants access to nonexchangeable nutrients. We measured nutrients (potassium, calcium, magnesium, manganese, iron, and aluminum) in roots and foliage in nonmycorrhizal and ectomycorrhizal Pinus sylvestris cultured in perlite at two nutrient supply levels. We also measured nutrients in perlite leachates from abiotic experiments using hydrochloric or oxalic acid at pH 2–4. Twenty‐one percent more potassium and 30% more calcium accumulated in nonmycorrhizal plants than in ectomycorrhizal plants, presumably because of nutrient sequestration in extraradical fungal biomass. Plants at low nutrient supply accumulated 22% more potassium and 23% more calcium than at high nutrient supply, presumably because of additional mobilization of nutrients from perlite by plant and fungal acids. Significantly more leaching at pH 2 with oxalic than with hydrochloric acid occurred, probably caused by enhanced ligand‐mediated dissolution with oxalic acid. Leaching of minerals by organic acids may enhance plant nutrient supply, particularly from microsites of low pH.  相似文献   

5.
The fungal symbionts forming ectomycorrhizas, as well as their associated bacteria, benefit forest trees in a number of ways although the most important is enhancing soil nutrient mobilization and uptake. This is reciprocated by the allocation of carbohydrates by the tree to the fungus through the root interface, making the relationship a mutualistic association. Many field observations suggest that ectomycorrhizal fungi contribute to a number of key ecosystem functions such as carbon cycling, nutrient mobilization from soil organic matter, nutrient mobilization from soil minerals, and linking trees through common mycorrhizal networks. Until now, it has been very difficult to study trees and their fungal associates in forest ecosystems and most of the work on ECM functioning has been done in laboratory or nursery conditions. In this review with discuss the possibility of working at another scale, in forest settings. Numerous new techniques are emerging that makes possible the in situ study of the functional diversity of ectomycorrhizal communities. This approach should help to integrate developing research on the functional ecology of ectomycorrhizas and their associated bacteria with the potential implications of such research for managing the effects of climate change on forests.  相似文献   

6.
粘土矿物中钾的生物活化: Ⅱ. 外生菌根真菌(的作用)   总被引:2,自引:1,他引:1  
Ectomycorrhizal fungi, including Cenococcum geophilum SIV (Cg SIV), and Pisolithus tinctorius 2144 (Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4, KCl-saturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCl-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.  相似文献   

7.
YUANLING  WANGZHIHUI 《土壤圈》2000,10(4):347-354
Ectomycorrhizal ungi,including Cenococcum geophilum SIV( Cg SIV),and Pisolithus tinctorius 2144(Pt 2144),441(Pt 441) and XC1(Pt XC1),were cultured in Pachlewski liquid medium with H2KPO4,KCl-saturated vermiculite and mica as K sources,respectively,to investigate the mechanism of K absorption and mobilization by the fungi,FUngal growth rate,K absoprtion and mobilization varied significantly among the fungal species,Faster growth and greater K accumulation in Pt XC1 than Pt 2144,Pt 441 and Cg siv were observed.Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc.Ratio of the total amount of K,including water-,NH4OAc-and HCl-soluble K,lost from substrates to the K accumulated in fungal colonies was less than 60%.These reveal that the ectomycorrhizal fungi could utilize K in Interlayer and structural pools,which are usually unavailable for plants in short period.Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest.Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils,the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils.Ectomycorrhizal fungi differed in the efflux of protons and oxalate.Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment.Furthermore,the higther the concentrations of protons and oxalate in the liquid culture solutions,the larger the depletion of K in interlayer and structural pools in minerals by fungi,Protons could replace interlayer K and chelation of oxalate with Fe and Al in crystal lattice could cause weathering of clay minerals.So,protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.  相似文献   

8.
Decomposition of root litter was studied using Scots pine roots (six diameter classes) and rhizomes from heather (three diameter classes) and cowberry (one diameter class). For Scots pine roots, root diameter was correlated with initial concentrations of N, P, S and Mg but not with organic-chemical composition. The highest nutrient concentrations were found in Scots pine roots and the lowest in heather rhizomes, with cowberry rhizomes intermediate. The highest lignin concentrations were in heather and cowberry rhizomes. In the early decomposition stages diameter and nutrient concentration correlated with mass loss rate in Scots pine roots: in a comparison Scots pine roots were degraded faster than cowberry rhizomes which, in turn, were degraded faster than heather rhizomes. Root diameter, however, may not be important in decomposition of cowberry and heather rhizomes but nutrient and lignin concentrations appear important in all three species. In the late decomposition stages only Scots pine roots could be compared and it appeared that there was a negative correlation with lignin concentration and mass loss, and no correlation with any nutrient.  相似文献   

9.
The phospholipid fatty acid biomarkers 18:1ω9, 18:2ω6,9 and 18:3ω3,6,9 are commonly used as fungal biomarkers in soils. They have, however, also been found to occur in plant tissues, such as roots. Thus, the use of these PLFAs as fungal biomarkers in sieved soil, which may still contain small remains of roots, has been questioned. We used data from a recent beech tree girdling experiment to calculate the contribution of roots to these biomarkers and were able to demonstrate that not more than 0.61% of 18:1ω9 and 18:2ω6,9 in sieved soil samples originated from roots (but 4% of 18:3ω3,6,9). Additionally, the abundance of the biomarker 18:2ω6,9 in the soil was found to be highly correlated to ectomycorrhizal root colonization, which further corroborates its fungal origin. PLFA biomarkers were substantially reduced in vital roots from girdled trees compared to roots of control trees (by up to 76%), indicating that the major part of PLFAs measured in roots may actually originate from ectomycorrhizal fungi growing inside the roots. We calculated, that even a near to 50% reduction in fine root biomass - as observed in the girdling treatment - accounted for only 0.8% of the measured decrease of 18:2ω6,9. Our results demonstrate that both 18:1ω9 and 18:2ω6,9 are suitable biomarkers for detecting fungal dynamics in soils and that especially 18:2ω6,9 is a reliable biomarker to study mycorrhizal dynamics in beech forests.  相似文献   

10.

Purpose

A rapid increase of Eucalyptus plantation area in southern China has raised widespread attention in the field of ecology and forestry. It might be argued that fast-growth Eucalyptus would increase the consumption of resources and thus cause soil degradation. Fine root dynamics could provide insight into nutrient uptake or return. This study therefore focused on fine root production, turnover, and decomposition in a subtropical Eucalyptus urophylla plantation.

Materials and methods

Sequential coring method was used to estimate fine root production and turnover rate. Root decomposition rate and root nitrogen (N) and phosphorus (P) dynamics were determined using the litterbag method. In this study, roots were divided into three diameter classes: <1, 1–2, and 2–3 mm. We settled litterbags with all three different root diameter classes under the forest floor (0–10 cm) in winter, spring, and summer.

Results and discussion

The total production of fine roots at diameter <2 mm was 45.4 g m?2 year?1, and its turnover rate was 0.58 year?1. The roots at diameter <1 mm showed much greater production or turnover rate than those at diameter 1–2 mm. The root mass loss from litterbag across the three diameter classes (<1, 1–2, and 2–3 mm) was similar at the beginning period of 180 days, but significantly different later. The decomposition constant (k value) of roots estimated by exponential decay model decreased with increasing diameter class. In addition, the season of litterbag settlement also had effects on root mass loss. In root nutrient dynamics, the fractions of initial N immobilized increased with increasing diameter class. Root P at the three diameter classes showed a similar mineralization pattern.

Conclusions

Our studies on fine root production, turnover, and decomposition give some important insights into nutrient cycling between plant and soil in Eucalyptus plantations. Our results which show that fine roots had relatively low production and turnover rate partly explain the potential soil degradation under the short rotation systems. The variation of root dynamics among different diameter classes suggests that to accurately assess fine root roles, one should consider the effects of root diameter size.  相似文献   

11.
Organic matter accumulation, N and P concentrations of fine (<2 mm diameter) and coarse (2-10 mm) roots of Pinus kesiya and fine roots and rhizomes of ground vegetation, and decomposition of P. kesiya fine roots (<2 mm diameter) were studied in 6-, 15- and 23-year-old P. kesiya forest stands at Shillong, the capital of Meghalaya, India. The mean annual dry weight of P. kesiya fine roots did not vary significantly between the stands, but the coarse root mass increased significantly from the 6- to 23-year-old stand. However, herbaceous fine roots and rhizomes showed a reverse trend. Live roots (biomass) showed a higher N and P concentration than the necromass (dead root mass). Nutrient concentrations were greater in the fine roots compared to coarse roots. N and P accumulation was maximum in the 6-year-old stand and minimum in the 15-year-old stand. P. kesiya fine roots decomposed in a three-phased manner in all the stands. The first phase, lasting about 30 days, was characterised by a slow rate of weight loss. This was followed by a rapid phase of weight loss up to 90 days, with an average weight loss of 7.7 mg day-1, and the third phase showed a slow decay pattern (1.2 mg day-1). The weight loss pattern showed a strong seasonal trend; a faster rate of decay in the warm-humid period and a slow rate of decay in the dry-cold period. Nitrogen and P concentration in the decomposing root litter showed a marked decrease and/or increase during decomposition. The study reveals that in the 6-year-old pine stand the roots of herbaceous plants play a more significant role in maintaining the organic matter, N and P status of the soil, while in the older stands pine roots assumed greater significance.  相似文献   

12.
Soil fungi are highly diverse and act as the primary agents of nutrient cycling in forests. These fungal communities are often dominated by mycorrhizal fungi that form mutually beneficial relationships with plant roots and some mycorrhizal fungi produce extracellular and cell-bound enzymes that catalyze the hydrolysis of nitrogen (N)- and phosphorus (P)- containing compounds in soil organic matter. Here we investigated whether the community structure of different types of mycorrhizal fungi (arbuscular and ectomycorrhizal fungi) is correlated with soil chemistry and enzyme activity in a northern hardwood forest and whether these correlations change over the growing season. We quantified these relationships in an experimental paired plot study where white-tailed deer (access or excluded 4.5 yrs) treatment was crossed with garlic mustard (presence or removal 1 yr). We collected soil samples early and late in the growing season and analyzed them for soil chemistry, extracellular enzyme activity and molecular analysis of both arbuscular mycorrhizal (AM) and ectomycorrhizal/saprotrophic fungal communities using terminal restriction fragment length polymorphism (TRFLP). AM fungal communities did not change seasonally but were positively correlated with the activities of urease and leucine aminopeptidase (LAP), enzymes involved in N cycling. The density of garlic mustard was correlated with the presence of specific AM fungal species, while deer exclusion or access had no effect on either fungal community after 4.5 yrs. Ectomycorrhizal/saprotrophic fungal communities changed seasonally and were positively correlated with most soil enzymes, including enzymes involved in carbon (C), N and P cycling, but only during late summer sampling. Our results suggest that fine scale temporal and spatial changes in soil fungal communities may affect soil nutrient and carbon cycling. Although AM fungi are not generally considered capable of producing extracellular enzymes, the correlation between some AM taxa and the activity of N acquisition enzymes suggests that these fungi may play a role in forest understory N cycling.  相似文献   

13.
《Soil biology & biochemistry》2001,33(12-13):1733-1740
Exotic pine plantations are promoted for their presumed capacity to provide a net sink of atmospheric C. Millions of hectares worldwide will be subjected to conversion into plantations during the next decades. However, pine introductions are known to result in a marked depletion of soil C, a phenomenon which has remained unexplained. We studied plantations in paramo grasslands of Ecuador, where the effect of the exotic introduction of radiata pines (Pinus radiata) and their accompanying ectomycorrhizal fungi can be studied in isolation from other ecosystem disturbances. We suggest that ectomycorrhizal fungi can extract C previously accumulated by paramo grasslands based on (a) a drastic simplification of the ectomycorrhizal community shown by direct DNA identification, (b) a loss of up to 30% soil C within <20 years of plantation, (c) stable C isotope values in fungal fruitbodies which are closer to grassland than pine values, and (d) radiocarbon dating of fruitbodies indicating relatively old C sources for fruitbody formation. Species number in the ectomycorrhizal guild drops to only three fungal species per plantation compared to approximately 100 in comparable native pine stands. Our results provide evidence for a dynamic role of ectomycorrhizal fungi in soil C processing, and question the strategy of introducing pine plantations as a general solution to reduce mounting atmospheric CO2 levels.  相似文献   

14.
The relationships between soil microbial properties and fine root decomposition processes under elevated CO2 are poorly understood. To address this question, we determined soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), enzymes related to soil carbon (C) and nitrogen (N) cycling, the abundance of cultivable N-fixing bacteria and cellulolytic fungi, fine root organic matter, lignin and holocellulose decomposition, and N mineralization from 2006 to 2007 in a Mongolian oak (Quercus mongolica Fischer ex Ledebour) ecosystem in northeastern China. The experiment consisted of three treatments: elevated CO2 chambers, ambient CO2 chambers, and chamberless plots. Fine roots had significantly greater organic matter decomposition rates under elevated CO2. This corresponded with significantly greater SMB-C. Changes in the activities of protease and phenol oxidase under elevated CO2 could not explain the changes in fine root N release and lignin decomposition rates, respectively, while holocellulose decomposition rate had the same response to experimental treatments as did cellulase activity. Changes in cultivable N-fixing bacterial and cellulolytic fungal abundances in response to experimental treatments were identical to those of N mineralization and lignin decomposition rates, respectively, suggesting that the two indices were closely related to fine root N mineralization and lignin decomposition. Our results showed that the increased fine root organic matter, lignin and holocellulose decomposition, and N mineralization rates under elevated CO2 could be explained by shifts in SMB-C and the abundance of cellulolytic fungi and N-fixing bacteria. Enzyme activities are not reliable for the assessment of fine root decomposition and more attention should be given to the measurement of specific bacterial and fungal communities.  相似文献   

15.
The relative roles of ectomycorrhizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we used high-throughput techniques to measure ECM and saprotrophic community structure, soil resource availability, and extracellular enzyme activity in whole soils and on ECM root tips in a coastal pine forest. We found that ECM and saprotroph richness did not show spatial structure and did not co-vary with any soil resource. However, species richness of ECM fungi explained variation in the activity of enzymes targeting recalcitrant N sources (protease and peroxidase) in bulk soil. Activity of carbohydrate- and organic P- targeting enzymes (e.g. cellobiohydrolase, β-glucosidase, α-glucosidase, hemicellulases, N-acetyl-glucosaminidase, and acid phosphatase) was correlated with saprotroph community structure and soil resource abundance (total soil C, N, and moisture), both of which varied along the soil profile. These observations suggest independent roles of ECM fungi and saprotrophic fungi in the cycling of N-rich, C-rich, and P-rich molecules through soil organic matter. Enzymatic activity on ECM root tips taken from the same soil cores used for bulk enzyme analysis did not correlate with the activity of any enzyme measured in the bulk soil, suggesting that ECM contributions to larger-scale soil C and nutrient cycling may occur primarily via extramatrical hyphae outside the rhizosphere.  相似文献   

16.
We performed an assay of nutrient limitations to soil microbial biomass in forest floor material and intact cores of mineral soil collected from three North Carolina loblolly pine (Pinus taeda) forests. We added solutions containing C, N or P alone and in all possible combinations, and we measured the effects of these treatments on microbial biomass and on microbial respiration, which served as a proxy for microbial activity, during a 7-day laboratory incubation at 22 °C. The C solution used was intended to simulate the initial products of fine root decay. Additions of C dramatically increased respiration in both mineral soil and forest floor material, and C addition increased microbial biomass C in the mineral soil. Additions of N increased respiration in forest floor material and increased microbial biomass N in the mineral soil. Addition of P caused a small increase in forest floor respiration, but had no effect on microbial biomass.  相似文献   

17.
Plant roots and their associated mycorrhizal fungi critically mediate the decomposition of soil organic carbon (C), but the general patterns of their impacts over a broad geographical range and the primary mediating factors remain unclear. Based on a synthesis of 596 paired observations from both field and greenhouse experiments, we found that living roots and/or mycorrhizal fungi increased organic C decomposition by 30.9%, but low soil nitrogen (N) availability (i.e., high soil C:N ratio) critically mitigated this promotion effect. In addition, the positive effects of living roots and/or mycorrhizal fungi on organic C decomposition were higher under herbaceous and leguminous plants than under woody and non-leguminous plants, respectively. Surprisingly, there was no significant difference between arbuscular mycorrhizal fungi and ectomycorrhizal fungi in their effects on organic C decomposition. Furthermore, roots and/or mycorrhizal fungi significantly enhanced the decomposition of leaf litter but not root litter. These findings advance our understanding of how roots and their symbiotic fungi modulate soil C dynamics in the rhizosphere or mycorrhizosphere and may help improve predictions of soil global C balance under a changing climate.  相似文献   

18.
在苗圃接种试验基础上 ,对桉树植株营养吸收生理、根系活力进行了研究 ,根系显微观察表明 ,真菌组合在桉树根系上形成了混合菌根 ,即 :PG[彩色豆马勃 (Pisolithus tinctoriux ) X苏格兰球囊霉 (Glomus caledonium ) ]。接种菌根菌对桉树植株营养生理产生显著影响 ,接种组合 PG不仅促进植株对 N、P、K和 B的吸收 ,还有利于提高苗木的根系活力和 ABA的含量  相似文献   

19.

Purpose

Genetic modifications (GM) of commercial crops offer many benefits. However, microbial-mediated decomposition might be affected by GM crop residues in agricultural ecosystems. The objective of this study was to assess the possible impacts of cry1Ab gene transformation of rice on soil microbial community composition associated with residue decomposition in the paddy field under intensive rice cultivation.

Materials and methods

A 276-day field trial was set up as a completely randomized design for two types of rice residues, KMD (Bt) and Xiushui 11 (non-Bt parental variety) in triplicate by conventional intensive rice cropping system. The litterbag method was used in the rice residue decomposition and a total of 120 straw and root litterbags were either placed on the soil surface or buried at 10 cm depth in the field on Dec. 24, 2005. The litterbags were sampled periodically and their soil bacterial and fungal communities were determined by terminal restriction fragment length polymorphism (T-RFLP). The additive main effects with multiplicative interaction (AMMI) model were performed for the analysis of T-RFLP on binary variables of peak presence (presence/absence). The analysis of variance and linear regressions were performed for analysis of AMMI data.

Results and discussion

Total AMMI model analysis revealed that microbial community composition in the litterbags was affected by temporal and spatial factors. Compared with the non-Bt rice residue treatment, Bt rice straw had no significant effects on the soil bacterial and fungal community composition during the study period, regardless of the litterbags being placed on the surface or buried in the soil. There were no significant differences in the bacterial community composition profiles in root decomposition between Bt transgenic and non-Bt varieties. However, significant differences in soil fungal community composition between the buried Bt and non-Bt rice roots were observed in soils sampled on days 31, 68, and 137, indicating that Bt roots incorporated into paddy soil may affect soil fungal community during the initial stage of their decomposition.

Conclusions

There were some significant differences in fungal community composition between Bt rice root and non-Bt root treatments at the early stage of root decomposition in the paddy field. It is important that, before Bt rice is released for commercial production, more research should be conducted to evaluate the ecological effects of the Bt rice residues returned to paddy field upon grain harvesting.  相似文献   

20.
The mycelia of saprotrophic (SP) and ectomycorrhizal (ECM) fungi occur throughout the upper soil horizons in coniferous forests and could therefore be exposed to high concentrations of monoterpenes occurring in the needle litter of some tree species.Monoterpenes are mycotoxic and could potentially affect fungi that are exposed to them in the litter layers. In order to investigate whether monoterpenes typical of coniferous litters could influence fungal communities, we analysed the monoterpene content of freshly fallen needles of Pinus sylvestris, Picea abies and Picea sitchensis. The most abundant monoterpenes were found to be α-pinene, β-pinene and 3-carene. We evaluated the effects of these three monoterpene vapours on the biomass production of 23 SP isolates and 16 ECM isolates. Overall, 75% of ECM isolates and 26% of SP isolates were significantly inhibited by at least one of the monoterpene treatments and both intra- and inter-specific variations in response were observed.Monoterpene concentrations are highest in surface litters. The differential effects on fungal taxa may influence the spatial and temporal distribution of fungal community composition, indirectly affecting decomposition and nutrient cycling, the fundamental ecosystem processes in which fungi have a key role in coniferous forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号