首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Occluded, or intra-aggregate, soil organic matter (SOM) comprises a significant portion of the total C pool in forest soils and often has very long mean residence times (MRTs). However, occluded C characteristics vary widely among soils and the genesis and composition of the occluded organic matter pool are not well understood. This work sought to define the major controls on the composition and MRT of occluded SOM in western U.S. conifer forest soils with specific focus on the influence of soil mineral assemblage and aggregate stability. We sampled soils from a lithosequence of four parent materials (rhyolite, granite, basalt, and dolostone) under Pinus ponderosa. Three pedons were excavated to the depth of refusal at each site and sampled by genetic horizon. After density separation at 1.8 g cm−3 into free/light, occluded and mineral fractions, the chemical nature and mean residence time of organics in each fraction were compared. SOM chemistry was explored through the use of stable isotope analyses, 13C NMR, and pyrolysis GC/MS. Soil charcoal content estimates were based on 13C NMR analyses. Estimates of SOM MRT were based on steady-state modeling of SOM radiocarbon abundance measurements. Across all soils, the occluded fraction was 0.5–5 times enriched in charcoal in comparison to the bulk soil and had a substantially longer MRT than either the mineral fraction or the free/light fraction. These results suggest that charcoal from periodic burning is the primary source of occluded organics in these soils, and that the structural properties of charcoal promote its aggregation and long-term preservation. Surprisingly, aggregate stability, as measured through ultrasonic dispersion, was not correlated with occluded SOM abundance or MRT, perhaps raising questions of how well laboratory measurements of aggregate stability capture the dynamics of aggregate turnover under field conditions. Examination of the molecular characteristics of the occluded fraction was more conclusive. Occluded fraction composition did not change substantially with soil mineral assemblage, but was increasingly enriched in charcoal with depth relative to bulk SOM. Enrichment levels of 13C and 15N suggested a similar degree of microbial processing for the free/light and occluded fractions, and molecular structure of occluded and free/light fractions were also similar aside from charcoal enrichment in the occluded fraction. Results highlight the importance of both fire and aggregate formation to the long-term preservation of organics in western U.S. conifer forests which experience periodic burning, and suggest that the composition of occluded SOM in these soils is dependent on fire and the selective occlusion of charcoal.  相似文献   

2.
ABSTRACT

The aim of this study was to examine the usefulness of physical and chemical fractionation in quantifying soil organic matter (SOM) in different stabilized fraction pools. Soil samples from three land use types in Lorestan province, Southwest Iran were examined to account for the amount of organic carbon and nitrogen in different SOM fractions. Size/density separation and chemical oxidation methods were applied to separate the SOM fractions including particulate organic matter (POM), Si + C (silt and clay), DOC (dissolved organic C), rSOM (oxidation-resistant organic carbon and nitrogen) and S + SA (sand and stable aggregates). The values obtained for TOC, TN, and HWC were highest in forest lands followed by the range and agricultural lands. Among the SOM fractions, S + SA showed the highest values (5.75, 5.77 and 20.6 g kg?1 for agriculture, range and forest lands respectively) followed by POM, Si + C, rSOM, and DOC. The concentrations of C and N in the labile fractions obtained the higher values than in the stabilized fractions. Forest lands had the highest amounts of organic C and N among all fractions whereas agricultural lands showed highest values for inorganic C content of soils in different fractions.  相似文献   

3.
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand( 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm~(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture arable cropping). We concluded that POM is neither homogeneous nor unique.  相似文献   

4.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

5.
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.  相似文献   

6.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

7.
严重退化红壤植被恢复后有机质富集和团聚体稳定性   总被引:3,自引:0,他引:3  
ZHANG Bin  PENG Xin-Hua 《土壤圈》2006,16(6):699-706
Three types of soils: an eroded barren soil under continuous fallow, an eroded soil transplanted with Lespedeza shrubs (Lespedeza bieolor), and an eroded soil transplanted with camphor tree (Cinnaraomum camphora) were investigated to quantify organic matter pools and aggregates in reforested soils using physical fractionation techniques and to determine aggregate stability in relation to the enrichment of soil organic carbon (SOC). Soil organic matter (SOM) was physically fractionalized into free particulate organic matter (fPOM), occluded particulate organic matter (oPOM), and mineralassociated organic matter (mOM). The SOM was concentrated on the surface soil (0 5 cm), with an average C sequestration rate of 20-25 g C m^-2 year^-1 over 14 years. As compared to the eroded barren land, organic C content of fPOM, oPOM, and mOM fractions of the soil under Lespedeza and under camphor tree increased 12-15, 45-54, and 3.1-3.5 times, respectively. A linear relationship was found between aggregate stability and organic C (r^2 = 0.45, P 〈 0.01), oPOM (r^2 = 0.34, P 〈 0.05), and roOM (r^2 = 0.46, P 〈 0.01) of aggregates. The enrichment of organic C improved aggregate stability of the soil under Lespedeza but not that under camphor tree. However, further research is needed on the physical and biological processes involved in the interaction of soil aggregation and SOC sequestration in ecosystem.  相似文献   

8.
The use of ultrasonic energy for the dispersion of aggregates in studies of soil organic matter (SOM) fractionation entails a risk of redistribution of particulate organic matter (POM) to smaller particle‐size fractions. As the mechanical strength of straw also decreases with increasing state of decomposition, it can be expected that not all POM will be redistributed to the same extent during such dispersion. Therefore, we studied the redistribution of POM during ultrasonic dispersion and fractionation as a function of (i) dispersion energy applied and (ii) its state of decomposition. Three soils were dispersed at different ultrasonic energies (750, 1500 and 2250 J g?1 soil) or with sodium carbonate and were fractionated by particle size. Fraction yields were compared with those obtained with a standard particle‐size analysis. Undecomposed or incubated (for 2, 4 or 6 months) 13C‐enriched wheat straw was added to the POM fraction (0.25–2 mm) of one of the soils before dispersion and fractionation. Dispersion with sodium carbonate resulted in the weakest dispersion and affected the chemical properties of the fractions obtained through its high pH and the introduction of carbonate. The mildest ultrasonic dispersion treatment (750 J g?1) did not result in adequate soil dispersion as too much clay was still recovered in the larger fractions. Ultrasonic dispersion at 1500 J g?1 soil obtained a nearly complete dispersion down to the clay level (0.002 mm), and it did not have a significant effect on the total amount of carbon and nitrogen in the POM fractions. The 2250 J g?1 treatment was too destructive for the POM fractions since it redistributed up to 31 and 37%, respectively, of the total amount of carbon and nitrogen in these POM fractions to smaller particle‐size fractions. The amount of 13C‐enriched wheat straw that was redistributed to smaller particle‐size fractions during ultrasonic dispersion at 1500 J g?1 increased with increasing incubation time of this straw. Straw particles incubated for 6 months were completely transferred to smaller particle‐size fractions. Therefore, ultrasonic dispersion resulted in fractionation of POM, leaving only the less decomposed particles in this fraction. The amounts of carbon and nitrogen transferred to the silt and clay fractions were, however, negligible compared with the total amounts of carbon and nitrogen in these fractions. It is concluded that ultrasonic dispersion seriously affects the amount and properties of POM fractions. However, it is still considered as an acceptable and appropriate method for the isolation and study of SOM associated with silt and clay fractions.  相似文献   

9.
The presence and mutual interactions of soil organic matter (SOM) and clay particles are major factors determining soil structural stability. In the scope of agricultural management and environmental sustainability, it remains unclear how various mineral and organic matter (OM) fractions, OM–clay interactions and swelling processes in the interparticle space determine soil–water interactions and thus soil structural stability. To investigate this issue, we isolated the mineral and OM fractions of an agriculturally cultivated silty loam soil by soil density fractionation and assessed their hydration characteristics and effects on soil structural stability combining 1H‐NMR relaxometry, soil rheology and single wet‐sieving of soil aggregates. The results showed that agricultural management practices, in particular compost and ploughing, as well as various OM–clay interactions significantly affected soil–water interactions and soil structural stability. On the one hand, ploughing reduced soil structural stability by promoting clay swelling as a result of disrupted soil structures and reduced SOM content. On the other hand, compost treatment and reduced tillage increased soil structural stability. In all cases, soil density fractionation showed that compost‐derived particulate organic matter (POM) and mineral‐associated organic matter (MAOM) restricted clay swelling and resulted in a highly porous and mechanically stable soil matrix. In particular, POM increased soil structural stability by acting as nucleus for soil aggregation and by restricting clay swelling via its presence as solid, granular interparticulate material. In contrast, MAOM seemed to restrict clay swelling via clay surface covering and the formation of viscous interparticulate hydrogel structures.  相似文献   

10.
The location of soil organic matter (SOM) within the soil matrix is considered a major factor determining its turnover, but quantitative information about the effects of land cover and land use on the distribution of SOM at the soil aggregate level is rare. We analyzed the effect of land cover/land use (spruce forest, grassland, wheat and maize) on the distribution of free particulate organic matter (POM) with a density <1.6 g cm−3 (free POM<1.6), occluded particulate organic matter with densities <1.6 g cm−3 (occluded POM<1.6) and 1.6-2.0 g cm−3 (occluded POM1.6-2.0) and mineral-associated SOM (>2.0 g cm−3) in size classes of slaking-resistant aggregates (53-250, 250-1000, 1000-2000, >2000 μm) and in the sieve fraction <53 μm from silty soils by applying a combined aggregate size and density fractionation procedure. We also determined the turnover time of soil organic carbon (SOC) fractions at the aggregate level in the soil of the maize site using the 13C/12C isotope ratio. SOM contents were higher in the grassland soil aggregates than in those of the arable soils mainly because of greater contents of mineral-associated SOM. The contribution of occluded POM to total SOC in the A horizon aggregates was greater in the spruce soil (23-44%) than in the grassland (11%) and arable soils (19%). The mass and carbon content of both the free and occluded POM fractions were greater in the forest soil than in the grassland and arable soils. In all soils, the C/N ratios of soil fractions within each aggregate size class decreased in the following order: free POM<1.6>occluded POM<1.6-2.0>mineral-associated SOM. The mean age of SOC associated with the <53 μm mineral fraction of water-stable aggregates in the Ap horizon of the maize site varied between 63 and 69 yr in aggregates >250 μm, 76 yr in the 53-250 μm aggregate class, and 102 yr in the sieve fraction <53 μm. The mean age of SOC in the occluded POM increased with decreasing aggregate size from 20 to 30 yr in aggregates >1000 μm to 66 yr in aggregates <53 μm. Free POM had the most rapid rates of C-turnover, with residence times ranging from 10 yr in the fraction >2000 μm to 42 yr in the fraction 53-250 μm. Results indicated that SOM in slaking-resistant aggregates was not a homogeneous pool, but consisted of size/density fractions exhibiting different composition and stability. The properties of these fractions were influenced by the aggregate size. Land cover/land use were important factors controlling the amount and composition of SOM fractions at the aggregate level.  相似文献   

11.
Agroforestry systems have the potential to increase sequestration of atmospheric carbon dioxide (CO2) as soil organic carbon (SOC) because of the increased rates of organic matter addition and retention. However, few studies have characterized the relative stability of sequestered SOC in soil. We characterized SOC storage in aggregate size and chemical stability classes to estimate the relative stability of SOC pools after the addition of Leucaena-KX2 pruning residues (mulch) from 2006 to 2008 in a shaded coffee agroforestry system in Hawaii. Soil samples were separated by microaggregate isolation, density flotation and dispersion, and acid hydrolysis, resulting in five distinct fractions that differed in relative stability: coarse particulate organic matter (POM), fine POM, microaggregate-protected POM, silt + clay hydrolyzable soil organic matter (SOM), and silt + clay non-hydrolyzable SOM. With mulch addition, the fine POM fraction increased. There was also a shift in the proportion of SOC to more stable silt + clay fractions. In the absence of mulch there was no significant change in SOC fractions. Given that the turnover time of SOC in silt + clay fractions is on the order of decades to centuries, the potential benefits of active shade management and mulching compensate for the loss of C sequestration in tree biomass from pollarding.  相似文献   

12.
Particulate organic matter (POM) and light fraction organic matter (LFOM) are the fractions of soil organic matter (SOM) considered most active in terms of nutrient cycling and maintenance of soil structure. They respond quickly to changes in management and may offer insights into the long-term effect of management on SOM. However, the literature provides contradictory evidence regarding the factors which influence the amount of POM and LFOM, and there is little evidence to differentiate the relative importance of factors. Utilising data from over 150 experiments reported in the literature, we employed multiple regression to produce separate models quantifying the effect of management factors and environmental variables on POM, LFOM and total SOM; 29.3 % of the variance in the response variables was explained for POM, 28.3 % for LFOM, and 29.3 % for total SOM. Climate, organic amendments and inclusion of fallow periods were significant terms for all fractions. Climate had a larger influence on total SOM than POM or LFOM, whilst POM and LFOM were more strongly influenced by factors related to the recent history of organic matter addition; organic amendments and inclusion of fallows. Factors that were not significant variables for any of the fractions included tillage and application of N fertiliser, whilst soil texture was only a significant factor for SOM. General agreement between the total SOM, POM and LFOM models on the most important factors supports the idea that both POM and LFOM are good predictors of long-term changes to total SOM.  相似文献   

13.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

14.
《Geoderma》2001,99(1-2):147-168
Not only the amount of organic carbon in soil is important for soil organic matter (SOM) stability, but also its physical and chemical properties. The appropriate technique for the assessment of SOM dynamics can vary between soil types, and information about this is lacking for Ferralsols of the central Amazon basin. First, this work identified SOM pools which are sensitive to land-use changes on the terra firme in the central Amazon. In a second step, the effects of single trees on SOM properties were evaluated in a mixed tree crop plantation in comparison to secondary and primary forest sites. Thus, the processes of organic matter stabilization could be studied in the highly aggregated soils. A combination of aggregate and density fractionation was found to be most suitable for physical SOM characterization. The particulate organic matter (POM, density less than 1.6 Mg m−3) varied by one order of magnitude between sites and could be used as a sensitive indicator of land-use changes. Aggregate stability was not related to SOM contents or bulk SOM properties. The incorporation of plant material into stable SOM, however, was enhanced by aggregation. Among aggregate separates, the fraction, 0.25–0.5 mm, showed single-tree effects the most. SOM replenishment was higher under tree species with low quality litter, i.e. high C-to-N and polyphenol-to-N ratios. High quality litter from a leguminous ground cover, however, showed low soil nitrogen and carbon replenishment but increased nitrogen concentrations in light fractions. Litter with a high quality may improve soil nitrogen availability but not amounts of total SOM, which could only be shown for low quality litter. The results indicate the importance of aggregation and POM dynamics for SOM stabilization in the studied Xanthic Ferralsols of the central Amazon basin.  相似文献   

15.
Abstract. Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam Lixisol to evaluate long-term effects of tillage (hand hoeing or oxen ploughing) with or without 10 t ha−1 yr−1 of manure and fallowing on SOM and N concentrations and their distribution in particle size fractions. The field was sown annually to sorghum ( Sorghum bicolor [L.] Moench). Ten years later, total organic C and total N, SOM fractions and their N concentrations, and sorghum yield were determined. Continuous sorghum cultivation without organic inputs caused significant losses of C and N in the hoed and ploughed plots. However, addition of manure to hoed plots was effective in maintaining similar levels of C and N to fallow plots. Without manure, SOM was mainly stored in the size-fraction <0.053 mm (fine organic matter, FOM). SOM was mainly stored in the size-fraction between 0.053 and 2 mm (particulate organic matter, POM). In plots with manure and in fallow plots, the addition of manure more than doubled POM concentrations, with levels in tilled plots exceeding those of the fallow plots, and the highest levels in manually hoed plots. Nitrogen associated with POM (POM-N) followed a similar trend to POM. Hoeing and ploughing led to a decline in sorghum grain yield. Manure application increased yields by 56% in the hoed plots and 70% in the ploughed plots. Grain yield was not correlated with total SOM but was positively correlated with total POM. This study indicated that POM was greatly affected by long-term soil management options.  相似文献   

16.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

17.
《Geoderma》2005,124(1-2):143-155
With respect to carbon sequestration in soil, attempts have been made to identify soil organic matter (SOM) fractions that respond more rapidly to changes in land-use than bulk SOM, which could thus serve as early indicators for the overall stock change. We used a combination of physical fractionation (size and density separation) and chemical characterisation (C-to-N ratios, CuO lignin signature, 13C NMR spectroscopy) to identify sensitive SOM fractions in an agricultural system with sandy dystric cambisols in Bavaria, Germany, 7 years after a land-use change. Land-use types included long-term arable land and grassland, and conversion from one system to the other. Soil carbon and nitrogen contents in 0–3 cm increased from 14 to 39 mg organic carbon g−1 soil, and from 1.7 to 3.9 mg nitrogen g−1 soil in the following order: permanent arable, conversion grassland to arable, conversion arable to grassland, and permanent grassland. Wet sieving and ultrasonic dispersion with 22 J ml−1 released <5% and 60% to 80%, respectively, of the amount of particles >20 μm relative to complete dispersion. The most sensitive fraction, with respect to land-use, was SOM in the fraction >20 μm not released after sequential wet sieving and ultrasonic dispersion. In contrast, the proportion of free light (wet sieving, density <1.8 g cm−3) and occluded light (ultrasonic dispersion with 22 J ml−1, <1.8 g cm−3) particulate organic matter (POM) showed no clear response to land-use. The structural composition of POM indicated its vegetation origin with a selective enrichment of lignin and a loss of O-alkyl C relative to its plant precursors. Decomposition of the occluded light POM was only slightly advanced relative to the free light POM. In mineral fractions <20 μm, SOM was significantly more transformed than in the coarse fractions, as shown by NMR spectroscopy; however, it revealed no specific land-use pattern. An exception to this was the proportion of O-alkyl C in the clay fraction, which increased with SOC content. Ratios of alkyl to O-alkyl C in mineral fractions <20 μm differentiated samples gave a better differentiation of samples than the C-to-N ratios. We conclude that neither free nor occluded light POM are appropriate early indicators for changes in land-use at the investigated sites; however, total SOM, its distribution with depth, and SOM allocated in stable aggregates >20 μm were more sensitive.  相似文献   

18.
Various methods exist for the isolation of particulate organic matter (POM), one of the soil‐organic‐matter (SOM) fractions reacting most sensitive on land‐use or soil‐management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy‐loam to sandy–clay‐loam texture and thus low macroaggregate stability. Method I used air‐dried aggregates of <2.0 mm size and a low‐energy sonication for aggregate disruption, method II used field‐moist aggregates <6.3 mm and a high‐energy–sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C‐NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free‐ and occluded‐POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C‐NMR spectroscopy. Method II isolates a free‐ and occluded‐POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O‐alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field‐moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High‐energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates.  相似文献   

19.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

20.
Findings of previous studies suggest that there are relations between thermal stability of soil organic matter (SOM), organo‐mineral associations, and stability of SOM against microbial decay. We aimed to test whether thermal oxidation at various temperatures (200°C, 225°C, 275°C, 300°C, 400°C, or 500°C) is capable of isolating SOM fractions with increasing stability against microbial degradation. The investigation was carried out on soils (Phaeozem and Luvisol) under different land‐use regimes (field, grassland, forest). The stability of the obtained soil organic carbon (SOC) fractions was determined using the natural‐13C approach for continuously maize‐cropped soils and radiocarbon dating. In the Luvisol, thermal oxidation with increasing temperatures did not yield residual SOC fractions of increasing microbial stability. Even the SOC fraction resistant to thermal oxidation at 300°C contained considerable amounts of young, maize‐derived C. In the Phaeozem, the mean 14C age increased considerably (from 3473 y BP in the mineral‐associated SOC fraction to 9116 y BP in the residual SOC fraction after thermal oxidation at 300°C). An increasing proportion of fossil C (calculated based on 14C data) in residual SOC fractions after thermal oxidation with increasing temperatures indicated that this was mainly due to the relative accumulation of thermally stable fossil C. We conclude that thermal oxidation with increasing temperature was not generally suitable to isolate mineral‐associated SOC fractions of increasing microbial stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号